Generic placeholder image

Current Neuropharmacology

Editor-in-Chief

ISSN (Print): 1570-159X
ISSN (Online): 1875-6190

Review Article

Brain Disorder Detection and Diagnosis using Machine Learning and Deep Learning – A Bibliometric Analysis

Author(s): Jyotismita Chaki* and Gopikrishna Deshpande

Volume 22, Issue 13, 2024

Published on: 31 May, 2024

Page: [2191 - 2216] Pages: 26

DOI: 10.2174/1570159X22999240531160344

Price: $65

Open Access Journals Promotions 2
Abstract

Background and Objective: Brain disorders are one of the major global mortality issues, and their early detection is crucial for healing. Machine learning, specifically deep learning, is a technology that is increasingly being used to detect and diagnose brain disorders. Our objective is to provide a quantitative bibliometric analysis of the field to inform researchers about trends that can inform their Research directions in the future.

Methods: We carried out a bibliometric analysis to create an overview of brain disorder detection and diagnosis using machine learning and deep learning. Our bibliometric analysis includes 1550 articles gathered from the Scopus database on automated brain disorder detection and diagnosis using machine learning and deep learning published from 2015 to May 2023. A thorough bibliometric análisis is carried out with the help of Biblioshiny and the VOSviewer platform. Citation analysis and various measures of collaboration are analyzed in the study.

Results: According to a study, maximum research is reported in 2022, with a consistent rise from preceding years. The majority of the authors referenced have concentrated on multiclass classification and innovative convolutional neural network models that are effective in this field. A keyword analysis revealed that among the several brain disorder types, Alzheimer's, autism, and Parkinson's disease had received the greatest attention. In terms of both authors and institutes, the USA, China, and India are among the most collaborating countries. We built a future research agenda based on our findings to help progress research on machine learning and deep learning for brain disorder detection and diagnosis.

Conclusion: In summary, our quantitative bibliometric analysis provides useful insights about trends in the field and points them to potential directions in applying machine learning and deep learning for brain disorder detection and diagnosis.

Keywords: Brain disorder, machine learning, deep learning, Alzheimer’s, Parkinson’s, autism.

Graphical Abstract
[1]
Kumar, Y.; Koul, A.; Singla, R.; Ijaz, M.F. Artificial intelligence in disease diagnosis: A systematic literature review, synthesizing framework and future research agenda. J. Ambient Intell. Humaniz. Comput., 2022, 14(7), 8459-8486.
[PMID: 35039756]
[2]
Conditions and disease. Available from: https://www.britannica.com/browse/Conditions-Diseases
[3]
Brain anatomy and how the brain works. Available from: https://www.hopkinsmedicine.org/health/conditions-and-diseases/anatomy-of-the-brain
[4]
Brain disorders. Available from: https://www.healthline.com/health/brain-disorders
[5]
Van Schependom, J.; D’haeseleer, M. Advances in neurodegenerative diseases. J. Clin. Med., 2023, 12(5), 1709.
[http://dx.doi.org/10.3390/jcm12051709] [PMID: 36902495]
[6]
Burgos, N.; Bottani, S.; Faouzi, J.; Sutre, T.E.; Colliot, O. Deep learning for brain disorders: From data processing to disease treatment. Brief. Bioinform., 2021, 22(2), 1560-1576.
[http://dx.doi.org/10.1093/bib/bbaa310] [PMID: 33316030]
[7]
Suk, H.I.; Shen, D. Deep learning in diagnosis of brain disorders. In: Recent Progress in Brain and Cognitive Engineering. Trends in Augmentation of Human Performance;; Lee, SW; Bülthoff, H.; Müller, KR Springer: Dordrecht, 2015; pp. 203-213.
[http://dx.doi.org/10.1007/978-94-017-7239-6_14]
[8]
Yin, W.; Li, L.; Wu, F.X. Deep learning for brain disorder diagnosis based on fMRI images. Neurocomputing, 2022, 469, 332-345.
[http://dx.doi.org/10.1016/j.neucom.2020.05.113]
[9]
Donthu, N.; Kumar, S.; Mukherjee, D.; Pandey, N.; Lim, W.M. How to conduct a bibliometric analysis: An overview and guidelines. J. Bus. Res., 2021, 133, 285-296.
[http://dx.doi.org/10.1016/j.jbusres.2021.04.070]
[10]
Iftikhar, P.M.; Ali, F.; Faisaluddin, M.; Khayyat, A.; De Sa, D.G.M.; Rao, T.; Iftikhar, P. A bibliometric analysis of the top 30 most-cited articles in gestational diabetes mellitus literature (1946-2019). Cureus, 2019, 11(2), e4131.
[http://dx.doi.org/10.7759/cureus.4131] [PMID: 31058014]
[11]
Sweileh, W.M. Bibliometric analysis of peer-reviewed literature on climate change and human health with an emphasis on infectious diseases. Global. Health, 2020, 16(1), 44.
[http://dx.doi.org/10.1186/s12992-020-00576-1] [PMID: 32384901]
[12]
Ozbek, M.A.; Yardibi, F.; Genç, B.; Basak, A.T.; Tahta, A.; Akalan, N. Pediatric brain tumors: A bibliometric analysis. Childs Nerv. Syst., 2022, 38(6), 1095-1104.
[http://dx.doi.org/10.1007/s00381-022-05506-7] [PMID: 35306574]
[13]
Liu, M.; Liu, B.; Ye, Z.; Wu, D. Bibliometric analysis of electroencephalogram research in mild cognitive impairment from 2005 to 2022. Front. Neurosci., 2023, 17, 1128851.
[http://dx.doi.org/10.3389/fnins.2023.1128851] [PMID: 37021134]
[14]
Tsiamalou, A.; Dardiotis, E.; Paterakis, K.; Fotakopoulos, G.; Liampas, I.; Sgantzos, M.; Siokas, V.; Brotis, A.G. EEG in neurorehabilitation: A bibliometric analysis and content review. Neurol. Int., 2022, 14(4), 1046-1061.
[http://dx.doi.org/10.3390/neurolint14040084] [PMID: 36548189]
[15]
Yolcu, G.; Oztel, I.; Kazan, S.; Oz, C.; Palaniappan, K.; Lever, T.E.; Bunyak, F. Deep learning-based facial expression recognition for monitoring neurological disorders. 2017 IEEE International Conference on Bioinformatics and Biomedicine (BIBM), 2017, 1652-1657.
[http://dx.doi.org/10.1109/BIBM.2017.8217907]
[16]
Osman, A.B.; Tabassum, F.; Patwary, M.J.; Imteaj, A.; Alam, T.; Bhuiyan, M.A.S.; Miraz, M.H. Examining mental disorder/psychological chaos through various ML and DL techniques: A critical review. Ann. Emerg. Technol. Comput., 2022, 2022, 61-71.
[17]
Wen, J.; Sutre, T.E.; Melo, D.M.; González, S.J.; Routier, A.; Bottani, S.; Dormont, D.; Durrleman, S.; Burgos, N.; Colliot, O. Convolutional neural networks for classification of Alzheimer’s disease: Overview and reproducible evaluation. Med. Image Anal., 2020, 63, 101694.
[http://dx.doi.org/10.1016/j.media.2020.101694] [PMID: 32417716]
[19]
VOSviewer. Available from: https://www.vosviewer.com/
[20]
Du, Y.H.; Yang, R.Y.; Wang, Q.; Wang, L.Y.; Liang, L.C.; Zhu, L.; Sun, Y.; Cai, M. Bibliometric analysis study on the mechanisms of brain energy metabolism disorders in Alzheimer’s disease from 2000 to 2020. Front. Neurol., 2021, 12, 670220.
[http://dx.doi.org/10.3389/fneur.2021.670220] [PMID: 34354657]
[21]
Gong, B.; Naveed, S.; Hafeez, D.M.; Afzal, K.I.; Majeed, S.; Abele, J.; Nicolaou, S.; Khosa, F. Neuroimaging in psychiatric disorders: A bibliometric analysis of the 100 most highly cited articles. J. Neuroimaging, 2019, 29(1), 14-33.
[http://dx.doi.org/10.1111/jon.12570] [PMID: 30311320]
[22]
Zhang, S.; Wang, S.; Liu, R.; Dong, H.; Zhang, X.; Tai, X. A bibliometric analysis of research trends of artificial intelligence in the treatment of autistic spectrum disorders. Front. Psychiatry, 2022, 13, 967074.
[http://dx.doi.org/10.3389/fpsyt.2022.967074] [PMID: 36104988]
[23]
Scopus. Available from: https://www.scopus.com/
[24]
Falagas, M.E.; Pitsouni, E.I.; Malietzis, G.A.; Pappas, G. Comparison of PubMed, Scopus, web of science, and Google scholar: Strengths and weaknesses. FASEB J., 2008, 22(2), 338-342.
[http://dx.doi.org/10.1096/fj.07-9492LSF] [PMID: 17884971]
[25]
Stewart, N.C.E.; Kruesi, L.M.; Del Mar, C.B. Does Bradford’s law of scattering predict the size of the literature in cochrane reviews? J. Med. Libr. Assoc., 2012, 100(2), 135-138.
[http://dx.doi.org/10.3163/1536-5050.100.2.013] [PMID: 22514511]
[26]
Murugan, M.; Saravanakumar, R.; Thirumagal, A. Lotka's law and pattern of author productivity of information literacy research output; Library Philosophy and Practice (e-journal), 2019, p. 2509.
[27]
Parlina, A.; Ramli, K.; Murfi, H. Theme mapping and bibliometrics analysis of one decade of big data research in the scopus database. Information, 2020, 11(2), 69.
[http://dx.doi.org/10.3390/info11020069]
[28]
van Dam, A.; Dekker, M.; Castilla, M.I.; Rodríguez, M.Á.; Wichmann, D.; Baudena, M. Correspondence analysis, spectral clustering and graph embedding: Applications to ecology and economic complexity. Sci. Rep., 2021, 11(1), 8926.
[http://dx.doi.org/10.1038/s41598-021-87971-9] [PMID: 33903623]
[29]
Sabate, R.C.; Morales, I.; Sanchez, A.; Rodriguez, M. The multiple correspondence analysis method and brain functional connectivity: Its application to the study of the non-linear relationships of motor cortex and basal ganglia. Front. Neurosci., 2017, 11, 345.
[http://dx.doi.org/10.3389/fnins.2017.00345] [PMID: 28676738]
[30]
Negahban, M.B.; Zarifsanaiey, N. Network analysis and scientific mapping of the E-learning literature from 1995 to 2018. Knowl. Manag. E-learn., 2020, 12(3), 268-279.
[31]
Boukhlif, M.; Hanine, M.; Kharmoum, N. A decade of intelligent software testing research: A bibliometric analysis. Electronics , 2023, 12(9), 2109.
[http://dx.doi.org/10.3390/electronics12092109]
[32]
Arbabshirani, M.R.; Plis, S.; Sui, J.; Calhoun, V.D. Single subject prediction of brain disorders in neuroimaging: Promises and pitfalls. Neuroimage, 2017, 145(Pt B), 137-165.
[http://dx.doi.org/10.1016/j.neuroimage.2016.02.079] [PMID: 27012503]
[33]
Heinsfeld, A.S.; Franco, A.R.; Craddock, R.C.; Buchweitz, A.; Meneguzzi, F. Identification of autism spectrum disorder using deep learning and the ABIDE dataset. Neuroimage Clin., 2018, 17, 16-23.
[http://dx.doi.org/10.1016/j.nicl.2017.08.017] [PMID: 29034163]
[34]
Vieira, S.; Pinaya, W.H.L.; Mechelli, A. Using deep learning to investigate the neuroimaging correlates of psychiatric and neurological disorders: Methods and applications. Neurosci. Biobehav. Rev., 2017, 74(Pt A), 58-75.
[http://dx.doi.org/10.1016/j.neubiorev.2017.01.002] [PMID: 28087243]
[35]
Habes, M.; Erus, G.; Toledo, J.B.; Zhang, T.; Bryan, N.; Launer, L.J.; Rosseel, Y.; Janowitz, D.; Doshi, J.; Van der Auwera, S.; von Sarnowski, B.; Hegenscheid, K.; Hosten, N.; Homuth, G.; Völzke, H.; Schminke, U.; Hoffmann, W.; Grabe, H.J.; Davatzikos, C. White matter hyperintensities and imaging patterns of brain ageing in the general population. Brain, 2016, 139(4), 1164-1179.
[http://dx.doi.org/10.1093/brain/aww008] [PMID: 26912649]
[36]
Kim, J.; Calhoun, V.D.; Shim, E.; Lee, J.H. Deep neural network with weight sparsity control and pre-training extracts hierarchical features and enhances classification performance: Evidence from whole-brain resting-state functional connectivity patterns of schizophrenia. Neuroimage, 2016, 124(Pt A), 127-146.
[http://dx.doi.org/10.1016/j.neuroimage.2015.05.018] [PMID: 25987366]
[37]
Islam, J.; Zhang, Y. Brain MRI analysis for Alzheimer’s disease diagnosis using an ensemble system of deep convolutional neural networks. Brain Inform., 2018, 5(2), 2.
[http://dx.doi.org/10.1186/s40708-018-0080-3] [PMID: 29881892]
[38]
Tandel, G.S.; Biswas, M.; Kakde, O.G.; Tiwari, A.; Suri, H.S.; Turk, M.; Laird, J.; Asare, C.; Ankrah, A.A.; Khanna, N.N.; Madhusudhan, B.K.; Saba, L.; Suri, J.S. A review on a deep learning perspective in brain cancer classification. Cancers, 2019, 11(1), 111.
[http://dx.doi.org/10.3390/cancers11010111] [PMID: 30669406]
[39]
Lian, C.; Liu, M.; Zhang, J.; Shen, D. Hierarchical fully convolutional network for joint atrophy localization and Alzheimer’s disease diagnosis using structural MRI. IEEE Trans. Pattern Anal. Mach. Intell., 2020, 42(4), 880-893.
[http://dx.doi.org/10.1109/TPAMI.2018.2889096] [PMID: 30582529]
[40]
Zou, L.; Zheng, J.; Miao, C.; Mckeown, M.J.; Wang, Z.J. 3D CNN based automatic diagnosis of attention deficit hyperactivity disorder using functional and structural MRI. IEEE Access, 2017, 5, 23626-23636.
[http://dx.doi.org/10.1109/ACCESS.2017.2762703]
[41]
Graham, S.; Depp, C.; Lee, E.E.; Nebeker, C.; Tu, X.; Kim, H.C.; Jeste, D.V. Artificial intelligence for mental health and mental illnesses: An overview. Curr. Psychiatry Rep., 2019, 21(11), 116.
[http://dx.doi.org/10.1007/s11920-019-1094-0] [PMID: 31701320]
[42]
Li, X.; Dvornek, N.C.; Papademetris, X.; Zhuang, J.; Staib, L.H.; Ventola, P.; Duncan, J.S. 2-channel convolutional 3D deep neural network (2CC3D) for fMRI analysis: ASD classification and feature learning. 2018 IEEE 15th International Symposium on Biomedical Imaging (ISBI 2018); 04-07 April 2018 Washington, DC, USA, 2018, pp. 1252-1255.
[43]
Ulloa, A.; Plis, S.; Erhardt, E.; Calhoun, V. Synthetic structural magnetic resonance image generator improves deep learning prediction of schizophrenia. 2015 IEEE 25th International Workshop on Machine Learning for Signal Processing (MLSP); 17-20 September 2015Boston, MA, USA, 2015.
[http://dx.doi.org/10.1109/MLSP.2015.7324379]
[44]
Khan, A.; Wang, K. A deep learning based scoring system for prioritizing susceptibility variants for mental disorders. 2017IEEE International Conference on Bioinformatics and Biomedicine (BIBM), 13-16 November 2017 Kansas City, MO, USA 2017, pp. 1698-1705.
[http://dx.doi.org/10.1109/BIBM.2017.8217916]
[45]
Yao, L.; Brown, P.; Shoaran, M. Resting tremor detection in Parkinson’s disease with machine learning and Kalman filtering. In: 2018 IEEE Biomedical Circuits and Systems Conference (BioCAS); 17-19 October 2018 Cleveland, OH, USA, 2018; pp. 1-4.
[46]
Yang, X.; Islam, M.S.; Khaled, A.A. Functional connectivity magnetic resonance imaging classification of autism spectrum disorder using the multisite ABIDE dataset. 2019 IEEE EMBS International Conference on Biomedical & Health Informatics (BHI), 19-22 May 2019 Chicago, IL, USA 2019, pp. 1-4.
[http://dx.doi.org/10.1109/BHI.2019.8834653]
[47]
Salehi, A.W.; Baglat, P.; Sharma, B.B.; Gupta, G.; Upadhya, A. A CNN model: Earlier diagnosis and classification of Alzheimer disease using MRI. 2020 International Conference on Smart Electronics and Communication (ICOSEC), 10-12 September 2020 Trichy, India 2020, pp. 156-161.
[http://dx.doi.org/10.1109/ICOSEC49089.2020.9215402]
[48]
LeMoyne, R.; Tomycz, N.; Mastroianni, T.; McCandless, C.; Cozza, M.; Peduto, D. Implementation of a smartphone wireless accelerometer platform for establishing deep brain stimulation treatment efficacy of essential tremor with machine learning. 2015 37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC); 25-29 August 2015 Milan, Italy, 2015.
[http://dx.doi.org/10.1109/EMBC.2015.7319948]
[49]
Khobragade, N.; Tuninetti, D.; Graupe, D. On the need for adaptive learning in on-demand Deep Brain Stimulation for Movement Disorders. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC); 18-21 July 2018 Honolulu, HI, USA , 2018.
[http://dx.doi.org/10.1109/EMBC.2018.8512664]
[50]
Choi, H.; Ha, S.; Kang, H.; Lee, H.; Lee, D.S. Deep learning only by normal brain PET identify unheralded brain anomalies. EBioMedicine, 2019, 43, 447-453.
[http://dx.doi.org/10.1016/j.ebiom.2019.04.022] [PMID: 31003928]
[51]
LeCun, Y.; Bengio, Y.; Hinton, G. Deep learning. Nature, 2015, 521(7553), 436-444.
[52]
He, K.; Zhang, X.; Ren, S.; Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition, 27-30 June 2016 Las Vegas, NV, USA 2016, pp. 770-778.
[53]
Goodfellow, I.; Bengio, Y.; Courville, A. Deep learning; MIT press, 2016.
[54]
Kingma, D.P.; Ba, J. Adam: A method for stochastic optimization. arXiv:1412.6980 , 2014.
[55]
Krizhevsky, A.; Sutskever, I.; Hinton, G.E. ImageNet classification with deep convolutional neural networks. Commun. ACM, 2017, 60(6), 84-90.
[http://dx.doi.org/10.1145/3065386]
[56]
Iidaka, T. Resting state functional magnetic resonance imaging and neural network classified autism and control. Cortex, 2015, 63, 55-67.
[http://dx.doi.org/10.1016/j.cortex.2014.08.011] [PMID: 25243989]
[57]
Simonyan, K.; Zisserman, A. Very deep convolutional networks for large-scale image recognition. arXiv:1409.1556, 2014.
[58]
Pushpa, B.R.; Flemin, L. Detection and classification of brain tumor using machine learning approaches. Int. J. Res. Pharm. Sci, 2019, 10(3), 2153-2162.
[http://dx.doi.org/10.26452/ijrps.v10i3.1442]
[59]
Di Cosmo, A.; Pinelli, C.; Scandurra, A.; Aria, M.; D’Aniello, B. Research trends in octopus biological studies. Animals, 2021, 11(6), 1808.
[http://dx.doi.org/10.3390/ani11061808] [PMID: 34204419]
[60]
Agbo, F.J.; Oyelere, S.S.; Suhonen, J.; Tukiainen, M. Scientific production and thematic breakthroughs in smart learning environments: A bibliometric analysis. Smart Learn. Environ., 2021, 8(1), 1-25.
[http://dx.doi.org/10.1186/s40561-020-00145-4]
[61]
Fusco, F.; Marsilio, M.; Guglielmetti, C. Co-production in health policy and management: A comprehensive bibliometric review. BMC Health Serv. Res., 2020, 20(1), 504.
[http://dx.doi.org/10.1186/s12913-020-05241-2] [PMID: 32503522]
[63]
Multiple correspondence analysis. Available from: https://en.wikipedia.org/wiki/Multiple_correspondence_analysis
[64]
What is multiple correspondence analysis. Available from: https://www.xlstat.com/en/solutions/features/multiple-correspondence-analysis-mca
[65]
Correspondence analysis. Available from: https://en.wikipedia.org/wiki/Correspondence_analysis
[66]
Correspondence Analysis: What is it, and how can I use it to measure my Brand? (Part 1 of 2). Available from: https://www.qualtrics.com/eng/correspondence-analysis-what-is-it-and-how-can-i-use-it-to-measure-my-brand-part-1-of-2/
[68]
Lecture Notes in Computer Science. Available from: https://www.springer.com/series/558
[69]
Lecture Notes in Artificial Intelligence. Available from: https://www.springer.com/series/1244
[70]
Lecture Notes in Bioinformatics. Available from: https://www.springer.com/series/5381
[71]
Provides a holistic understanding of brain function from genes to behavior. Available from: https://www.frontiersin.org/journals/neuroscience
[72]
Biomedical signal processing and control. Available from: https://www.sciencedirect.com/journal/biomedical-signal-processing-and-control
[73]
[74]
IEEE journal of biomedical and health informatics. Available from: https://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=6221020
[75]
Deng, C.; Ji, X.; Rainey, C.; Zhang, J.; Lu, W. Integrating machine learning with human knowledge. iScience, 2020, 23(11), 101656.
[http://dx.doi.org/10.1016/j.isci.2020.101656] [PMID: 33134890]
[76]
Javeed, A.; Dallora, A.L.; Berglund, J.S.; Ali, A.; Ali, L.; Anderberg, P. Machine learning for dementia prediction: A systematic review and future research directions. J. Med. Syst., 2023, 47(1), 17.
[http://dx.doi.org/10.1007/s10916-023-01906-7] [PMID: 36720727]
[77]
Caviglione, L.; Comito, C.; Guarascio, M.; Manco, G. Emerging challenges and perspectives in Deep Learning model security: A brief survey. Syst. Soft Comput, 2023, 5, 200050.
[78]
Tariq, M.I.; Memon, N.A.; Ahmed, S.; Tayyaba, S.; Mushtaq, M.T.; Mian, N.A.; Imran, M.; Ashraf, M.W. A review of deep learning security and privacy defensive techniques. Mob. Inf. Syst., 2020, 2020, 1-18.
[http://dx.doi.org/10.1155/2020/6535834]
[79]
Dunn, C.; Moustafa, N.; Turnbull, B. Robustness evaluations of sustainable machine learning models against data poisoning attacks in the internet of things. Sustainability, 2020, 12(16), 6434.
[http://dx.doi.org/10.3390/su12166434]
[80]
Mani, V.; Kavitha, C.; Band, S.S.; Mosavi, A.; Hollins, P.; Palanisamy, S. A recommendation system based on AI for storing block data in the electronic health repository. Front. Public Health, 2022, 9, 831404.
[http://dx.doi.org/10.3389/fpubh.2021.831404] [PMID: 35127632]
[81]
Xie, F.; Yuan, H.; Ning, Y.; Ong, M.E.H.; Feng, M.; Hsu, W.; Chakraborty, B.; Liu, N. Deep learning for temporal data representation in electronic health records: A systematic review of challenges and methodologies. J. Biomed. Inform., 2022, 126, 103980.
[http://dx.doi.org/10.1016/j.jbi.2021.103980] [PMID: 34974189]
[82]
Chen, D.; Liu, S.; Kingsbury, P.; Sohn, S.; Storlie, C.B.; Habermann, E.B.; Naessens, J.M.; Larson, D.W.; Liu, H. Deep learning and alternative learning strategies for retrospective real-world clinical data. NPJ Digit. Med., 2019, 2(1), 43.
[http://dx.doi.org/10.1038/s41746-019-0122-0] [PMID: 31304389]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy