Generic placeholder image

Protein & Peptide Letters

Editor-in-Chief

ISSN (Print): 0929-8665
ISSN (Online): 1875-5305

Research Article

Peptidic Compound as DNA Binding Agent: In Silico Fragment-based Design, Machine Learning, Molecular Modeling, Synthesis, and DNA Binding Evaluation

Author(s): Dara Dastan, Shabnam Soleymanekhtiari and Ahmad Ebadi*

Volume 31, Issue 4, 2024

Published on: 30 April, 2024

Page: [332 - 344] Pages: 13

DOI: 10.2174/0109298665305131240404072542

Price: $65

Open Access Journals Promotions 2
Abstract

Background: Cancer remains a global burden, with increasing mortality rates. Current cancer treatments involve controlling the transcription of malignant DNA genes, either directly or indirectly. DNA exhibits various structural forms, including the G-quadruplex (G4), a secondary structure in guanine-rich regions. G4 plays a crucial role in cellular processes by regulating gene expression and telomerase function. Researchers have recently identified G4-stabilizing binding agents as promising anti-cancer compounds. Additionally, peptides have emerged as effective anticancer pharmaceuticals due to their ability to form multiple hydrogen bonds, electrostatic interactions, and van der Waals forces. These properties enable peptides to bind to specific areas of DNA chains selectively. However, despite these advancements, designing G4-binding peptides remains challenging due to a lack of comprehensive information.

Objective: In our present study, we employed an in silico fragment-based approach to design G4- binding peptides. This innovative method combines machine learning classification, molecular docking, and dynamics simulation.

Methods: : AutoDock Vina and Gromacs performed molecular docking and MD simulation, respectively. The machine learning algorithm was implemented by Scikit-learn. Peptide synthesis was performed using the SPPS method. The DNA binding affinity was measured by applying spectrophotometric titration.

Results: As a result of this approach, we identified a high-scoring peptide (p10; sequence: YWRWR). The association constant (Ka) between p10 and the ctDNA double helix chain was 4.45 × 105 M-1. Molecular modeling studies revealed that p10 could form a stable complex with the G4 surface.

Conclusion: The obtained Ka value of 4.45 × 105 M-1 indicates favorable interactions. Our findings highlight the role of machine learning and molecular modeling approaches in designing new G4-binding peptides. Further research in this field could lead to targeted treatments that exploit the unique properties of G4 structures.

Keywords: Cancer, ct-DNA, peptide, fragment-based design, machine learning, molecular modeling.

« Previous
Graphical Abstract
[1]
Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin., 2021, 71(3), 209-249.
[http://dx.doi.org/10.3322/caac.21660] [PMID: 33538338]
[2]
Baskar, R.; Lee, K.A.; Yeo, R.; Yeoh, K.W. Cancer and radiation therapy: Current advances and future directions. Int. J. Med. Sci., 2012, 9(3), 193-199.
[http://dx.doi.org/10.7150/ijms.3635] [PMID: 22408567]
[3]
Blackadar, C.B. Historical review of the causes of cancer. World J. Clin. Oncol., 2016, 7(1), 54-86.
[http://dx.doi.org/10.5306/wjco.v7.i1.54] [PMID: 26862491]
[4]
Hamed, A.R.; Yahya, S.M.M.; Nabih, H.K. Anti-drug resistance, anti-inflammation, and anti-proliferation activities mediated by melatonin in doxorubicin-resistant hepatocellular carcinoma: In vitro investigations. Naunyn Schmiedebergs Arch. Pharmacol., 2023, 396(6), 1117-1128.
[http://dx.doi.org/10.1007/s00210-023-02385-w] [PMID: 36651944]
[5]
Ou, T.; Lu, Y.; Tan, J.; Huang, Z.; Wong, K.Y.; Gu, L. G-quadruplexes: Targets in anticancer drug design. ChemMedChem, 2008, 3(5), 690-713.
[http://dx.doi.org/10.1002/cmdc.200700300] [PMID: 18236491]
[6]
Harikrishna, S.; Kotaru, S.; Pradeepkumar, P.I. Ligand-induced conformational preorganization of loops of c-MYC G-quadruplex DNA and its implications in structure-specific drug design. Mol. Biosyst., 2017, 13(8), 1458-1468.
[http://dx.doi.org/10.1039/C7MB00175D] [PMID: 28650023]
[7]
Sun, D.; Thompson, B.; Cathers, B.E.; Salazar, M.; Kerwin, S.M.; Trent, J.O.; Jenkins, T.C.; Neidle, S.; Hurley, L.H. Inhibition of human telomerase by a G-quadruplex-interactive compound. J. Med. Chem., 1997, 40(14), 2113-2116.
[http://dx.doi.org/10.1021/jm970199z] [PMID: 9216827]
[8]
Read, M.; Harrison, R.J.; Romagnoli, B.; Tanious, F.A.; Gowan, S.H.; Reszka, A.P.; Wilson, W.D.; Kelland, L.R.; Neidle, S. Structure-based design of selective and potent G quadruplex-mediated telomerase inhibitors. Proc. Natl. Acad. Sci., 2001, 98(9), 4844-4849.
[http://dx.doi.org/10.1073/pnas.081560598] [PMID: 11309493]
[9]
Perry, P.J.; Read, M.A.; Davies, R.T.; Gowan, S.M.; Reszka, A.P.; Wood, A.A.; Kelland, L.R.; Neidle, S. 2,7-Disubstituted amidofluorenone derivatives as inhibitors of human telomerase. J. Med. Chem., 1999, 42(14), 2679-2684.
[http://dx.doi.org/10.1021/jm990084q] [PMID: 10411488]
[10]
Kim, M.Y.; Vankayalapati, H.; Shin-ya, K.; Wierzba, K.; Hurley, L.H. Telomestatin, a potent telomerase inhibitor that interacts quite specifically with the human telomeric intramolecular g-quadruplex. J. Am. Chem. Soc., 2002, 124(10), 2098-2099.
[http://dx.doi.org/10.1021/ja017308q] [PMID: 11878947]
[11]
Harrison, R.J.; Gowan, S.M.; Kelland, L.R.; Neidle, S. Human telomerase inhibition by substituted acridine derivatives. Bioorg. Med. Chem. Lett., 1999, 9(17), 2463-2468.
[http://dx.doi.org/10.1016/S0960-894X(99)00394-7] [PMID: 10498189]
[12]
Caprio, V.; Guyen, B.; Boahen, O.Y.; Mann, J.; Gowan, S.M.; Kelland, L.M.; Read, M.A.; Neidle, S. A novel inhibitor of human telomerase derived from 10H-indolo[3,2-b]quinoline. Bioorg. Med. Chem. Lett., 2000, 10(18), 2063-2066.
[http://dx.doi.org/10.1016/S0960-894X(00)00378-4] [PMID: 10999471]
[13]
Otvos, L., Jr. Peptide-based drug design: Here and now. Methods Mol. Biol., 2008, 494, 1-8.
[http://dx.doi.org/10.1007/978-1-59745-419-3_1] [PMID: 18726565]
[14]
Jana, J.; Sengupta, P.; Mondal, S.; Chatterjee, S. Restriction of telomerase capping by short non-toxic peptides via arresting telomeric G-quadruplex. RSC Advances, 2017, 7(34), 20888-20899.
[http://dx.doi.org/10.1039/C6RA28149D]
[15]
Heddi, B.; Cheong, V.V.; Martadinata, H.; Phan, A.T. Insights into G-quadruplex specific recognition by the DEAH-box helicase RHAU: Solution structure of a peptide–quadruplex complex. Proc. Natl. Acad. Sci., 2015, 112(31), 9608-9613.
[http://dx.doi.org/10.1073/pnas.1422605112] [PMID: 26195789]
[16]
Minard, A.; Morgan, D.; Raguseo, F.; Porzio, D.A.; Liano, D.; Jamieson, A.G.; Antonio, D.M. A short peptide that preferentially binds c-MYC G-quadruplex DNA. Chem. Commun., 2020, 56(63), 8940-8943.
[http://dx.doi.org/10.1039/D0CC02954H] [PMID: 32638724]
[17]
Tull, R.J. Biophysical screening in fragment-based drug design: A brief overview. Biosci. Horizons Int. J. Student Res., 2018, 2018, hzy015.
[http://dx.doi.org/10.1093/biohorizons/hzy015]
[18]
Chen, M.C.; Tippana, R.; Demeshkina, N.A.; Murat, P.; Balasubramanian, S.; Myong, S.; D’Amaré, F.A.R. Structural basis of G-quadruplex unfolding by the DEAH/RHA helicase DHX36. Nature, 2018, 558(7710), 465-469.
[http://dx.doi.org/10.1038/s41586-018-0209-9] [PMID: 29899445]
[19]
Neese, F. The ORCA program system. Wiley Interdiscip. Rev. Comput. Mol. Sci., 2012, 2(1), 73-78.
[http://dx.doi.org/10.1002/wcms.81]
[20]
Trott, O.; Olson, A.J. AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J. Comput. Chem., 2010, 31(2), 455-461.
[http://dx.doi.org/10.1002/jcc.21334] [PMID: 19499576]
[21]
Morris, G.M.; Huey, R.; Lindstrom, W.; Sanner, M.F.; Belew, R.K.; Goodsell, D.S.; Olson, A.J. AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility. J. Comput. Chem., 2009, 30(16), 2785-2791.
[http://dx.doi.org/10.1002/jcc.21256] [PMID: 19399780]
[22]
Tyagi, A.; Tuknait, A.; Anand, P.; Gupta, S.; Sharma, M.; Mathur, D.; Joshi, A.; Singh, S.; Gautam, A.; Raghava, G.P.S. CancerPPD: A database of anticancer peptides and proteins. Nucleic Acids Res., 2015, 43(D1), D837-D843.
[http://dx.doi.org/10.1093/nar/gku892] [PMID: 25270878]
[23]
Müller, A.T.; Gabernet, G.; Hiss, J.A.; Schneider, G. modlAMP: Python for antimicrobial peptides. Bioinformatics, 2017, 33(17), 2753-2755.
[http://dx.doi.org/10.1093/bioinformatics/btx285] [PMID: 28472272]
[24]
Ricci, C.G.; de Andrade, A.S.C.; Mottin, M.; Netz, P.A. Molecular dynamics of DNA: Comparison of force fields and terminal nucleotide definitions. J. Phys. Chem. B, 2010, 114(30), 9882-9893.
[http://dx.doi.org/10.1021/jp1035663] [PMID: 20614923]
[25]
Van Der Spoel, D.; Lindahl, E.; Hess, B.; Groenhof, G.; Mark, A.E.; Berendsen, H.J.C. GROMACS: Fast, flexible, and free. J. Comput. Chem., 2005, 26(16), 1701-1718.
[http://dx.doi.org/10.1002/jcc.20291] [PMID: 16211538]
[26]
Bussi, G.; Donadio, D.; Parrinello, M. Canonical sampling through velocity rescaling. J. Chem. Phys., 2007, 126(1), 014101.
[http://dx.doi.org/10.1063/1.2408420] [PMID: 17212484]
[27]
Parrinello, M.; Rahman, A. Polymorphic transitions in single crystals: A new molecular dynamics method. J. Appl. Phys., 1981, 52(12), 7182-7190.
[http://dx.doi.org/10.1063/1.328693]
[28]
Ryckaert, J.P.; Ciccotti, G.; Berendsen, H.J.C. Numerical integration of the cartesian equations of motion of a system with constraints: Molecular dynamics of n-alkanes. J. Comput. Phys., 1977, 23(3), 327-341.
[http://dx.doi.org/10.1016/0021-9991(77)90098-5]
[29]
Essmann, U.; Perera, L.; Berkowitz, M.L.; Darden, T.; Lee, H.; Pedersen, L.G. A smooth particle mesh Ewald method. J. Chem. Phys., 1995, 103(19), 8577-8593.
[http://dx.doi.org/10.1063/1.470117]
[30]
Dastan, D.; Ebadi, A. Effect of substitution on the binding affinity of 5-bezylidenebarbituric acid derivatives to ctDNA: In silico and in vitro studies. J. Chem. Sci., 2022, 134(1), 20.
[http://dx.doi.org/10.1007/s12039-021-02007-z]
[31]
Khazaei, M.; Dastan, D.; Ebadi, A. Binding of Foeniculum vulgare essential oil and its major compounds to double-stranded DNA: In silico and in vitro studies. Food Biosci., 2021, 41, 100972.
[http://dx.doi.org/10.1016/j.fbio.2021.100972]
[32]
Benesi, H.A.; Hildebrand, J.H. A spectrophotometric investigation of the interaction of iodine with aromatic hydrocarbons. J. Am. Chem. Soc., 1949, 71(8), 2703-2707.
[http://dx.doi.org/10.1021/ja01176a030]
[33]
Hajduk, P.J.; Greer, J. A decade of fragment-based drug design: Strategic advances and lessons learned. Nat. Rev. Drug Discov., 2007, 6(3), 211-219.
[http://dx.doi.org/10.1038/nrd2220] [PMID: 17290284]
[34]
Mondal, P.; Gupta, V.; Das, G.; Pradhan, K.; Khan, J.; Gharai, P.K.; Ghosh, S. Peptide-based acetylcholinesterase inhibitor crosses the blood-brain barrier and promotes neuroprotection. ACS Chem. Neurosci., 2018, 9(11), 2838-2848.
[http://dx.doi.org/10.1021/acschemneuro.8b00253] [PMID: 30015476]
[35]
Tahmasebi, E.; Dastan, D.; Ebadi, A. Design, synthesis and biological evaluation of anticholinesterase peptides: Fragment-based vs. template-based peptide design. Bioorg. Chem., 2020, 105, 104351.
[http://dx.doi.org/10.1016/j.bioorg.2020.104351] [PMID: 33068814]
[36]
Gabernet, G.; Gautschi, D.; Müller, A.T.; Neuhaus, C.S.; Armbrecht, L.; Dittrich, P.S.; Hiss, J.A.; Schneider, G. In silico design and optimization of selective membranolytic anticancer peptides. Sci. Rep., 2019, 9(1), 11282.
[http://dx.doi.org/10.1038/s41598-019-47568-9] [PMID: 31375699]
[37]
Riedl, S.; Zweytick, D.; Lohner, K. Membrane-active host defense peptides – Challenges and perspectives for the development of novel anticancer drugs. Chem. Phys. Lipids, 2011, 164(8), 766-781.
[http://dx.doi.org/10.1016/j.chemphyslip.2011.09.004] [PMID: 21945565]
[38]
Huang, Z.L.; Dai, J.; Luo, W.H.; Wang, X.G.; Tan, J.H.; Chen, S.B.; Huang, Z.S. Identification of G-quadruplex-binding protein from the exploration of RGG motif/G-quadruplex interactions. J. Am. Chem. Soc., 2018, 140(51), 17945-17955.
[http://dx.doi.org/10.1021/jacs.8b09329] [PMID: 30517002]
[39]
Amblard, M.; Fehrentz, J.A.; Martinez, J.; Subra, G. Methods and protocols of modern solid phase Peptide synthesis. Mol. Biotechnol., 2006, 33(3), 239-254.
[http://dx.doi.org/10.1385/MB:33:3:239] [PMID: 16946453]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy