Generic placeholder image

当代阿耳茨海默病研究

Editor-in-Chief

ISSN (Print): 1567-2050
ISSN (Online): 1875-5828

Review Article

Tau蛋白翻译后修饰及其在阿尔茨海默病病理中的作用

卷 21, 期 1, 2024

发表于: 15 April, 2024

页: [24 - 49] 页: 26

弟呕挨: 10.2174/0115672050301407240408033046

价格: $65

摘要

微管相关蛋白Tau(也被称为Tau)已被证明会积聚成成对的螺旋细丝和神经原纤维缠结,这是已知的阿尔茨海默病(AD)病理的标志。几十年的研究表明,tau蛋白经历了广泛的翻译后修饰(PTMs),这可以改变蛋白质的结构、功能和动力学,并影响蛋白质的各种特性,如溶解度、聚集、定位和稳态。有大量的信息描述了不同的ptm在AD病理和神经保护中的影响和作用。然而,这些ptm之间复杂的相互作用仍然难以捉摸。因此,在这篇综述中,我们旨在了解在tau中发生的关键翻译后修饰,并总结潜在的联系,以阐明它们对tau生理和病理生理的影响。此外,我们描述了不同的计算建模方法如何帮助理解ptm对tau蛋白结构和功能的影响。最后,我们重点介绍了开发AD治疗的tau ptm相关治疗策略。

关键词: 阿尔茨海默病,tau蛋白,翻译后修饰,磷酸化,乙酰化,甲基化,硝化,糖基化,糖基化,截断,脱酰胺,泛素化,聚合化,计算建模,治疗方法。

[1]
Jha, A.; Mukhopadhaya, K. Memory, cognitive impairment and dementia. In: Alzheimer’s Disease: Diagnosis and Treatment Guide; Springer International Publishing: Cham, 2021; pp. 1-20.
[http://dx.doi.org/10.1007/978-3-030-56739-2_1]
[2]
Matthews, K.A.; Xu, W.; Gaglioti, A.H.; Holt, J.B.; Croft, J.B.; Mack, D.; McGuire, L.C. Racial and ethnic estimates of Alzheimer’s disease and related dementias in the United States (2015–2060) in adults aged ≥65 years. Alzheimers Dement., 2019, 15(1), 17-24.
[http://dx.doi.org/10.1016/j.jalz.2018.06.3063] [PMID: 30243772]
[3]
Alzheimer’s disease and related dementias. 2020. Available from: https://www.cdc.gov/aging
[4]
Gauthier, S. World Alzheimer Report 2022: Life after diagnosis: Navigating treatment, care and support. In: World Alzheimer Reports; Benoist Chloe, W.W., Ed.; Alzheimer’s Disease International, 2022; p. 413.
[5]
Meyers, E.A.; Sexton, C.; Snyder, H.M.; Carrillo, M.C. Impact of Alzheimer’s association support and engagement in the AD/ADRD research community through the COVID-19 pandemic and beyond. Alzheimers Dement., 2023, 19(7), 3222-3225.
[http://dx.doi.org/10.1002/alz.13015] [PMID: 36872646]
[6]
Tay, L.X.; Ong, S.C.; Tay, L.J.; Ng, T.; Parumasivam, T. Economic burden of alzheimer’s disease: A systematic review. Value Health Reg. Issues, 2024, 40, 1-12.
[http://dx.doi.org/10.1016/j.vhri.2023.09.008] [PMID: 37972428]
[7]
Global action plan on the public health response to dementia 2017-2025. Ed.; World Health Organization. 2017
[8]
Achúcarro, N. Elongated and stäbechenzellen cells: Neuroglic cells and granulo-adipose cells at the Ammon horn of the rabbit; Nicolás Moya, 1909.
[9]
Achúcarro, N. Notes on the structure and functions of neuroglia and in particular of neuroglia of the human cerebral cortex; Children of Nicolás Moya, 1914.
[10]
Kim, S.R.; Lee, J.M. Prothrombin kringle-2, a mediator of microglial activation: new insight in Alzheimer’s disease pathogenesis. Neural Regen. Res., 2022, 17(12), 2675-2676.
[http://dx.doi.org/10.4103/1673-5374.335813] [PMID: 35662205]
[11]
Stelzmann, R.A.; Schnitzlein, H.N.; Murtagh, F.R.; Murtagh, F.R. An english translation of alzheimer’s 1907 paper, “über eine eigenartige erkankung der hirnrinde”. Clin. Anat., 1995, 8(6), 429-431.
[http://dx.doi.org/10.1002/ca.980080612] [PMID: 8713166]
[12]
Swerdlow, R.H.; Anderson, H.; Burns, J.M. Alzheimer’s disease. In: Encyclopedia of Clinical Neuropsychology; Kreutzer, J.S.; DeLuca, J.; Caplan, B., Eds.; Springer New York: New York, NY, 2011; pp. 105-110.
[http://dx.doi.org/10.1007/978-0-387-79948-3_290]
[13]
Mattson, M.P. Oxidative stress, perturbed calcium homeostasis, and immune dysfunction in Alzheimer’s disease. J. Neurovirol., 2002, 8(6), 539-550.
[http://dx.doi.org/10.1080/13550280290100978] [PMID: 12476348]
[14]
Cabezas, I.L.; Batista, A.H.; Rol, G.P. The role of glial cells in Alzheimer disease: Potential therapeutic implications. Neurologia, 2014, 29(5), 305-309.
[http://dx.doi.org/10.1016/j.nrl.2012.10.006] [PMID: 23246214]
[15]
Sahara, N.; Maeda, S.; Takashima, A. Tau oligomerization: A role for tau aggregation intermediates linked to neurodegeneration. Curr. Alzheimer Res., 2008, 5(6), 591-598.
[http://dx.doi.org/10.2174/156720508786898442] [PMID: 19075586]
[16]
Hosokawa, M.; Masuda-Suzukake, M.; Shitara, H.; Shimozawa, A.; Suzuki, G.; Kondo, H.; Nonaka, T.; Campbell, W.; Arai, T.; Hasegawa, M. Development of a novel tau propagation mouse model endogenously expressing 3 and 4 repeat tau isoforms. Brain, 2022, 145(1), 349-361.
[http://dx.doi.org/10.1093/brain/awab289] [PMID: 34515757]
[17]
Tsujikawa, K.; Hamanaka, K.; Riku, Y.; Hattori, Y.; Hara, N.; Iguchi, Y.; Ishigaki, S.; Hashizume, A.; Miyatake, S.; Mitsuhashi, S.; Miyazaki, Y.; Kataoka, M.; Jiayi, L.; Yasui, K.; Kuru, S.; Koike, H.; Kobayashi, K.; Sahara, N.; Ozaki, N.; Yoshida, M.; Kakita, A.; Saito, Y.; Iwasaki, Y.; Miyashita, A.; Iwatsubo, T.; Ikeuchi, T.; Miyata, T.; Sobue, G.; Matsumoto, N.; Sahashi, K.; Katsuno, M. Actin-binding protein filamin-A drives tau aggregation and contributes to progressive supranuclear palsy pathology. Sci. Adv., 2022, 8(21), eabm5029.
[http://dx.doi.org/10.1126/sciadv.abm5029] [PMID: 35613261]
[18]
Lukiw, W.J. Recent advances in our molecular and mechanistic understanding of misfolded cellular proteins in alzheimer’s disease (AD) and prion disease (PrD). Biomolecules, 2022, 12(2), 166.
[http://dx.doi.org/10.3390/biom12020166] [PMID: 35204666]
[19]
Petrozziello, T.; Bordt, E.A.; Mills, A.N.; Kim, S.E.; Sapp, E.; Devlin, B.A.; Obeng-Marnu, A.A.; Farhan, S.M.K.; Amaral, A.C.; Dujardin, S.; Dooley, P.M.; Henstridge, C.; Oakley, D.H.; Neueder, A.; Hyman, B.T.; Spires-Jones, T.L.; Bilbo, S.D.; Vakili, K.; Cudkowicz, M.E.; Berry, J.D.; DiFiglia, M.; Silva, M.C.; Haggarty, S.J.; Sadri-Vakili, G. Targeting tau mitigates mitochondrial fragmentation and oxidative stress in amyotrophic lateral sclerosis. Mol. Neurobiol., 2022, 59(1), 683-702.
[http://dx.doi.org/10.1007/s12035-021-02557-w] [PMID: 34757590]
[20]
Liang, S.Y.; Wang, Z.T.; Tan, L.; Yu, J.T. Tau toxicity in neurodegeneration. Mol. Neurobiol., 2022, 59(6), 3617-3634.
[http://dx.doi.org/10.1007/s12035-022-02809-3] [PMID: 35359226]
[21]
Maeda, S.; Sahara, N.; Saito, Y.; Murayama, M.; Yoshiike, Y.; Kim, H.; Miyasaka, T.; Murayama, S.; Ikai, A.; Takashima, A. Granular tau oligomers as intermediates of tau filaments. Biochemistry, 2007, 46(12), 3856-3861.
[http://dx.doi.org/10.1021/bi061359o] [PMID: 17338548]
[22]
Gerson, J.E.; Sengupta, U.; Lasagna-Reeves, C.A.; Guerrero- Muñoz, M.J.; Troncoso, J.; Kayed, R. Characterization of tau oligomeric seeds in progressive supranuclear palsy. Acta Neuropathol. Commun., 2014, 2(1), 73.
[http://dx.doi.org/10.1186/2051-5960-2-73] [PMID: 24927818]
[23]
Shafiei, S.S.; Guerrero-Muñoz, M.J.; Castillo-Carranza, D.L. Tau oligomers: Cytotoxicity, propagation, and mitochondrial damage. Front. Aging Neurosci., 2017, 9, 83.
[http://dx.doi.org/10.3389/fnagi.2017.00083] [PMID: 28420982]
[24]
Peeraer, E.; Bottelbergs, A.; van Kolen, K.; Stancu, I.C.; Vasconcelos, B.; Mahieu, M.; Duytschaever, H.; Ver Donck, L.; Torremans, A.; Sluydts, E.; Van Acker, N.; Kemp, J.A.; Mercken, M.; Brunden, K.R.; Trojanowski, J.Q.; Dewachter, I.; Lee, V.M.Y.; Moechars, D. Intracerebral injection of preformed synthetic tau fibrils initiates widespread tauopathy and neuronal loss in the brains of tau transgenic mice. Neurobiol. Dis., 2015, 73, 83-95.
[http://dx.doi.org/10.1016/j.nbd.2014.08.032] [PMID: 25220759]
[25]
Alquezar, C.; Arya, S.; Kao, A.W. Tau post-translational modifications: Dynamic transformers of tau function, degradation, and aggregation. Front. Neurol., 2021, 11, 595532.
[http://dx.doi.org/10.3389/fneur.2020.595532] [PMID: 33488497]
[26]
Marcelli, S.; Corbo, M.; Iannuzzi, F.; Negri, L.; Blandini, F.; Nistico, R.; Feligioni, M. The involvement of post-translational modifications in alzheimer’s disease. Curr. Alzheimer Res., 2018, 15(4), 313-335.
[http://dx.doi.org/10.2174/1567205014666170505095109] [PMID: 28474569]
[27]
Selkoe, D.J. The therapeutics of Alzheimer’s disease: Where we stand and where we are heading. Ann. Neurol., 2013, 74(3), 328-336.
[http://dx.doi.org/10.1002/ana.24001] [PMID: 25813842]
[28]
Ashraf, G.; Greig, N.; Khan, T.; Hassan, I.; Tabrez, S.; Shakil, S.; Sheikh, I.; Zaidi, S.; Akram, M.; Jabir, N.; Firoz, C.; Naeem, A.; Alhazza, I.; Damanhouri, G.; Kamal, M. Protein misfolding and aggregation in Alzheimer’s disease and type 2 diabetes mellitus. CNS Neurol. Disord. Drug Targets, 2014, 13(7), 1280-1293.
[http://dx.doi.org/10.2174/1871527313666140917095514] [PMID: 25230234]
[29]
Braak, H.; Braak, E. Staging of alzheimer’s disease-related neurofibrillary changes. Neurobiol. Aging, 1995, 16(3), 271-278.
[http://dx.doi.org/10.1016/0197-4580(95)00021-6] [PMID: 7566337]
[30]
Iqbal, K.; Novak, M. From tangles to tau protein. Bratisl. Lek Listy, 2006, 107(9-10), 341-342.
[PMID: 17262984]
[31]
Fuentes, P.; Catalan, J. A clinical perspective: Anti tau’s treatment in Alzheimer’s disease. Curr. Alzheimer Res., 2011, 8(6), 686-688.
[http://dx.doi.org/10.2174/156720511796717221] [PMID: 21605037]
[32]
Ceyzériat, K.; Zilli, T.; Millet, P.; Frisoni, G.B.; Garibotto, V.; Tournier, B.B. Learning from the past: A review of clinical trials targeting amyloid, tau and neuroinflammation in alzheimer’s disease. Curr. Alzheimer Res., 2020, 17(2), 112-125.
[http://dx.doi.org/10.2174/1567205017666200304085513] [PMID: 32129164]
[33]
Cook, C.; Stankowski, J.N.; Carlomagno, Y.; Stetler, C.; Petrucelli, L. Acetylation: A new key to unlock tau’s role in neurodegeneration. Alzheimers Res. Ther., 2014, 6(3), 29.
[http://dx.doi.org/10.1186/alzrt259] [PMID: 25031639]
[34]
Wegmann, S.; Biernat, J.; Mandelkow, E. A current view on Tau protein phosphorylation in Alzheimer’s disease. Curr. Opin. Neurobiol., 2021, 69, 131-138.
[http://dx.doi.org/10.1016/j.conb.2021.03.003] [PMID: 33892381]
[35]
Park, S.; Lee, J.H.; Jeon, J.H.; Lee, M.J. Degradation or aggregation: The ramifications of post-translational modifications on tau. BMB Rep., 2018, 51(6), 265-273.
[http://dx.doi.org/10.5483/BMBRep.2018.51.6.077] [PMID: 29661268]
[36]
Reily, C.; Stewart, T.J.; Renfrow, M.B.; Novak, J. Glycosylation in health and disease. Nat. Rev. Nephrol., 2019, 15(6), 346-366.
[http://dx.doi.org/10.1038/s41581-019-0129-4] [PMID: 30858582]
[37]
Morishima-Kawashima, M.; Hasegawa, M.; Takio, K.; Suzuki, M.; Yoshida, H.; Watanabe, A.; Titani, K.; Ihara, Y. Hyperphosphorylation of Tau in PHF. Neurobiol. Aging, 1995, 16(3), 365-371.
[http://dx.doi.org/10.1016/0197-4580(95)00027-C] [PMID: 7566346]
[38]
Haukedal, H.; Freude, K.K. Implications of glycosylation in alzheimer’s disease. Front. Neurosci., 2021, 14, 625348.
[http://dx.doi.org/10.3389/fnins.2020.625348] [PMID: 33519371]
[39]
Yang, X.J.; Seto, E. Lysine acetylation: Codified crosstalk with other posttranslational modifications. Mol. Cell, 2008, 31(4), 449-461.
[http://dx.doi.org/10.1016/j.molcel.2008.07.002] [PMID: 18722172]
[40]
Funk, K.E.; Thomas, S.N.; Schafer, K.N.; Cooper, G.L.; Liao, Z.; Clark, D.J.; Yang, A.J.; Kuret, J. Lysine methylation is an endogenous post-translational modification of tau protein in human brain and a modulator of aggregation propensity. Biochem. J., 2014, 462(1), 77-88.
[http://dx.doi.org/10.1042/BJ20140372] [PMID: 24869773]
[41]
Gong, C.X.; Liu, F.; Iqbal, K. O-GlcNAcylation: A regulator of tau pathology and neurodegeneration. Alzheimers Dement., 2016, 12(10), 1078-1089.
[http://dx.doi.org/10.1016/j.jalz.2016.02.011] [PMID: 27126545]
[42]
Mondragón-Rodríguez, S. Phosphorylation of tau protein as the link between oxidative stress, mitochondrial dysfunction, and connectivity failure: Implications for Alzheimer’s disease. Oxid Med Cell Longev., 2013, 2013, 940603.
[http://dx.doi.org/10.1155/2013/940603]
[43]
Gong, C.X.; Liu, F.; Grundke-Iqbal, I.; Iqbal, K. Post-translational modifications of tau protein in Alzheimer’s disease. J. Neural Transm., 2005, 112(6), 813-838.
[http://dx.doi.org/10.1007/s00702-004-0221-0] [PMID: 15517432]
[44]
Liu, F.; Zaidi, T.; Iqbal, K.; Grundke-Iqbal, I.; Merkle, R.K.; Gong, C.X. Role of glycosylation in hyperphosphorylation of tau in Alzheimer’s disease. FEBS Lett., 2002, 512(1-3), 101-106.
[http://dx.doi.org/10.1016/S0014-5793(02)02228-7] [PMID: 11852060]
[45]
Ye, H.; Han, Y.; Li, P.; Su, Z.; Huang, Y. The role of post-translational modifications on the structure and function of tau protein. J. Mol. Neurosci., 2022, 72(8), 1557-1571.
[http://dx.doi.org/10.1007/s12031-022-02002-0] [PMID: 35325356]
[46]
Mandel, N.; Agarwal, N. Role of SUMOylation in neurodegenerative diseases. Cells, 2022, 11(21), 3395.
[http://dx.doi.org/10.3390/cells11213395] [PMID: 36359791]
[47]
Sarge, K.D.; Park-Sarge, O.K. SUMOylation and human disease pathogenesis. Trends Biochem. Sci., 2009, 34(4), 200-205.
[http://dx.doi.org/10.1016/j.tibs.2009.01.004] [PMID: 19282183]
[48]
Stoothoff, W.H.; Johnson, G.V.W. Tau phosphorylation: Physiological and pathological consequences. Biochim. Biophys. Acta Mol. Basis Dis., 2005, 1739(2-3), 280-297.
[http://dx.doi.org/10.1016/j.bbadis.2004.06.017] [PMID: 15615646]
[49]
Morris, M.; Knudsen, G.M.; Maeda, S.; Trinidad, J.C.; Ioanoviciu, A.; Burlingame, A.L.; Mucke, L. Tau post-translational modifications in wild-type and human amyloid precursor protein transgenic mice. Nat. Neurosci., 2015, 18(8), 1183-1189.
[http://dx.doi.org/10.1038/nn.4067] [PMID: 26192747]
[50]
Guillozet-Bongaarts, A.L.; Garcia-Sierra, F.; Reynolds, M.R.; Horowitz, P.M.; Fu, Y.; Wang, T.; Cahill, M.E.; Bigio, E.H.; Berry, R.W.; Binder, L.I. Tau truncation during neurofibrillary tangle evolution in Alzheimer’s disease. Neurobiol. Aging, 2005, 26(7), 1015-1022.
[http://dx.doi.org/10.1016/j.neurobiolaging.2004.09.019] [PMID: 15748781]
[51]
Li, L.; Jiang, Y.; Wang, J.Z.; Liu, R.; Wang, X. Tau ubiquitination in alzheimer’s disease. Front. Neurol., 2022, 12, 786353.
[http://dx.doi.org/10.3389/fneur.2021.786353] [PMID: 35211074]
[52]
Oliveira, J.; Costa, M.; de Almeida, M.S.C.; da Cruz e Silva, O.A.B.; Henriques, A.G. Protein phosphorylation is a key mechanism in Alzheimer’s disease. J. Alzheimers Dis., 2017, 58(4), 953-978.
[http://dx.doi.org/10.3233/JAD-170176] [PMID: 28527217]
[53]
Tolnay, M.; Sergeant, N.; Ghestem, A.; Chalbot, S.; de Vos, R.A.; Jansen Steur, E.N.; Probst, A.; Delacourte, A. Argyrophilic grain disease and Alzheimer’s disease are distinguished by their different distribution of tau protein isoforms. Acta Neuropathol., 2002, 104(4), 425-434.
[http://dx.doi.org/10.1007/s00401-002-0591-z] [PMID: 12200631]
[54]
Drepper, F.; Biernat, J.; Kaniyappan, S.; Meyer, H.E.; Mandelkow, E.M.; Warscheid, B.; Mandelkow, E. A combinatorial native MS and LC-MS/MS approach reveals high intrinsic phosphorylation of human Tau but minimal levels of other key modifications. J. Biol. Chem., 2020, 295(52), 18213-18225.
[http://dx.doi.org/10.1074/jbc.RA120.015882] [PMID: 33106314]
[55]
Kimura, T.; Sharma, G.; Ishiguro, K.; Hisanaga, S. Phospho-tau bar code: Analysis of phosphoisotypes of tau and its application to tauopathy. Front. Neurosci., 2018, 12, 44.
[http://dx.doi.org/10.3389/fnins.2018.00044] [PMID: 29467609]
[56]
Hanger, D.P.; Anderton, B.H.; Noble, W. Tau phosphorylation: The therapeutic challenge for neurodegenerative disease. Trends Mol. Med., 2009, 15(3), 112-119.
[http://dx.doi.org/10.1016/j.molmed.2009.01.003] [PMID: 19246243]
[57]
Buée, L.; Bussière, T.; Buée-Scherrer, V.; Delacourte, A.; Hof, P.R. Tau protein isoforms, phosphorylation and role in neurodegenerative disorders. Brain Res. Brain Res. Rev., 2000, 33(1), 95-130.
[http://dx.doi.org/10.1016/S0165-0173(00)00019-9] [PMID: 10967355]
[58]
Haj-Yahya, M. Site-specific hyperphosphorylation of tau inhibits its fibrillization in vitro, blocks its seeding capacity in cells, and disrupts its microtubule binding; Implications for the native state stabilization of tau. bioRxiv, 2019, 772046.
[http://dx.doi.org/10.1101/772046]
[59]
Zhou, X.W.; Li, X.; Bjorkdahl, C.; Sjogren, M.J.; Alafuzoff, I.; Soininen, H.; Grundke-Iqbal, I.; Iqbal, K.; Winblad, B.; Pei, J.J. Assessments of the accumulation severities of amyloid β-protein and hyperphosphorylated tau in the medial temporal cortex of control and Alzheimer’s brains. Neurobiol. Dis., 2006, 22(3), 657-668.
[http://dx.doi.org/10.1016/j.nbd.2006.01.006] [PMID: 16513361]
[60]
Šimić, G.; Babić Leko, M.; Wray, S.; Harrington, C.; Delalle, I.; Jovanov-Milošević, N.; Bažadona, D.; Buée, L.; de Silva, R.; Di Giovanni, G.; Wischik, C.; Hof, P. Tau protein hyperphosphorylation and aggregation in Alzheimer’s disease and other tauopathies, and possible neuroprotective strategies. Biomolecules, 2016, 6(1), 6.
[http://dx.doi.org/10.3390/biom6010006] [PMID: 26751493]
[61]
Su, J.H.; Cummings, B.J.; Cotman, C.W. Early phosphorylation of tau in Alzheimerʼs disease occurs at Ser-202 and is preferentially located within neurites. Neuroreport, 1994, 5(17), 2358-2362.
[http://dx.doi.org/10.1097/00001756-199411000-00037] [PMID: 7533559]
[62]
Iqbal, K.; Grundke-Iqbal, I. Ubiquitination and abnormal phosphorylation of paired helical filaments in Alzheimer’s disease. Mol. Neurobiol., 1991, 5(2-4), 399-410.
[http://dx.doi.org/10.1007/BF02935561] [PMID: 1726645]
[63]
Guillozet-Bongaarts, A.L.; Cahill, M.E.; Cryns, V.L.; Reynolds, M.R.; Berry, R.W.; Binder, L.I. Pseudophosphorylation of tau at serine 422 inhibits caspase cleavage: In vitro evidence and implications for tangle formation in vivo. J. Neurochem., 2006, 97(4), 1005-1014.
[http://dx.doi.org/10.1111/j.1471-4159.2006.03784.x] [PMID: 16606369]
[64]
Dickey, C.A.; Kamal, A.; Lundgren, K.; Klosak, N.; Bailey, R.M.; Dunmore, J.; Ash, P.; Shoraka, S.; Zlatkovic, J.; Eckman, C.B.; Patterson, C.; Dickson, D.W.; Nahman, N.S., Jr; Hutton, M.; Burrows, F.; Petrucelli, L. The high-affinity HSP90-CHIP complex recognizes and selectively degrades phosphorylated tau client proteins. J. Clin. Invest., 2007, 117(3), 648-658.
[http://dx.doi.org/10.1172/JCI29715] [PMID: 17304350]
[65]
Hoover, B.R.; Reed, M.N.; Su, J.; Penrod, R.D.; Kotilinek, L.A.; Grant, M.K.; Pitstick, R.; Carlson, G.A.; Lanier, L.M.; Yuan, L.L.; Ashe, K.H.; Liao, D. Tau mislocalization to dendritic spines mediates synaptic dysfunction independently of neurodegeneration. Neuron, 2010, 68(6), 1067-1081.
[http://dx.doi.org/10.1016/j.neuron.2010.11.030] [PMID: 21172610]
[66]
Lu, P.J.; Wulf, G.; Zhou, X.Z.; Davies, P.; Lu, K.P. The prolyl isomerase Pin1 restores the function of Alzheimer-associated phosphorylated tau protein. Nature, 1999, 399(6738), 784-788.
[http://dx.doi.org/10.1038/21650] [PMID: 10391244]
[67]
Kondo, A.; Shahpasand, K.; Mannix, R.; Qiu, J.; Moncaster, J.; Chen, C.H.; Yao, Y.; Lin, Y.M.; Driver, J.A.; Sun, Y.; Wei, S.; Luo, M.L.; Albayram, O.; Huang, P.; Rotenberg, A.; Ryo, A.; Goldstein, L.E.; Pascual-Leone, A.; McKee, A.C.; Meehan, W.; Zhou, X.Z.; Lu, K.P. Antibody against early driver of neurodegeneration cis P-tau blocks brain injury and tauopathy. Nature, 2015, 523(7561), 431-436.
[http://dx.doi.org/10.1038/nature14658] [PMID: 26176913]
[68]
Lee, T.H.; Chen, C.H.; Suizu, F.; Huang, P.; Schiene-Fischer, C.; Daum, S.; Zhang, Y.J.; Goate, A.; Chen, R.H.; Zhou, X.Z.; Lu, K.P. Death-associated protein kinase 1 phosphorylates Pin1 and inhibits its prolyl isomerase activity and cellular function. Mol. Cell, 2011, 42(2), 147-159.
[http://dx.doi.org/10.1016/j.molcel.2011.03.005] [PMID: 21497122]
[69]
Balastik, M.; Lim, J.; Pastorino, L.; Lu, K.P. Pin1 in Alzheimer’s disease: Multiple substrates, one regulatory mechanism? Biochim. Biophys. Acta Mol. Basis Dis., 2007, 1772(4), 422-429.
[http://dx.doi.org/10.1016/j.bbadis.2007.01.006] [PMID: 17317113]
[70]
Buerger, K.; Ewers, M.; Pirttilä, T.; Zinkowski, R.; Alafuzoff, I.; Teipel, S.J.; DeBernardis, J.; Kerkman, D.; McCulloch, C.; Soininen, H.; Hampel, H. CSF phosphorylated tau protein correlates with neocortical neurofibrillary pathology in Alzheimer’s disease. Brain, 2006, 129(11), 3035-3041.
[http://dx.doi.org/10.1093/brain/awl269] [PMID: 17012293]
[71]
Gong, C.X.; Singh, T.J.; Grundke-Iqbal, I.; Iqbal, K. Phosphoprotein phosphatase activities in Alzheimer disease brain. J. Neurochem., 1993, 61(3), 921-927.
[http://dx.doi.org/10.1111/j.1471-4159.1993.tb03603.x] [PMID: 8395566]
[72]
Chen, S.; Li, B.; Grundke-Iqbal, I.; Iqbal, K. I1PP2A affects tau phosphorylation via association with the catalytic subunit of protein phosphatase 2A. J. Biol. Chem., 2008, 283(16), 10513-10521.
[http://dx.doi.org/10.1074/jbc.M709852200] [PMID: 18245083]
[73]
Hart, G.W.; Slawson, C.; Ramirez-Correa, G.; Lagerlof, O. Cross talk between O-GlcNAcylation and phosphorylation: Roles in signaling, transcription, and chronic disease. Annu. Rev. Biochem., 2011, 80(1), 825-858.
[http://dx.doi.org/10.1146/annurev-biochem-060608-102511] [PMID: 21391816]
[74]
Liu, F.; Iqbal, K.; Grundke-Iqbal, I.; Hart, G.W.; Gong, C.X. O-GlcNAcylation regulates phosphorylation of tau: A mechanism involved in Alzheimer’s disease. Proc. Natl. Acad. Sci. USA, 2004, 101(29), 10804-10809.
[http://dx.doi.org/10.1073/pnas.0400348101] [PMID: 15249677]
[75]
O’Donnell, N.; Zachara, N.E.; Hart, G.W.; Marth, J.D. Ogt-dependent X-chromosome-linked protein glycosylation is a requisite modification in somatic cell function and embryo viability. Mol. Cell. Biol., 2004, 24(4), 1680-1690.
[http://dx.doi.org/10.1128/MCB.24.4.1680-1690.2004] [PMID: 14749383]
[76]
Soeda, Y.; Takashima, A. New insights into drug discovery targeting tau protein. Front. Mol. Neurosci., 2020, 13, 590896.
[http://dx.doi.org/10.3389/fnmol.2020.590896] [PMID: 33343298]
[77]
Carlomagno, Y.; Chung, D.C.; Yue, M.; Castanedes-Casey, M.; Madden, B.J.; Dunmore, J.; Tong, J.; DeTure, M.; Dickson, D.W.; Petrucelli, L.; Cook, C. An acetylation–phosphorylation switch that regulates tau aggregation propensity and function. J. Biol. Chem., 2017, 292(37), 15277-15286.
[http://dx.doi.org/10.1074/jbc.M117.794602] [PMID: 28760828]
[78]
Xia, Y.; Bell, B.M.; Giasson, B.I. Tau K321/K353 pseudoacetylation within KXGS motifs regulates tau–microtubule interactions and inhibits aggregation. Sci. Rep., 2021, 11(1), 17069.
[http://dx.doi.org/10.1038/s41598-021-96627-7] [PMID: 34426645]
[79]
Julien, C.; Tremblay, C.; Émond, V.; Lebbadi, M.; Salem, N., Jr; Bennett, D.A.; Calon, F. Sirtuin 1 reduction parallels the accumulation of tau in Alzheimer disease. J. Neuropathol. Exp. Neurol., 2009, 68(1), 48-58.
[http://dx.doi.org/10.1097/NEN.0b013e3181922348] [PMID: 19104446]
[80]
Min, S.W.; Cho, S.H.; Zhou, Y.; Schroeder, S.; Haroutunian, V.; Seeley, W.W.; Huang, E.J.; Shen, Y.; Masliah, E.; Mukherjee, C.; Meyers, D.; Cole, P.A.; Ott, M.; Gan, L. Acetylation of tau inhibits its degradation and contributes to tauopathy. Neuron, 2010, 67(6), 953-966.
[http://dx.doi.org/10.1016/j.neuron.2010.08.044] [PMID: 20869593]
[81]
Gorsky, M.K.; Burnouf, S.; Dols, J.; Mandelkow, E.; Partridge, L. Acetylation mimic of lysine 280 exacerbates human Tau neurotoxicity in vivo. Sci. Rep., 2016, 6(1), 22685.
[http://dx.doi.org/10.1038/srep22685] [PMID: 26940749]
[82]
Cohen, T.J.; Guo, J.L.; Hurtado, D.E.; Kwong, L.K.; Mills, I.P.; Trojanowski, J.Q.; Lee, V.M.Y. The acetylation of tau inhibits its function and promotes pathological tau aggregation. Nat. Commun., 2011, 2(1), 252.
[http://dx.doi.org/10.1038/ncomms1255] [PMID: 21427723]
[83]
Min, S.W.; Chen, X.; Tracy, T.E.; Li, Y.; Zhou, Y.; Wang, C.; Shirakawa, K.; Minami, S.S.; Defensor, E.; Mok, S.A.; Sohn, P.D.; Schilling, B.; Cong, X.; Ellerby, L.; Gibson, B.W.; Johnson, J.; Krogan, N.; Shamloo, M.; Gestwicki, J.; Masliah, E.; Verdin, E.; Gan, L. Critical role of acetylation in tau-mediated neurodegeneration and cognitive deficits. Nat. Med., 2015, 21(10), 1154-1162.
[http://dx.doi.org/10.1038/nm.3951] [PMID: 26390242]
[84]
Boulton, T.G.; Yancopoulos, G.D.; Gregory, J.S.; Slaughter, C.; Moomaw, C.; Hsu, J.; Cobb, M.H. An insulin-stimulated protein kinase similar to yeast kinases involved in cell cycle control. Science, 1990, 249(4964), 64-67.
[http://dx.doi.org/10.1126/science.2164259] [PMID: 2164259]
[85]
Cohen, T.J.; Friedmann, D.; Hwang, A.W.; Marmorstein, R.; Lee, V.M.Y. The microtubule-associated tau protein has intrinsic acetyltransferase activity. Nat. Struct. Mol. Biol., 2013, 20(6), 756-762.
[http://dx.doi.org/10.1038/nsmb.2555] [PMID: 23624859]
[86]
Cohen, T.J.; Constance, B.H.; Hwang, A.W.; James, M.; Yuan, C.X. Intrinsic tau acetylation is coupled to auto-proteolytic tau fragmentation. PLoS One, 2016, 11(7), e0158470.
[http://dx.doi.org/10.1371/journal.pone.0158470] [PMID: 27383765]
[87]
Luo, Y.; Ma, B.; Nussinov, R.; Wei, G. Structural insight into tau protein’s paradox of intrinsically disordered behavior, self-acetylation activity, and aggregation. J. Phys. Chem. Lett., 2014, 5(17), 3026-3031.
[http://dx.doi.org/10.1021/jz501457f] [PMID: 25206938]
[88]
Sohn, P.D.; Tracy, T.E.; Son, H.I.; Zhou, Y.; Leite, R.E.P.; Miller, B.L.; Seeley, W.W.; Grinberg, L.T.; Gan, L. Acetylated tau destabilizes the cytoskeleton in the axon initial segment and is mislocalized to the somatodendritic compartment. Mol. Neurodegener., 2016, 11(1), 47.
[http://dx.doi.org/10.1186/s13024-016-0109-0] [PMID: 27356871]
[89]
Cook, C.; Carlomagno, Y.; Gendron, T.F.; Dunmore, J.; Scheffel, K.; Stetler, C.; Davis, M.; Dickson, D.; Jarpe, M.; DeTure, M.; Petrucelli, L. Acetylation of the KXGS motifs in tau is a critical determinant in modulation of tau aggregation and clearance. Hum. Mol. Genet., 2014, 23(1), 104-116.
[http://dx.doi.org/10.1093/hmg/ddt402] [PMID: 23962722]
[90]
Yao, Z.; Gao, M.; Huang, Y. Acetylation of lysine residues within the MT-binding repeats specifically modulates the structure ensemble of Tau. FASEB J., 2018, 32(S1), lb34-lb34.
[http://dx.doi.org/10.1096/fasebj.2018.32.1_supplement.lb34]
[91]
Thomas, S.N.; Funk, K.E.; Wan, Y.; Liao, Z.; Davies, P.; Kuret, J.; Yang, A.J. Dual modification of Alzheimer’s disease PHF-tau protein by lysine methylation and ubiquitylation: A mass spectrometry approach. Acta Neuropathol., 2012, 123(1), 105-117.
[http://dx.doi.org/10.1007/s00401-011-0893-0] [PMID: 22033876]
[92]
Balmik, A.A.; Chinnathambi, S. Methylation as a key regulator of Tau aggregation and neuronal health in Alzheimer’s disease. Cell Commun. Signal., 2021, 19(1), 51.
[http://dx.doi.org/10.1186/s12964-021-00732-z] [PMID: 33962636]
[93]
Kontaxi, C.; Piccardo, P.; Gill, A.C. Lysine-directed post-translational modifications of tau protein in Alzheimer’s disease and related tauopathies. Front. Mol. Biosci., 2017, 4, 56.
[http://dx.doi.org/10.3389/fmolb.2017.00056] [PMID: 28848737]
[94]
Shams, H.; Matsunaga, A.; Ma, Q.; Mofrad, M.R.K.; Didonna, A. Methylation at a conserved lysine residue modulates tau assembly and cellular functions. Mol. Cell. Neurosci., 2022, 120, 103707.
[http://dx.doi.org/10.1016/j.mcn.2022.103707] [PMID: 35231567]
[95]
Bichmann, M.; Prat Oriol, N.; Ercan-Herbst, E.; Schöndorf, D.C.; Gomez Ramos, B.; Schwärzler, V.; Neu, M.; Schlüter, A.; Wang, X.; Jin, L.; Hu, C.; Tian, Y.; Ried, J.S.; Haberkant, P.; Gasparini, L.; Ehrnhoefer, D.E. SETD7-mediated monomethylation is enriched on soluble Tau in Alzheimer’s disease. Mol. Neurodegener., 2021, 16(1), 46.
[http://dx.doi.org/10.1186/s13024-021-00468-x] [PMID: 34215303]
[96]
Wang, P.; Joberty, G.; Buist, A.; Vanoosthuyse, A.; Stancu, I.C.; Vasconcelos, B.; Pierrot, N.; Faelth-Savitski, M.; Kienlen-Campard, P.; Octave, J.N.; Bantscheff, M.; Drewes, G.; Moechars, D.; Dewachter, I. Tau interactome mapping based identification of Otub1 as Tau deubiquitinase involved in accumulation of pathological Tau forms in vitro and in vivo. Acta Neuropathol., 2017, 133(5), 731-749.
[http://dx.doi.org/10.1007/s00401-016-1663-9] [PMID: 28083634]
[97]
Xu, Z.; Kohli, E.; Devlin, K.I.; Bold, M.; Nix, J.C.; Misra, S. Interactions between the quality control ubiquitin ligase CHIP and ubiquitin conjugating enzymes. BMC Struct. Biol., 2008, 8(1), 26.
[http://dx.doi.org/10.1186/1472-6807-8-26] [PMID: 18485199]
[98]
Petrucelli, L.; Dickson, D.; Kehoe, K.; Taylor, J.; Snyder, H.; Grover, A.; De Lucia, M.; McGowan, E.; Lewis, J.; Prihar, G.; Kim, J.; Dillmann, W.H.; Browne, S.E.; Hall, A.; Voellmy, R.; Tsuboi, Y.; Dawson, T.M.; Wolozin, B.; Hardy, J.; Hutton, M. CHIP and Hsp70 regulate tau ubiquitination, degradation and aggregation. Hum. Mol. Genet., 2004, 13(7), 703-714.
[http://dx.doi.org/10.1093/hmg/ddh083] [PMID: 14962978]
[99]
Flach, K.; Ramminger, E.; Hilbrich, I.; Arsalan-Werner, A.; Albrecht, F.; Herrmann, L.; Goedert, M.; Arendt, T.; Holzer, M. Axotrophin/MARCH7 acts as an E3 ubiquitin ligase and ubiquitinates tau protein in vitro impairing microtubule binding. Biochim. Biophys. Acta Mol. Basis Dis., 2014, 1842(9), 1527-1538.
[http://dx.doi.org/10.1016/j.bbadis.2014.05.029] [PMID: 24905733]
[100]
Babu, J.R.; Geetha, T.; Wooten, M.W. Sequestosome 1/p62 shuttles polyubiquitinated tau for proteasomal degradation. J. Neurochem., 2005, 94(1), 192-203.
[http://dx.doi.org/10.1111/j.1471-4159.2005.03181.x] [PMID: 15953362]
[101]
Cripps, D.; Thomas, S.N.; Jeng, Y.; Yang, F.; Davies, P.; Yang, A.J. Alzheimer disease-specific conformation of hyperphosphorylated paired helical filament-Tau is polyubiquitinated through Lys-48, Lys-11, and Lys-6 ubiquitin conjugation. J. Biol. Chem., 2006, 281(16), 10825-10838.
[http://dx.doi.org/10.1074/jbc.M512786200] [PMID: 16443603]
[102]
Morishima-Kawashima, M.; Hasegawa, M.; Takio, K.; Suzuki, M.; Titani, K.; Ihara, Y. Ubiquitin is conjugated with amino-terminally processed tau in paired helical filaments. Neuron, 1993, 10(6), 1151-1160.
[http://dx.doi.org/10.1016/0896-6273(93)90063-W] [PMID: 8391280]
[103]
Dolan, P.J.; Johnson, G.V.W. A caspase cleaved form of tau is preferentially degraded through the autophagy pathway. J. Biol. Chem., 2010, 285(29), 21978-21987.
[http://dx.doi.org/10.1074/jbc.M110.110940] [PMID: 20466727]
[104]
Puangmalai, N.; Sengupta, U.; Bhatt, N.; Gaikwad, S.; Montalbano, M.; Bhuyan, A.; Garcia, S.; McAllen, S.; Sonawane, M.; Jerez, C.; Zhao, Y.; Kayed, R. Lysine 63-linked ubiquitination of tau oligomers contributes to the pathogenesis of Alzheimer’s disease. J. Biol. Chem., 2022, 298(4), 101766.
[http://dx.doi.org/10.1016/j.jbc.2022.101766] [PMID: 35202653]
[105]
Perry, G.; Friedman, R.; Shaw, G.; Chau, V. Ubiquitin is detected in neurofibrillary tangles and senile plaque neurites of Alzheimer disease brains. Proc. Natl. Acad. Sci. USA, 1987, 84(9), 3033-3036.
[http://dx.doi.org/10.1073/pnas.84.9.3033] [PMID: 3033674]
[106]
García-Sierra, F.; Jarero-Basulto, J.J.; Kristofikova, Z.; Majer, E.; Binder, L.I.; Ripova, D. Ubiquitin is associated with early truncation of tau protein at aspartic acid(421) during the maturation of neurofibrillary tangles in Alzheimer’s disease. Brain Pathol., 2012, 22(2), 240-250.
[http://dx.doi.org/10.1111/j.1750-3639.2011.00525.x] [PMID: 21919991]
[107]
Chakrabarty, R.; Yousuf, S.; Singh, M.P. Contributive role of hyperglycemia and hypoglycemia towards the development of alzheimer’s disease. Mol. Neurobiol., 2022, 59(7), 4274-4291.
[http://dx.doi.org/10.1007/s12035-022-02846-y] [PMID: 35503159]
[108]
Weeraratna, A.T.; Kalehua, A.; DeLeon, I.; Bertak, D.; Maher, G.; Wade, M.S.; Lustig, A.; Becker, K.G.; Wood, W., III; Walker, D.G.; Beach, T.G.; Taub, D.D. Alterations in immunological and neurological gene expression patterns in Alzheimer’s disease tissues. Exp. Cell Res., 2007, 313(3), 450-461.
[http://dx.doi.org/10.1016/j.yexcr.2006.10.028] [PMID: 17188679]
[109]
Chenfei, Z.; Haizhen, Y.; Jie, X.; Na, Z.; Bo, X. Effects of aerobic exercise on hippocampal SUMOylation in APP/PS1 transgenic mice. Neurosci. Lett., 2022, 767, 136303.
[http://dx.doi.org/10.1016/j.neulet.2021.136303] [PMID: 34695453]
[110]
Dorval, V.; Fraser, P.E. Small ubiquitin-like modifier (SUMO) modification of natively unfolded proteins tau and α-synuclein. J. Biol. Chem., 2006, 281(15), 9919-9924.
[http://dx.doi.org/10.1074/jbc.M510127200] [PMID: 16464864]
[111]
Luo, H.B.; Xia, Y.Y.; Shu, X.J.; Liu, Z.C.; Feng, Y.; Liu, X.H.; Yu, G.; Yin, G.; Xiong, Y.S.; Zeng, K.; Jiang, J.; Ye, K.; Wang, X.C.; Wang, J.Z. SUMOylation at K340 inhibits tau degradation through deregulating its phosphorylation and ubiquitination. Proc. Natl. Acad. Sci. USA, 2014, 111(46), 16586-16591.
[http://dx.doi.org/10.1073/pnas.1417548111] [PMID: 25378699]
[112]
Nagaraju, P.G.; Priyadarshini, P. Tau-aggregation inhibition: Promising role of nanoencapsulated dietary molecules in the management of Alzheimer’s disease. Crit. Rev. Food Sci. Nutr., 2023, 63(32), 11153-11168.
[PMID: 35748395]
[113]
Qin, M.; Li, H.; Bao, J.; Xia, Y.; Ke, D.; Wang, Q.; Liu, R.; Wang, J.Z.; Zhang, B.; Shu, X.; Wang, X. SET SUMOylation promotes its cytoplasmic retention and induces tau pathology and cognitive impairments. Acta Neuropathol. Commun., 2019, 7(1), 21.
[http://dx.doi.org/10.1186/s40478-019-0663-0] [PMID: 30767764]
[114]
Orsini, F. SUMO2 protects against tau-induced synaptic and cognitive dysfunction. bioRxiv, 2022.
[http://dx.doi.org/10.1101/2022.11.11.516192]
[115]
Kovacech, B.; Novak, M. Tau truncation is a productive posttranslational modification of neurofibrillary degeneration in Alzheimer’s disease. Curr. Alzheimer Res., 2010, 7(8), 708-716.
[http://dx.doi.org/10.2174/156720510793611556] [PMID: 20678071]
[116]
Abraha, A.; Ghoshal, N.; Gamblin, T.C.; Cryns, V.; Berry, R.W.; Kuret, J.; Binder, L.I. C-terminal inhibition of tau assembly in vitro and in Alzheimer’s disease. J. Cell Sci., 2000, 113(21), 3737-3745.
[http://dx.doi.org/10.1242/jcs.113.21.3737] [PMID: 11034902]
[117]
Novak, M.; Kabat, J.; Wischik, C.M. Molecular characterization of the minimal protease resistant tau unit of the Alzheimer’s disease paired helical filament. EMBO J., 1993, 12(1), 365-370.
[http://dx.doi.org/10.1002/j.1460-2075.1993.tb05665.x] [PMID: 7679073]
[118]
Loon, A.; Zamudio, F.; Sanneh, A.; Brown, B.; Smeltzer, S.; Brownlow, M.L.; Quadri, Z.; Peters, M.; Weeber, E.; Nash, K.; Lee, D.C.; Gordon, M.N.; Morgan, D.; Selenica, M.L.B. Accumulation of C-terminal cleaved tau is distinctly associated with cognitive deficits, synaptic plasticity impairment, and neurodegeneration in aged mice. Geroscience, 2022, 44(1), 173-194.
[http://dx.doi.org/10.1007/s11357-021-00408-z] [PMID: 34410588]
[119]
Wischik, C.M.; Novak, M.; Thøgersen, H.C.; Edwards, P.C.; Runswick, M.J.; Jakes, R.; Walker, J.E.; Milstein, C.; Roth, M.; Klug, A. Isolation of a fragment of tau derived from the core of the paired helical filament of Alzheimer disease. Proc. Natl. Acad. Sci. USA, 1988, 85(12), 4506-4510.
[http://dx.doi.org/10.1073/pnas.85.12.4506] [PMID: 3132715]
[120]
Horta-Lopez, P.H. Association of α-1-antichymotrypsin expression with the development of conformational changes of tau protein in alzheimer's disease brain. Neuroscience, 2023, 518, 83-100.
[http://dx.doi.org/10.1016/j.neuroscience.2022.01.002]
[121]
Flores-Rodríguez, P.; Ontiveros-Torres, M.A.; Cárdenas-Aguayo, M.C.; Luna-Arias, J.P.; Meraz-Ríos, M.A.; Viramontes-Pintos, A.; Harrington, C.R.; Wischik, C.M.; Mena, R.; Florán-Garduño, B.; Luna-Muñoz, J. The relationship between truncation and phosphorylation at the C-terminus of tau protein in the paired helical filaments of Alzheimer’s disease. Front. Neurosci., 2015, 9, 33.
[http://dx.doi.org/10.3389/fnins.2015.00033] [PMID: 25717290]
[122]
Gu, J.; Xu, W.; Jin, N.; Li, L.; Zhou, Y.; Chu, D.; Gong, C.X.; Iqbal, K.; Liu, F. Truncation of Tau selectively facilitates its pathological activities. J. Biol. Chem., 2020, 295(40), 13812-13828.
[http://dx.doi.org/10.1074/jbc.RA120.012587] [PMID: 32737201]
[123]
Ngian, Z.K.; Tan, Y.Y.; Choo, C.T.; Lin, W.Q.; Leow, C.Y.; Mah, S.J.; Lai, M.K.P.; Chen, C.L.H.; Ong, C.T. Truncated Tau caused by intron retention is enriched in Alzheimer’s disease cortex and exhibits altered biochemical properties. Proc. Natl. Acad. Sci. USA, 2022, 119(37), e2204179119.
[http://dx.doi.org/10.1073/pnas.2204179119] [PMID: 36067305]
[124]
Lo, C.H. Heterogeneous tau oligomers as molecular targets for alzheimer’s disease and related tauopathies. Biophysica, 2022, 2(4), 440-451.
[http://dx.doi.org/10.3390/biophysica2040039]
[125]
Novak, P.; Cehlar, O.; Skrabana, R.; Novak, M. Tau conformation as a target for disease-modifying therapy: The role of truncation. J. Alzheimers Dis., 2018, 64(s1), S535-S546.
[http://dx.doi.org/10.3233/JAD-179942] [PMID: 29865059]
[126]
Smet-Nocca, C.; Broncel, M.; Wieruszeski, J.M.; Tokarski, C.; Hanoulle, X.; Leroy, A.; Landrieu, I.; Rolando, C.; Lippens, G.; Hackenberger, C.P.R. Identification of O-GlcNAc sites within peptides of the Tau protein and their impact on phosphorylation. Mol. Biosyst., 2011, 7(5), 1420-1429.
[http://dx.doi.org/10.1039/c0mb00337a] [PMID: 21327254]
[127]
Sato, Y.; Naito, Y.; Grundke-Iqbal, I.; Iqbal, K.; Endo, T. Analysis of N -glycans of pathological tau: Possible occurrence of aberrant processing of tau in Alzheimer’s disease. FEBS Lett., 2001, 496(2-3), 152-160.
[http://dx.doi.org/10.1016/S0014-5793(01)02421-8] [PMID: 11356201]
[128]
Ledesma, M.D.; Bonay, P.; Colaço, C.; Avila, J. Analysis of microtubule-associated protein tau glycation in paired helical filaments. J. Biol. Chem., 1994, 269(34), 21614-21619.
[http://dx.doi.org/10.1016/S0021-9258(17)31849-5] [PMID: 8063802]
[129]
Liu, K.; Liu, Y.; Li, L.; Qin, P.; Iqbal, J.; Deng, Y.; Qing, H. Glycation alter the process of Tau phosphorylation to change Tau isoforms aggregation property. Biochim. Biophys. Acta Mol. Basis Dis., 2016, 1862(2), 192-201.
[http://dx.doi.org/10.1016/j.bbadis.2015.12.002] [PMID: 26655600]
[130]
Ko, L.; Ko, E.C.; Nacharaju, P.; Liu, W.K.; Chang, E.; Kenessey, A.; Yen, S.H.C. An immunochemical study on tau glycation in paired helical filaments. Brain Res., 1999, 830(2), 301-313.
[http://dx.doi.org/10.1016/S0006-8993(99)01415-8] [PMID: 10366687]
[131]
Rungratanawanich, W.; Qu, Y.; Wang, X.; Essa, M.M.; Song, B.J. Advanced glycation end products (AGEs) and other adducts in aging-related diseases and alcohol-mediated tissue injury. Exp. Mol. Med., 2021, 53(2), 168-188.
[http://dx.doi.org/10.1038/s12276-021-00561-7] [PMID: 33568752]
[132]
Lüth, H.J.; Ogunlade, V.; Kuhla, B.; Kientsch-Engel, R.; Stahl, P.; Webster, J.; Arendt, T.; Münch, G. Age- and stage-dependent accumulation of advanced glycation end products in intracellular deposits in normal and Alzheimer’s disease brains. Cereb. Cortex, 2004, 15(2), 211-220.
[http://dx.doi.org/10.1093/cercor/bhh123] [PMID: 15238435]
[133]
Necula, M.; Kuret, J. Pseudophosphorylation and glycation of tau protein enhance but do not trigger fibrillization in vitro. J. Biol. Chem., 2004, 279(48), 49694-49703.
[http://dx.doi.org/10.1074/jbc.M405527200] [PMID: 15364924]
[134]
Yekta, R.; Sadeghi, L.; Dehghan, G. The role of non-enzymatic glycation on Tau-DNA interactions: Kinetic and mechanistic approaches. Int. J. Biol. Macromol., 2022, 207, 161-168.
[http://dx.doi.org/10.1016/j.ijbiomac.2022.02.178] [PMID: 35257729]
[135]
Limorenko, G.; Lashuel, H.A. Revisiting the grammar of Tau aggregation and pathology formation: How new insights from brain pathology are shaping how we study and target Tauopathies. Chem. Soc. Rev., 2022, 51(2), 513-565.
[http://dx.doi.org/10.1039/D1CS00127B] [PMID: 34889934]
[136]
Reynolds, M.R.; Berry, R.W.; Binder, L.I. Site-specific nitration and oxidative dityrosine bridging of the τ protein by peroxynitrite: Implications for Alzheimer’s disease. Biochemistry, 2005, 44(5), 1690-1700.
[http://dx.doi.org/10.1021/bi047982v] [PMID: 15683253]
[137]
Maina, M.B. Dityrosine cross-links are present in Alzheimer’s disease-derived tau oligomers and paired helical filaments (PHF) which promotes the stability of the PHF-core tau (297-391) in vitro. bioRxiv, 2022.
[http://dx.doi.org/10.1101/2022.05.28.493839]
[138]
Butterfield, D.A.; Reed, T.T.; Perluigi, M.; De Marco, C.; Coccia, R.; Keller, J.N.; Markesbery, W.R.; Sultana, R. Elevated levels of 3-nitrotyrosine in brain from subjects with amnestic mild cognitive impairment: Implications for the role of nitration in the progression of Alzheimer’s disease. Brain Res., 2007, 1148, 243-248.
[http://dx.doi.org/10.1016/j.brainres.2007.02.084] [PMID: 17395167]
[139]
Reynolds, M.R.; Berry, R.W.; Binder, L.I. Site-specific nitration differentially influences τ assembly in vitro. Biochemistry, 2005, 44(42), 13997-14009.
[http://dx.doi.org/10.1021/bi051028w] [PMID: 16229489]
[140]
Zhang, Y.J.; Xu, Y.F.; Liu, Y.H.; Yin, J.; Li, H.L.; Wang, Q.; Wang, J.Z. Peroxynitrite induces Alzheimer-like tau modifications and accumulation in rat brain and its underlying mechanisms. FASEB J., 2006, 20(9), 1431-1442.
[http://dx.doi.org/10.1096/fj.05-5223com] [PMID: 16816118]
[141]
Weismiller, H.A.; Holub, T.J.; Krzesinski, B.J.; Margittai, M. A thiol-based intramolecular redox switch in four-repeat tau controls fibril assembly and disassembly. J. Biol. Chem., 2021, 297(3), 101021.
[http://dx.doi.org/10.1016/j.jbc.2021.101021] [PMID: 34339733]
[142]
Prifti, E. Mical modulates Tau toxicity via cysteine oxidation in vivo. Acta Neuropathol. Commun., 2022, 10(1), 1-19.
[PMID: 34980260]
[143]
Schiffter, H.A. 5.41 - Pharmaceutical Proteins – Structure, Stability, and Formulation, in Comprehensive Biotechnology, 2nd ed; Academic Press: Burlington, 2011, pp. 521-541.
[144]
Watanabe, A.; Takio, K.; Ihara, Y. Deamidation and isoaspartate formation in smeared tau in paired helical filaments. Unusual properties of the microtubule-binding domain of tau. J. Biol. Chem., 1999, 274(11), 7368-7378.
[http://dx.doi.org/10.1074/jbc.274.11.7368] [PMID: 10066801]
[145]
Ebashi, M.; Toru, S.; Nakamura, A.; Kamei, S.; Yokota, T.; Hirokawa, K.; Uchihara, T. Detection of AD-specific four repeat tau with deamidated asparagine residue 279-specific fraction purified from 4R tau polyclonal antibody. Acta Neuropathol., 2019, 138(1), 163-166.
[http://dx.doi.org/10.1007/s00401-019-02012-0] [PMID: 31006065]
[146]
Dan, A.; Takahashi, M.; Masuda-Suzukake, M.; Kametani, F.; Nonaka, T.; Kondo, H.; Akiyama, H.; Arai, T.; Mann, D.M.A.; Saito, Y.; Hatsuta, H.; Murayama, S.; Hasegawa, M. Extensive deamidation at asparagine residue 279 accounts for weak immunoreactivity of tau with RD4 antibody in Alzheimer’s disease brain. Acta Neuropathol. Commun., 2013, 1(1), 54.
[http://dx.doi.org/10.1186/2051-5960-1-54] [PMID: 24252707]
[147]
Reynolds, M.R.; Reyes, J.F.; Fu, Y.; Bigio, E.H.; Guillozet-Bongaarts, A.L.; Berry, R.W.; Binder, L.I. Tau nitration occurs at tyrosine 29 in the fibrillar lesions of Alzheimer’s disease and other tauopathies. J. Neurosci., 2006, 26(42), 10636-10645.
[http://dx.doi.org/10.1523/JNEUROSCI.2143-06.2006] [PMID: 17050703]
[148]
Lyons, A.J.; Gandhi, N.S.; Mancera, R.L. Molecular dynamics simulation of the phosphorylation-induced conformational changes of a tau peptide fragment. Proteins, 2014, 82(9), 1907-1923.
[http://dx.doi.org/10.1002/prot.24544] [PMID: 24577753]
[149]
Noble, W.; Hanger, D.P.; Miller, C.C.J.; Lovestone, S. The importance of tau phosphorylation for neurodegenerative diseases. Front. Neurol., 2013, 4, 83.
[http://dx.doi.org/10.3389/fneur.2013.00083] [PMID: 23847585]
[150]
Sibille, N.; Huvent, I.; Fauquant, C.; Verdegem, D.; Amniai, L.; Leroy, A.; Wieruszeski, J.M.; Lippens, G.; Landrieu, I. Structural characterization by nuclear magnetic resonance of the impact of phosphorylation in the proline-rich region of the disordered Tau protein. Proteins, 2012, 80(2), 454-462.
[http://dx.doi.org/10.1002/prot.23210] [PMID: 22072628]
[151]
Amniai, L.; Barbier, P.; Sillen, A.; Wieruszeski, J.M.; Peyrot, V.; Lippens, G.; Landrieu, I. Alzheimer disease specific phosphoepitopes of Tau interfere with assembly of tubulin but not binding to microtubules. FASEB J., 2009, 23(4), 1146-1152.
[http://dx.doi.org/10.1096/fj.08-121590] [PMID: 19074508]
[152]
Goode, B.L.; Denis, P.E.; Panda, D.; Radeke, M.J.; Miller, H.P.; Wilson, L.; Feinstein, S.C. Functional interactions between the proline-rich and repeat regions of tau enhance microtubule binding and assembly. Mol. Biol. Cell, 1997, 8(2), 353-365.
[http://dx.doi.org/10.1091/mbc.8.2.353] [PMID: 9190213]
[153]
Gandhi, N.S.; Landrieu, I.; Byrne, C.; Kukic, P.; Amniai, L.; Cantrelle, F.X.; Wieruszeski, J.M.; Mancera, R.L.; Jacquot, Y.; Lippens, G. A phosphorylation-induced turn defines the alzheimer’s disease AT8 antibody epitope on the tau protein. Angew. Chem. Int. Ed., 2015, 54(23), 6819-6823.
[http://dx.doi.org/10.1002/anie.201501898] [PMID: 25881502]
[154]
Rani, L.; Mallajosyula, S.S. Phosphorylation-induced structural reorganization in tau-paired helical filaments. ACS Chem. Neurosci., 2021, 12(9), 1621-1631.
[http://dx.doi.org/10.1021/acschemneuro.1c00084] [PMID: 33877805]
[155]
Zou, Y.; Guan, L. Unraveling the influence of K280 acetylation on the conformational features of tau core fragment: A molecular dynamics simulation study. Front. Mol. Biosci., 2021, 8, 801577.
[http://dx.doi.org/10.3389/fmolb.2021.801577] [PMID: 34966788]
[156]
Brotzakis, Z.F.; Lindstedt, P.R.; Taylor, R.J.; Rinauro, D.J.; Gallagher, N.C.T.; Bernardes, G.J.L.; Vendruscolo, M. A structural ensemble of a tau-microtubule complex reveals regulatory tau phosphorylation and acetylation mechanisms. ACS Cent. Sci., 2021, 7(12), 1986-1995.
[http://dx.doi.org/10.1021/acscentsci.1c00585] [PMID: 34963892]
[157]
Castro, T.G.; Ferreira, T.; Matamá, T.; Munteanu, F.D.; Cavaco-Paulo, A. Acetylation and phosphorylation processes modulate Tau’s binding to microtubules: A molecular dynamics study. Biochim. Biophys. Acta, Gen. Subj., 2023, 1867(2), 130276.
[http://dx.doi.org/10.1016/j.bbagen.2022.130276] [PMID: 36372288]
[158]
Leonard, C.; Phillips, C.; McCarty, J. Insight into seeded tau fibril growth from Molecular Dynamics simulation of the Alzheimer’s disease protofibril core. Front. Mol. Biosci., 2021, 8, 624302.
[http://dx.doi.org/10.3389/fmolb.2021.624302] [PMID: 33816551]
[159]
Munari, F.; Mollica, L.; Valente, C.; Parolini, F.; Kachoie, E.A.; Arrigoni, G.; D’Onofrio, M.; Capaldi, S.; Assfalg, M. Structural basis for chaperone-independent ubiquitination of tau protein by its E3 ligase CHIP. Angew. Chem. Int. Ed., 2022, 61(15), e202112374.
[http://dx.doi.org/10.1002/anie.202112374] [PMID: 35107860]
[160]
Mathew, A.T. N-glycosylation induced changes in tau protein dynamics reveal its role in tau misfolding and aggregation: A microsecond long molecular dynamics study. Proteins, 2022, 91(2), 147-162.
[http://dx.doi.org/10.26434/chemrxiv-2022-5bs5r]
[161]
Cummings, J.; Lee, G.; Ritter, A.; Sabbagh, M.; Zhong, K. Alzheimer’s disease drug development pipeline: 2019. Alzheimers Dement., 2019, 5(1), 272-293.
[http://dx.doi.org/10.1016/j.trci.2019.05.008] [PMID: 31334330]
[162]
Bush, A.I.; Tanzi, R.E. Therapeutics for Alzheimer’s disease based on the metal hypothesis. Neurotherapeutics, 2008, 5(3), 421-432.
[http://dx.doi.org/10.1016/j.nurt.2008.05.001] [PMID: 18625454]
[163]
Travis, J. Roche Alzheimer’s antibody fails to slow cognitive decline in major test; SCIENCEINSIDER, 2022.
[http://dx.doi.org/10.1126/science.adf8125]
[164]
Fellner, S.; Bauer, B.; Miller, D.S.; Schaffrik, M.; Fankhänel, M.; Spruß, T.; Bernhardt, G.; Graeff, C.; Färber, L.; Gschaidmeier, H.; Buschauer, A.; Fricker, G. Transport of paclitaxel (Taxol) across the blood-brain barrier in vitro and in vivo. J. Clin. Invest., 2002, 110(9), 1309-1318.
[http://dx.doi.org/10.1172/JCI0215451] [PMID: 12417570]
[165]
Sengupta, A.; Kabat, J.; Novak, M.; Wu, Q.; Grundke-Iqbal, I.; Iqbal, K. Phosphorylation of tau at both Thr 231 and Ser 262 is required for maximal inhibition of its binding to microtubules. Arch. Biochem. Biophys., 1998, 357(2), 299-309.
[http://dx.doi.org/10.1006/abbi.1998.0813] [PMID: 9735171]
[166]
Ishihara, T.; Hong, M.; Zhang, B.; Nakagawa, Y.; Lee, M.K.; Trojanowski, J.Q.; Lee, V.M.Y. Age-dependent emergence and progression of a tauopathy in transgenic mice overexpressing the shortest human tau isoform. Neuron, 1999, 24(3), 751-762.
[http://dx.doi.org/10.1016/S0896-6273(00)81127-7] [PMID: 10595524]
[167]
Schneider, A.; Biernat, J.; von Bergen, M.; Mandelkow, E.; Mandelkow, E.M. Phosphorylation that detaches tau protein from microtubules (Ser262, Ser214) also protects it against aggregation into Alzheimer paired helical filaments. Biochemistry, 1999, 38(12), 3549-3558.
[http://dx.doi.org/10.1021/bi981874p] [PMID: 10090741]
[168]
Ghoreschi, K.; Laurence, A.; O’Shea, J.J. Selectivity and therapeutic inhibition of kinases: To be or not to be? Nat. Immunol., 2009, 10(4), 356-360.
[http://dx.doi.org/10.1038/ni.1701] [PMID: 19295632]
[169]
Imahori, K.; Uchida, T. Physiology and pathology of tau protein kinases in relation to Alzheimer’s disease. J. Biochem., 1997, 121(2), 179-188.
[PMID: 9089387]
[170]
Hernández, F.; Borrell, J.; Guaza, C.; Avila, J.; Lucas, J.J. Spatial learning deficit in transgenic mice that conditionally over-express GSK-3β in the brain but do not form tau filaments. J. Neurochem., 2002, 83(6), 1529-1533.
[http://dx.doi.org/10.1046/j.1471-4159.2002.01269.x] [PMID: 12472906]
[171]
Lee, K.Y.; Clark, A.W.; Rosales, J.L.; Chapman, K.; Fung, T.; Johnston, R.N. Elevated neuronal Cdc2-like kinase activity in the Alzheimer disease brain. Neurosci. Res., 1999, 34(1), 21-29.
[http://dx.doi.org/10.1016/S0168-0102(99)00026-7] [PMID: 10413323]
[172]
Tseng, H.C.; Zhou, Y.; Shen, Y.; Tsai, L.H. A survey of Cdk5 activator p35 and p25 levels in Alzheimer’s disease brains. FEBS Lett., 2002, 523(1-3), 58-62.
[http://dx.doi.org/10.1016/S0014-5793(02)02934-4] [PMID: 12123804]
[173]
Noble, W.; Olm, V.; Takata, K.; Casey, E.; Mary, O.; Meyerson, J.; Gaynor, K.; LaFrancois, J.; Wang, L.; Kondo, T.; Davies, P.; Burns, M.; Veeranna; Nixon, R.; Dickson, D.; Matsuoka, Y.; Ahlijanian, M.; Lau, L.F.; Duff, K. Cdk5 is a key factor in tau aggregation and tangle formation in vivo. Neuron, 2003, 38(4), 555-565.
[http://dx.doi.org/10.1016/S0896-6273(03)00259-9] [PMID: 12765608]
[174]
Wen, Y.; Planel, E.; Herman, M.; Figueroa, H.Y.; Wang, L.; Liu, L.; Lau, L.F.; Yu, W.H.; Duff, K.E. Interplay between cyclin-dependent kinase 5 and glycogen synthase kinase 3 β mediated by neuregulin signaling leads to differential effects on tau phosphorylation and amyloid precursor protein processing. J. Neurosci., 2008, 28(10), 2624-2632.
[http://dx.doi.org/10.1523/JNEUROSCI.5245-07.2008] [PMID: 18322105]
[175]
Drewes, G.; Ebneth, A.; Preuss, U.; Mandelkow, E.M.; Mandelkow, E. MARK, a novel family of protein kinases that phosphorylate microtubule-associated proteins and trigger microtubule disruption. Cell, 1997, 89(2), 297-308.
[http://dx.doi.org/10.1016/S0092-8674(00)80208-1] [PMID: 9108484]
[176]
Noble, W.; Planel, E.; Zehr, C.; Olm, V.; Meyerson, J.; Suleman, F.; Gaynor, K.; Wang, L.; LaFrancois, J.; Feinstein, B.; Burns, M.; Krishnamurthy, P.; Wen, Y.; Bhat, R.; Lewis, J.; Dickson, D.; Duff, K. Inhibition of glycogen synthase kinase-3 by lithium correlates with reduced tauopathy and degeneration in vivo. Proc. Natl. Acad. Sci. USA, 2005, 102(19), 6990-6995.
[http://dx.doi.org/10.1073/pnas.0500466102] [PMID: 15867159]
[177]
Hampel, H.; Ewers, M.; Bürger, K.; Annas, P.; Mörtberg, A.; Bogstedt, A.; Frölich, L.; Schröder, J.; Schönknecht, P.; Riepe, M.W.; Kraft, I.; Gasser, T.; Leyhe, T.; Möller, H.J.; Kurz, A.; Basun, H. Lithium trial in Alzheimer’s disease: A randomized, single-blind, placebo-controlled, multicenter 10-week study. J. Clin. Psychiatry, 2009, 70(6), 922-931.
[http://dx.doi.org/10.4088/JCP.08m04606] [PMID: 19573486]
[178]
Gitlin, M. Lithium side effects and toxicity: Prevalence and management strategies. Int. J. Bipolar Disord., 2016, 4(1), 27.
[http://dx.doi.org/10.1186/s40345-016-0068-y] [PMID: 27900734]
[179]
Bhat, R.; Xue, Y.; Berg, S.; Hellberg, S.; Ormö, M.; Nilsson, Y.; Radesäter, A.C.; Jerning, E.; Markgren, P.O.; Borgegård, T.; Nylöf, M.; Giménez-Cassina, A.; Hernández, F.; Lucas, J.J.; Díaz-Nido, J.; Avila, J. Structural insights and biological effects of glycogen synthase kinase 3-specific inhibitor AR-A014418. J. Biol. Chem., 2003, 278(46), 45937-45945.
[http://dx.doi.org/10.1074/jbc.M306268200] [PMID: 12928438]
[180]
Nakashima, H.; Ishihara, T.; Suguimoto, P.; Yokota, O.; Oshima, E.; Kugo, A.; Terada, S.; Hamamura, T.; Trojanowski, J.Q.; Lee, V.M.Y.; Kuroda, S. Chronic lithium treatment decreases tau lesions by promoting ubiquitination in a mouse model of tauopathies. Acta Neuropathol., 2005, 110(6), 547-556.
[http://dx.doi.org/10.1007/s00401-005-1087-4] [PMID: 16228182]
[181]
Engel, T.; Goñi-Oliver, P.; Lucas, J.J.; Avila, J.; Hernández, F. Chronic lithium administration to FTDP-17 tau and GSK-3β overexpressing mice prevents tau hyperphosphorylation and neurofibrillary tangle formation, but pre-formed neurofibrillary tangles do not revert. J. Neurochem., 2006, 99(6), 1445-1455.
[http://dx.doi.org/10.1111/j.1471-4159.2006.04139.x] [PMID: 17059563]
[182]
Selenica, M-L.; Jensen, H.S.; Larsen, A.K.; Pedersen, M.L.; Helboe, L.; Leist, M.; Lotharius, J. Efficacy of small-molecule glycogen synthase kinase-3 inhibitors in the postnatal rat model of tau hyperphosphorylation. Br. J. Pharmacol., 2007, 152(6), 959-979.
[http://dx.doi.org/10.1038/sj.bjp.0707471] [PMID: 17906685]
[183]
Naujok, O.; Lentes, J.; Diekmann, U.; Davenport, C.; Lenzen, S. Cytotoxicity and activation of the Wnt/beta-catenin pathway in mouse embryonic stem cells treated with four GSK3 inhibitors. BMC Res. Notes, 2014, 7(1), 273.
[http://dx.doi.org/10.1186/1756-0500-7-273] [PMID: 24779365]
[184]
Navarro-Retamal, C.; Caballero, J. Molecular modeling of tau proline-directed protein kinase (PDPK) inhibitors. In: Computational Modeling of Drugs Against Alzheimer’s Disease; Roy, K., Ed.; Springer New York: New York, NY, 2018; pp. 305-345.
[http://dx.doi.org/10.1007/978-1-4939-7404-7_13]
[185]
Congdon, E.E.; Sigurdsson, E.M. Tau-targeting therapies for Alzheimer disease. Nat. Rev. Neurol., 2018, 14(7), 399-415.
[http://dx.doi.org/10.1038/s41582-018-0013-z] [PMID: 29895964]
[186]
Courade, J.P.; Angers, R.; Mairet-Coello, G.; Pacico, N.; Tyson, K.; Lightwood, D.; Munro, R.; McMillan, D.; Griffin, R.; Baker, T.; Starkie, D.; Nan, R.; Westwood, M.; Mushikiwabo, M.L.; Jung, S.; Odede, G.; Sweeney, B.; Popplewell, A.; Burgess, G.; Downey, P.; Citron, M. Epitope determines efficacy of therapeutic anti-Tau antibodies in a functional assay with human Alzheimer Tau. Acta Neuropathol., 2018, 136(5), 729-745.
[http://dx.doi.org/10.1007/s00401-018-1911-2] [PMID: 30238240]
[187]
Jadhav, S.; Avila, J.; Schöll, M.; Kovacs, G.G.; Kövari, E.; Skrabana, R.; Evans, L.D.; Kontsekova, E.; Malawska, B.; de Silva, R.; Buee, L.; Zilka, N. A walk through tau therapeutic strategies. Acta Neuropathol. Commun., 2019, 7(1), 22.
[http://dx.doi.org/10.1186/s40478-019-0664-z] [PMID: 30767766]
[188]
Pradeepkiran, J.; Reddy, P. Structure based design and molecular docking studies for phosphorylated tau inhibitors in alzheimer’s disease. Cells, 2019, 8(3), 260.
[http://dx.doi.org/10.3390/cells8030260] [PMID: 30893872]
[189]
Halliday, M.; Radford, H.; Zents, K.A.M.; Molloy, C.; Moreno, J.A.; Verity, N.C.; Smith, E.; Ortori, C.A.; Barrett, D.A.; Bushell, M.; Mallucci, G.R. Repurposed drugs targeting eIF2α-P-mediated translational repression prevent neurodegeneration in mice. Brain, 2017, 140(6), 1768-1783.
[http://dx.doi.org/10.1093/brain/awx074] [PMID: 28430857]
[190]
SantaCruz, K.; Lewis, J.; Spires, T.; Paulson, J.; Kotilinek, L.; Ingelsson, M.; Guimaraes, A.; DeTure, M.; Ramsden, M.; McGowan, E.; Forster, C.; Yue, M.; Orne, J.; Janus, C.; Mariash, A.; Kuskowski, M.; Hyman, B.; Hutton, M.; Ashe, K.H. Tau suppression in a neurodegenerative mouse model improves memory function. Science, 2005, 309(5733), 476-481.
[http://dx.doi.org/10.1126/science.1113694] [PMID: 16020737]
[191]
Guo, N.; Peng, Z. MG132, a proteasome inhibitor, induces apoptosis in tumor cells. Asia Pac. J. Clin. Oncol., 2013, 9(1), 6-11.
[http://dx.doi.org/10.1111/j.1743-7563.2012.01535.x] [PMID: 22897979]
[192]
Choi, H.; Kim, H.J.; Yang, J.; Chae, S.; Lee, W.; Chung, S.; Kim, J.; Choi, H.; Song, H.; Lee, C.K.; Jun, J.H.; Lee, Y.J.; Lee, K.; Kim, S.; Sim, H.; Choi, Y.I.; Ryu, K.H.; Park, J.C.; Lee, D.; Han, S.H.; Hwang, D.; Kyung, J.; Mook-Jung, I. Acetylation changes tau interactome to degrade tau in Alzheimer’s disease animal and organoid models. Aging Cell, 2020, 19(1), e13081.
[http://dx.doi.org/10.1111/acel.13081] [PMID: 31763743]
[193]
Tarjányi, O.; Haerer, J.; Vecsernyés, M.; Berta, G.; Stayer-Harci, A.; Balogh, B.; Farkas, K.; Boldizsár, F.; Szeberényi, J.; Sétáló, G., Jr Prolonged treatment with the proteasome inhibitor MG-132 induces apoptosis in PC12 rat pheochromocytoma cells. Sci. Rep., 2022, 12(1), 5808.
[http://dx.doi.org/10.1038/s41598-022-09763-z] [PMID: 35388084]
[194]
Ohkusu-Tsukada, K.; Ito, D.; Takahashi, K. The role of proteasome inhibitor MG132 in 2,4-dinitrofluorobenzene-induced atopic dermatitis in NC/Nga mice. Int. Arch. Allergy Immunol., 2018, 176(2), 91-100.
[http://dx.doi.org/10.1159/000488155] [PMID: 29669333]
[195]
Corpas, R.; Griñán-Ferré, C.; Palomera-Ávalos, V.; Porquet, D.; de Frutos, P.G.; Cozzolino, S.M.F.; Rodríguez-Farré, E.; Pallàs, M.; Sanfeliu, C.; Cardoso, B.R. Melatonin induces mechanisms of brain resilience against neurodegeneration. J. Pineal Res., 2018, 65(4), e12515.
[http://dx.doi.org/10.1111/jpi.12515] [PMID: 29907977]
[196]
Seidler, P.M.; Boyer, D.R.; Rodriguez, J.A.; Sawaya, M.R.; Cascio, D.; Murray, K.; Gonen, T.; Eisenberg, D.S. Structure-based inhibitors of tau aggregation. Nat. Chem., 2018, 10(2), 170-176.
[http://dx.doi.org/10.1038/nchem.2889] [PMID: 29359764]
[197]
Nixon, R.A. Autophagy in neurodegenerative disease: Friend, foe or turncoat? Trends Neurosci., 2006, 29(9), 528-535.
[http://dx.doi.org/10.1016/j.tins.2006.07.003] [PMID: 16859759]
[198]
Penke, B.; Bogár, F.; Crul, T.; Sántha, M.; Tóth, M.; Vígh, L. Heat shock proteins and autophagy pathways in neuroprotection: From molecular bases to pharmacological interventions. Int. J. Mol. Sci., 2018, 19(1), 325.
[http://dx.doi.org/10.3390/ijms19010325] [PMID: 29361800]
[199]
Dickey, C.A.; Dunmore, J.; Lu, B.; Wang, J.W.; Lee, W.C.; Kamal, A.; Burrows, F.; Eckman, C.; Hutton, M.; Petrucelli, L. HSP induction mediates selective clearance of tau phosphorylated at proline-directed Ser/Thr sites but not KXGS (MARK) sites. FASEB J., 2006, 20(6), 753-755.
[http://dx.doi.org/10.1096/fj.05-5343fje] [PMID: 16464956]
[200]
Zhang, H.; Burrows, F. Targeting multiple signal transduction pathways through inhibition of Hsp90. J. Mol. Med., 2004, 82(8), 488-499.
[http://dx.doi.org/10.1007/s00109-004-0549-9] [PMID: 15168026]
[201]
Jilani, K.; Qadri, S.M.; Lang, F. Geldanamycin-induced phosphatidylserine translocation in the erythrocyte membrane. Cell. Physiol. Biochem., 2013, 32(6), 1600-1609.
[http://dx.doi.org/10.1159/000356596] [PMID: 24335345]
[202]
Ochel, H.J.; Eichhorn, K.; Gademann, G. Geldanamycin: The prototype of a class of antitumor drugs targeting the heat shock protein 90 family of molecular chaperones. Cell Stress Chaperones, 2001, 6(2), 105-112.
[http://dx.doi.org/10.1379/1466-1268(2001)006<0105:GTPOAC>2.0.CO;2] [PMID: 11599571]
[203]
Kamal, A.; Thao, L.; Sensintaffar, J.; Zhang, L.; Boehm, M.F.; Fritz, L.C.; Burrows, F.J. A high-affinity conformation of Hsp90 confers tumour selectivity on Hsp90 inhibitors. Nature, 2003, 425(6956), 407-410.
[http://dx.doi.org/10.1038/nature01913] [PMID: 14508491]
[204]
Vilenchik, M.; Solit, D.; Basso, A.; Huezo, H.; Lucas, B.; He, H.; Rosen, N.; Spampinato, C.; Modrich, P.; Chiosis, G. Targeting wide-range oncogenic transformation via PU24FCl, a specific inhibitor of tumor Hsp90. Chem. Biol., 2004, 11(6), 787-797.
[http://dx.doi.org/10.1016/j.chembiol.2004.04.008] [PMID: 15217612]
[205]
Hamano, T.; Gendron, T.F.; Causevic, E.; Yen, S.H.; Lin, W.L.; Isidoro, C.; DeTure, M.; Ko, L. Autophagic-lysosomal perturbation enhances tau aggregation in transfectants with induced wild- type tau expression. Eur. J. Neurosci., 2008, 27(5), 1119-1130.
[http://dx.doi.org/10.1111/j.1460-9568.2008.06084.x] [PMID: 18294209]
[206]
Berger, Z.; Ravikumar, B.; Menzies, F.M.; Oroz, L.G.; Underwood, B.R.; Pangalos, M.N.; Schmitt, I.; Wullner, U.; Evert, B.O.; O’Kane, C.J.; Rubinsztein, D.C. Rapamycin alleviates toxicity of different aggregate-prone proteins. Hum. Mol. Genet., 2006, 15(3), 433-442.
[http://dx.doi.org/10.1093/hmg/ddi458] [PMID: 16368705]
[207]
Morita, T.; Sobue, K. Specification of neuronal polarity regulated by local translation of CRMP2 and Tau via the mTOR-p70S6K pathway. J. Biol. Chem., 2009, 284(40), 27734-27745.
[http://dx.doi.org/10.1074/jbc.M109.008177] [PMID: 19648118]
[208]
Bresinsky, M.; Strasser, J.M.; Vallaster, B.; Liu, P.; McCue, W.M.; Fuller, J.; Hubmann, A.; Singh, G.; Nelson, K.M.; Cuellar, M.E.; Wilmot, C.M.; Finzel, B.C.; Ashe, K.H.; Walters, M.A.; Pockes, S. Structure-based design and biological evaluation of novel caspase-2 inhibitors based on the peptide AcVDVAD-CHO and the caspase-2-mediated tau cleavage sequence YKPVD314. ACS Pharmacol. Transl. Sci., 2022, 5(1), 20-40.
[http://dx.doi.org/10.1021/acsptsci.1c00251] [PMID: 35059567]
[209]
Yuzwa, S.A.; Macauley, M.S.; Heinonen, J.E.; Shan, X.; Dennis, R.J.; He, Y.; Whitworth, G.E.; Stubbs, K.A.; McEachern, E.J.; Davies, G.J.; Vocadlo, D.J. A potent mechanism-inspired O-GlcNAcase inhibitor that blocks phosphorylation of tau in vivo. Nat. Chem. Biol., 2008, 4(8), 483-490.
[http://dx.doi.org/10.1038/nchembio.96] [PMID: 18587388]
[210]
Yu, Y.; Zhang, L.; Li, X.; Run, X.; Liang, Z.; Li, Y.; Liu, Y.; Lee, M.H.; Grundke-Iqbal, I.; Iqbal, K.; Vocadlo, D.J.; Liu, F.; Gong, C.X. Differential effects of an O-GlcNAcase inhibitor on tau phosphorylation. PLoS One, 2012, 7(4), e35277.
[http://dx.doi.org/10.1371/journal.pone.0035277] [PMID: 22536363]
[211]
Selnick, H.G.; Hess, J.F.; Tang, C.; Liu, K.; Schachter, J.B.; Ballard, J.E.; Marcus, J.; Klein, D.J.; Wang, X.; Pearson, M.; Savage, M.J.; Kaul, R.; Li, T.S.; Vocadlo, D.J.; Zhou, Y.; Zhu, Y.; Mu, C.; Wang, Y.; Wei, Z.; Bai, C.; Duffy, J.L.; McEachern, E.J. Discovery of MK-8719, a potent o-glcnacase inhibitor as a potential treatment for tauopathies. J. Med. Chem., 2019, 62(22), 10062-10097.
[http://dx.doi.org/10.1021/acs.jmedchem.9b01090] [PMID: 31487175]
[212]
ASN90 2022. Available from: https://www.alzforum.org/therapeutics/asn90
[213]
Yuzwa, S.A.; Shan, X.; Macauley, M.S.; Clark, T.; Skorobogatko, Y.; Vosseller, K.; Vocadlo, D.J. Increasing O-GlcNAc slows neurodegeneration and stabilizes tau against aggregation. Nat. Chem. Biol., 2012, 8(4), 393-399.
[http://dx.doi.org/10.1038/nchembio.797] [PMID: 22366723]
[214]
Younes, M.; Aggett, P.; Aguilar, F.; Crebelli, R.; Dusemund, B.; Filipič, M.; Frutos, M.J.; Galtier, P.; Gott, D.; Gundert-Remy, U.; Lambré, C.; Leblanc, J.C.; Lillegaard, I.T.; Moldeus, P.; Mortensen, A.; Oskarsson, A.; Stankovic, I.; Waalkens-Berendsen, I.; Woutersen, R.A.; Andrade, R.J.; Fortes, C.; Mosesso, P.; Restani, P.; Arcella, D.; Pizzo, F.; Smeraldi, C.; Wright, M. Scientific opinion on the safety of green tea catechins. EFSA J., 2018, 16(4), e05239.
[PMID: 32625874]
[215]
Mereles, D.; Hunstein, W. Epigallocatechin-3-gallate (EGCG) for clinical trials: More pitfalls than promises? Int. J. Mol. Sci., 2011, 12(9), 5592-5603.
[http://dx.doi.org/10.3390/ijms12095592] [PMID: 22016611]
[216]
Sonawane, S.K.; Chinnathambi, S. Epigallocatechin-3-gallate modulates tau post-translational modifications and cytoskeletal network. Oncotarget, 2021, 12(11), 1083-1099.
[http://dx.doi.org/10.18632/oncotarget.27963] [PMID: 34084282]
[217]
Seidler, P.M.; Murray, K.A.; Boyer, D.R.; Ge, P.; Sawaya, M.R.; Hu, C.J.; Cheng, X.; Abskharon, R.; Pan, H.; DeTure, M.A.; Williams, C.K.; Dickson, D.W.; Vinters, H.V.; Eisenberg, D.S. Structure-based discovery of small molecules that disaggregate Alzheimer’s disease tissue derived tau fibrils in vitro. Nat. Commun., 2022, 13(1), 5451.
[http://dx.doi.org/10.1038/s41467-022-32951-4] [PMID: 36114178]
[218]
Inuzuka, H.; Liu, J.; Wei, W.; Rezaeian, A.H. PROTAC technology for the treatment of Alzheimer’s disease: Advances and perspectives. Acta Materia Medica, 2022, 1(1), 24-41.
[http://dx.doi.org/10.15212/AMM-2021-0001] [PMID: 35237768]
[219]
Li, C.; Götz, J. Tau-based therapies in neurodegeneration: Opportunities and challenges. Nat. Rev. Drug Discov., 2017, 16(12), 863-883.
[http://dx.doi.org/10.1038/nrd.2017.155] [PMID: 28983098]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy