Generic placeholder image

Current Proteomics

Editor-in-Chief

ISSN (Print): 1570-1646
ISSN (Online): 1875-6247

Research Article

Designing a Novel Multi-epitope Peptide as a Potential Serodiagnosis Marker for the Diagnosis of Acinetobacter baumannii: An In silico Approach

Author(s): Maryam Rezaee, Mohsen Mohammadi*, Amir Savardashtaki, Mohammad Reza Rahbar and Navid Nezafat*

Volume 21, Issue 1, 2024

Published on: 29 March, 2024

Page: [25 - 42] Pages: 18

DOI: 10.2174/0115701646297689240325062145

Price: $65

Abstract

Background: Acinetobacter baumannii is an opportunistic pathogen that causes many infections, including nosocomial infections; this bacterium has a high mortality rate among other bacteria. A. baumannii has an elastic genome that changes rapidly when exposed to harsh environmental conditions, leading to widespread bacterial resistance to various disinfectants and antibiotics. The high ability of bacteria to bind to all surfaces and survive in different conditions has caused the spread of bacteria in various environments. Rapid detection is very important in preventing the spread and even treatment of the infection.

Methods: Currently, the Polymerase Chain Reaction (PCR) method is the only effective method used for diagnosis, which has some pros and cons.

Results and Conclusion: This study aimed to design a new recombinant multi-epitope protein from Acinetobacter baumannii that can be used in ELISA for rapid diagnosis. The unique feature of this study from others is the use of patient serum for antibody monitoring.

Keywords: Acinetobacter baumannii, ELISA, recombinant protein, multi-epitope, rapid diagnosis, polymerase chain reaction (PCR).

Graphical Abstract
[1]
Kyriakidis, I.; Vasileiou, E.; Pana, Z.D.; Tragiannidis, A. Acinetobacter baumannii antibiotic resistance mechanisms. Pathogens, 2021, 10(3), 373.
[http://dx.doi.org/10.3390/pathogens10030373] [PMID: 33808905]
[2]
Sarshar, M.; Behzadi, P.; Scribano, D.; Palamara, A.T.; Ambrosi, C. Acinetobacter baumannii: An ancient commensal with weapons of a pathogen. Pathogens, 2021, 10(4), 387.
[http://dx.doi.org/10.3390/pathogens10040387] [PMID: 33804894]
[3]
Zhang, H.; Jia, P.; Zhu, Y.; Zhang, G.; Zhang, J.; Kang, W.; Duan, S.; Zhang, W.; Yang, Q.; Xu, Y. Susceptibility to imipenem/relebactam of Pseudomonas aeruginosa and Acinetobacter baumannii isolates from chinese intra-abdominal, respiratory and urinary tract infections: Smart 2015 to 2018. Infect. Drug Resist., 2021, 14, 3509-3518.
[http://dx.doi.org/10.2147/IDR.S325520] [PMID: 34511942]
[4]
Bagińska, N.; Cieślik, M.; Górski, A.; Jończyk-Matysiak, E. The role of antibiotic resistant A. baumannii in the pathogenesis of urinary tract infection and the potential of its treatment with the use of bacteriophage therapy. Antibiotics, 2021, 10(3), 281.
[http://dx.doi.org/10.3390/antibiotics10030281] [PMID: 33803438]
[5]
Dehari, D.; Chaudhuri, A.; Kumar, D.N.; Patil, R.; Gangwar, M.; Rastogi, S.; Kumar, D.; Nath, G.; Agrawal, A.K. A bacteriophage microgel effectively treats the multidrug-resistant Acinetobacter baumannii bacterial infections in burn wounds. Pharmaceuticals, 2023, 16(7), 942.
[http://dx.doi.org/10.3390/ph16070942] [PMID: 37513854]
[6]
Ismail, M.M.; Samir, R.; Saber, F.R.; Ahmed, S.R.; Farag, M.A. Pimenta oil as a potential treatment for Acinetobacter baumannii wound infection: In vitro and in vivo bioassays in relation to its chemical composition. In: Antibiotics ; , 2020; 9, p. 679.
[http://dx.doi.org/10.3390/antibiotics9100679]
[7]
Loyola-Cruz, M.Á.; Durán-Manuel, E.M.; Cruz-Cruz, C.; Márquez-Valdelamar, L.M.; Bravata-Alcántara, J.C.; Cortés-Ortíz, I.A.; Cureño-Díaz, M.A.; Ibáñez-Cervantes, G.; Fernández-Sánchez, V.; Castro-Escarpulli, G.; Bello-López, J.M. ESKAPE bacteria characterization reveals the presence of Acinetobacter baumannii and Pseudomonas aeruginosa outbreaks in COVID-19/VAP patients. Am. J. Infect. Control, 2023, 51(7), 729-737.
[http://dx.doi.org/10.1016/j.ajic.2022.08.012] [PMID: 36002081]
[8]
Adukauskiene, D.; Ciginskiene, A.; Adukauskaite, A.; Koulenti, D.; Rello, J. Clinical features and outcomes of monobacterial and polybacterial episodes of ventilator-associated pneumonia due to multidrug-resistant Acinetobacter baumannii. Antibiotics, 2022, 11(7), 892.
[http://dx.doi.org/10.3390/antibiotics11070892] [PMID: 35884146]
[9]
Noori, E.; Rasooli, I.; Owlia, P.; Mousavi Gargari, S.L.; Ebrahimizadeh, W. A conserved region from biofilm associated protein as a biomarker for detection of Acinetobacter baumannii. Microb. Pathog., 2014, 77, 84-88.
[http://dx.doi.org/10.1016/j.micpath.2014.11.004] [PMID: 25450883]
[10]
Harding, C.M.; Hennon, S.W.; Feldman, M.F. Uncovering the mechanisms of Acinetobacter baumannii virulence. Nat. Rev. Microbiol., 2018, 16(2), 91-102.
[http://dx.doi.org/10.1038/nrmicro.2017.148] [PMID: 29249812]
[11]
Antunes, L.C.S.; Visca, P.; Towner, K.J. Acinetobacter baumannii : Evolution of a global pathogen. Pathog. Dis., 2014, 71(3), 292-301.
[http://dx.doi.org/10.1111/2049-632X.12125] [PMID: 24376225]
[12]
Ahmad, T.A.; Tawfik, D.M.; Sheweita, S.A.; Haroun, M.; El-Sayed, L.H. Development of immunization trials against Acinetobacter baumannii. Trials Vaccinol., 2016, 5, 53-60.
[http://dx.doi.org/10.1016/j.trivac.2016.03.001]
[13]
Mussi, M.A.; Gaddy, J.A.; Cabruja, M.; Arivett, B.A.; Viale, A.M.; Rasia, R.; Actis, L.A. The opportunistic human pathogen Acinetobacter baumannii senses and responds to light. J. Bacteriol., 2010, 192(24), 6336-6345.
[http://dx.doi.org/10.1128/JB.00917-10] [PMID: 20889755]
[14]
Peña-Tuesta, I.; del Valle-Vargas, C.; Petrozzi-Helasvuo, V.; Aguilar-Luis, M.A.; Carrillo-Ng, H.; Silva-Caso, W.; del Valle-Mendoza, J. Community acquired Acinetobacter baumannii in pediatric patients under 1 year old with a clinical diagnosis of whooping cough in Lima, Peru. BMC Res. Notes, 2021, 14(1), 412.
[http://dx.doi.org/10.1186/s13104-021-05826-y] [PMID: 34758882]
[15]
Gedefie, A.; Demsiss, W.; Belete, M.A.; Kassa, Y.; Tesfaye, M.; Tilahun, M.; Bisetegn, H.; Sahle, Z. Acinetobacter baumannii biofilm formation and its role in disease pathogenesis: A review. Infect. Drug Resist., 2021, 14, 3711-3719.
[http://dx.doi.org/10.2147/IDR.S332051] [PMID: 34531666]
[16]
Ibrahim, S.; Al-Saryi, N.; Al-Kadmy, I.M.S.; Aziz, S.N. Multidrug-resistant Acinetobacter baumannii as an emerging concern in hospitals. Mol. Biol. Rep., 2021, 48(10), 6987-6998.
[http://dx.doi.org/10.1007/s11033-021-06690-6] [PMID: 34460060]
[17]
Galac, M.R.; Snesrud, E.; Lebreton, F.; Stam, J.; Julius, M.; Ong, A.C.; Maybank, R.; Jones, A.R.; Kwak, Y.I.; Hinkle, K.; Waterman, P.E.; Lesho, E.P.; Bennett, J.W.; Mc Gann, P. A diverse panel of clinical Acinetobacter baumannii for research and development. Antimicrob. Agents Chemother., 2020, 64(10), e00840-20.
[http://dx.doi.org/10.1128/AAC.00840-20] [PMID: 32718956]
[18]
García-Patiño, M.G.; García-Contreras, R.; Licona-Limón, P. The immune response against Acinetobacter baumannii, an emerging pathogen in nosocomial infections. Front. Immunol., 2017, 8(APR), 441.
[http://dx.doi.org/10.3389/fimmu.2017.00441] [PMID: 28446911]
[19]
Su, C.H.; Tsai, M.H.; Lin, C.Y.; Ma, Y.D.; Wang, C.H.; Chung, Y.D.; Lee, G.B. Dual aptamer assay for detection of Acinetobacter baumannii on an electromagnetically-driven microfluidic platform. Biosens. Bioelectron., 2020, 159, 112148.
[http://dx.doi.org/10.1016/j.bios.2020.112148] [PMID: 32291246]
[20]
Aldali, J.A. Acinetobacter baumannii. Saudi Med. J., 2023, 44(8), 732-744.
[http://dx.doi.org/10.15537/smj.2023.44.8.20230194] [PMID: 37582561]
[21]
Chen, T.L.; Lee, Y.T.; Kuo, S.C.; Yang, S.P.; Fung, C.P.; Lee, S.D. Rapid identification of Acinetobacter baumannii, Acinetobacter nosocomialis and Acinetobacter pittii with a multiplex PCR assay. J. Med. Microbiol., 2014, 63(9), 1154-1159.
[http://dx.doi.org/10.1099/jmm.0.071712-0] [PMID: 24965800]
[22]
Luo, J.; Jiang, M.; Xiong, J. Rapid ultrasensitive diagnosis of pneumonia caused by Acinetobacter baumannii using a combination of enrichment and phage-based qPCR assay. Research Square, 2020, 1-25.
[http://dx.doi.org/10.21203/rs.3.rs-16845/v1]
[23]
Vaneechoutte, M.; Dijkshoorn, L.; Tjernberg, I.; Elaichouni, A.; de Vos, P.; Claeys, G.; Verschraegen, G. Identification of Acinetobacter genomic species by amplified ribosomal DNA restriction analysis. J. Clin. Microbiol., 1995, 33(1), 11-15.
[http://dx.doi.org/10.1128/jcm.33.1.11-15.1995] [PMID: 7699025]
[24]
La Scola, B.; Gundi, V.A.K.B.; Khamis, A.; Raoult, D. Sequencing of the rpoB gene and flanking spacers for molecular identification of Acinetobacter species. J. Clin. Microbiol., 2006, 44(3), 827-832.
[http://dx.doi.org/10.1128/JCM.44.3.827-832.2006] [PMID: 16517861]
[25]
Vijayakumar, S.; Biswas, I.; Veeraraghavan, B. Accurate identification of clinically important Acinetobacter spp.: An update. Future Sci. OA, 2019, 5(6), FSO395.
[http://dx.doi.org/10.2144/fsoa-2018-0127] [PMID: 31285840]
[26]
Xu, A.; Zhu, H.; Gao, B.; Weng, H.; Ding, Z.; Li, M.; Weng, X.; He, G. Diagnosis of severe community-acquired pneumonia caused by Acinetobacter baumannii through next-generation sequencing: A case report. BMC Infect. Dis., 2020, 20(1), 45.
[http://dx.doi.org/10.1186/s12879-019-4733-5] [PMID: 31941459]
[27]
Ni, P.X.; Ding, X.; Zhang, Y.X.; Yao, X.; Sun, R.X.; Wang, P.; Gong, Y.P.; Zhou, J.L.; Li, D.F.; Wu, H.L.; Yi, X.; Yang, L.; Long, Y. Rapid detection and identification of infectious pathogens based on high-throughput sequencing. Chin. Med. J., 2015, 128(7), 877-883.
[http://dx.doi.org/10.4103/0366-6999.154281] [PMID: 25836606]
[28]
Chen, W. Host innate immune responses to Acinetobacter baumannii infection. Front. Cell. Infect. Microbiol., 2020, 10, 486.
[http://dx.doi.org/10.3389/fcimb.2020.00486] [PMID: 33042864]
[29]
Bateman, A.; Martin, M-J.; Orchard, S.; Magrane, M.; Ahmad, S.; Alpi, E.; Bowler-Barnett, E.H.; Britto, R.; Bye-A-Jee, H.; Cukura, A.; Denny, P.; Dogan, T.; Ebenezer, T.G.; Fan, J.; Garmiri, P.; da Costa Gonzales, L.J.; Hatton-Ellis, E.; Hussein, A.; Ignatchenko, A.; Insana, G.; Ishtiaq, R.; Joshi, V.; Jyothi, D.; Kandasaamy, S.; Lock, A.; Luciani, A.; Lugaric, M.; Luo, J.; Lussi, Y.; MacDougall, A.; Madeira, F.; Mahmoudy, M.; Mishra, A.; Moulang, K.; Nightingale, A.; Pundir, S.; Qi, G.; Raj, S.; Raposo, P.; Rice, D.L.; Saidi, R.; Santos, R.; Speretta, E.; Stephenson, J.; Totoo, P.; Turner, E.; Tyagi, N.; Vasudev, P.; Warner, K.; Watkins, X.; Zaru, R.; Zellner, H.; Bridge, A.J.; Aimo, L.; Argoud-Puy, G.; Auchincloss, A.H.; Axelsen, K.B.; Bansal, P.; Baratin, D.; Batista Neto, T.M.; Blatter, M-C.; Bolleman, J.T.; Boutet, E.; Breuza, L.; Gil, B.C.; Casals-Casas, C.; Echioukh, K.C.; Coudert, E.; Cuche, B.; de Castro, E.; Estreicher, A.; Famiglietti, M.L.; Feuermann, M.; Gasteiger, E.; Gaudet, P.; Gehant, S.; Gerritsen, V.; Gos, A.; Gruaz, N.; Hulo, C.; Hyka-Nouspikel, N.; Jungo, F.; Kerhornou, A.; Le Mercier, P.; Lieberherr, D.; Masson, P.; Morgat, A.; Muthukrishnan, V.; Paesano, S.; Pedruzzi, I.; Pilbout, S.; Pourcel, L.; Poux, S.; Pozzato, M.; Pruess, M.; Redaschi, N.; Rivoire, C.; Sigrist, C.J.A.; Sonesson, K.; Sundaram, S.; Wu, C.H.; Arighi, C.N.; Arminski, L.; Chen, C.; Chen, Y.; Huang, H.; Laiho, K.; McGarvey, P.; Natale, D.A.; Ross, K.; Vinayaka, C.R.; Wang, Q.; Wang, Y.; Zhang, J. UniProt: The universal protein knowledgebase in 2023. Nucleic Acids Res., 2023, 51(D1), D523-D531.
[http://dx.doi.org/10.1093/nar/gkac1052] [PMID: 36408920]
[30]
Coudert, E.; Gehant, S.; de Castro, E.; Pozzato, M.; Baratin, D.; Neto, T.; Sigrist, C.J.A.; Redaschi, N.; Bridge, A.; Bridge, A.J.; Aimo, L.; Argoud-Puy, G.; Auchincloss, A.H.; Axelsen, K.B.; Bansal, P.; Baratin, D.; Neto, T.M.B.; Blatter, M-C.; Bolleman, J.T.; Boutet, E.; Breuza, L.; Gil, B.C.; Casals-Casas, C.; Echioukh, K.C.; Coudert, E.; Cuche, B.; de Castro, E.; Estreicher, A.; Famiglietti, M.L.; Feuermann, M.; Gasteiger, E.; Gaudet, P.; Gehant, S.; Gerritsen, V.; Gos, A.; Gruaz, N.; Hulo, C.; Hyka-Nouspikel, N.; Jungo, F.; Kerhornou, A.; Le Mercier, P.; Lieberherr, D.; Masson, P.; Morgat, A.; Muthukrishnan, V.; Paesano, S.; Pedruzzi, I.; Pilbout, S.; Pourcel, L.; Poux, S.; Pozzato, M.; Pruess, M.; Redaschi, N.; Rivoire, C.; Sigrist, C.J.A.; Sonesson, K.; Sundaram, S.; Bateman, A.; Martin, M-J.; Orchard, S.; Magrane, M.; Ahmad, S.; Alpi, E.; Bowler-Barnett, E.H.; Britto, R.; A-Jee, H.B.; Cukura, A.; Denny, P.; Dogan, T.; Ebenezer, T.G.; Fan, J.; Garmiri, P.; da Costa Gonzales, L.J.; Hatton-Ellis, E.; Hussein, A.; Ignatchenko, A.; Insana, G.; Ishtiaq, R.; Joshi, V.; Jyothi, D.; Kandasaamy, S.; Lock, A.; Luciani, A.; Lugaric, M.; Luo, J.; Lussi, Y.; MacDougall, A.; Madeira, F.; Mahmoudy, M.; Mishra, A.; Moulang, K.; Nightingale, A.; Pundir, S.; Qi, G.; Raj, S.; Raposo, P.; Rice, D.L.; Saidi, R.; Santos, R.; Speretta, E.; Stephenson, J.; Totoo, P.; Turner, E.; Tyagi, N.; Vasudev, P.; Warner, K.; Watkins, X.; Zaru, R.; Zellner, H.; Wu, C.H.; Arighi, C.N.; Arminski, L.; Chen, C.; Chen, Y.; Huang, H.; Laiho, K.; McGarvey, P.; Natale, D.A.; Ross, K.; Vinayaka, C.R.; Wang, Q.; Wang, Y. Annotation of biologically relevant ligands in UniProtKB using ChEBI. Bioinformatics, 2023, 39(1), btac793.
[http://dx.doi.org/10.1093/bioinformatics/btac793] [PMID: 36484697]
[31]
Yu, C.S.; Chen, Y.C.; Lu, C.H.; Hwang, J.K. Prediction of protein subcellular localization. Proteins, 2006, 64(3), 643-651.
[http://dx.doi.org/10.1002/prot.21018] [PMID: 16752418]
[32]
Yu, C.S.; Lin, C.J.; Hwang, J.K. Predicting subcellular localization of proteins for Gram-negative bacteria by support vector machines based on n -peptide compositions. Protein Sci., 2004, 13(5), 1402-1406.
[http://dx.doi.org/10.1110/ps.03479604] [PMID: 15096640]
[33]
Yu, N.Y.; Wagner, J.R.; Laird, M.R.; Melli, G.; Rey, S.; Lo, R.; Dao, P.; Sahinalp, S.C.; Ester, M.; Foster, L.J.; Brinkman, F.S.L. PSORTb 3.0: improved protein subcellular localization prediction with refined localization subcategories and predictive capabilities for all prokaryotes. Bioinformatics, 2010, 26(13), 1608-1615.
[http://dx.doi.org/10.1093/bioinformatics/btq249] [PMID: 20472543]
[34]
Goldberg, T.; Hecht, M.; Hamp, T.; Karl, T.; Yachdav, G.; Ahmed, N.; Altermann, U.; Angerer, P.; Ansorge, S.; Balasz, K.; Bernhofer, M.; Betz, A.; Cizmadija, L.; Do, K.T.; Gerke, J.; Greil, R.; Joerdens, V.; Hastreiter, M.; Hembach, K.; Herzog, M.; Kalemanov, M.; Kluge, M.; Meier, A.; Nasir, H.; Neumaier, U.; Prade, V.; Reeb, J.; Sorokoumov, A.; Troshani, I.; Vorberg, S.; Waldraff, S.; Zierer, J.; Nielsen, H.; Rost, B. LocTree3 prediction of localization. Nucleic Acids Res., 2014, 42(W1), W350-W355.
[http://dx.doi.org/10.1093/nar/gku396] [PMID: 24848019]
[35]
Savojardo, C.; Martelli, P.L.; Fariselli, P.; Profiti, G.; Casadio, R. BUSCA: An integrative web server to predict subcellular localization of proteins. Nucleic Acids Res., 2018, 46(W1), W459-W466.
[http://dx.doi.org/10.1093/nar/gky320] [PMID: 29718411]
[36]
Savojardo, C.; Martelli, P.L.; Fariselli, P.; Casadio, R. DeepSig: Deep learning improves signal peptide detection in proteins. Bioinformatics, 2018, 34(10), 1690-1696.
[http://dx.doi.org/10.1093/bioinformatics/btx818] [PMID: 29280997]
[37]
Omasits, U.; Ahrens, C.H.; Müller, S.; Wollscheid, B. Protter: Interactive protein feature visualization and integration with experimental proteomic data. Bioinformatics, 2014, 30(6), 884-886.
[http://dx.doi.org/10.1093/bioinformatics/btt607] [PMID: 24162465]
[38]
Tsirigos, K.D.; Peters, C.; Shu, N.; Käll, L.; Elofsson, A. The TOPCONS web server for consensus prediction of membrane protein topology and signal peptides. Nucleic Acids Res., 2015, 43(W1), W401-W407.
[http://dx.doi.org/10.1093/nar/gkv485] [PMID: 25969446]
[39]
Cao, B.; Porollo, A.; Adamczak, R.; Jarrell, M.; Meller, J. Enhanced recognition of protein transmembrane domains with prediction-based structural profiles. Bioinformatics, 2006, 22(3), 303-309.
[http://dx.doi.org/10.1093/bioinformatics/bti784] [PMID: 16293670]
[40]
Kahsay, R.Y.; Gao, G.; Liao, L. An improved hidden Markov model for transmembrane protein detection and topology prediction and its applications to complete genomes. Bioinformatics, 2005, 21(9), 1853-1858.
[http://dx.doi.org/10.1093/bioinformatics/bti303] [PMID: 15691854]
[41]
Doytchinova, I.A.; Flower, D.R. VaxiJen: A server for prediction of protective antigens, tumour antigens and subunit vaccines. BMC Bioinformatics, 2007, 8(1), 4.
[http://dx.doi.org/10.1186/1471-2105-8-4] [PMID: 17207271]
[42]
Doytchinova, I.A.; Flower, D.R. Bioinformatic approach for identifying parasite and fungal candidate subunit vaccines. Open Vaccine J., 2008, 1(1), 22-26.
[http://dx.doi.org/10.2174/1875035400801010022]
[43]
Doytchinova, I.A.; Flower, D.R. Identifying candidate subunit vaccines using an alignment-independent method based on principal amino acid properties. Vaccine, 2007, 25(5), 856-866.
[http://dx.doi.org/10.1016/j.vaccine.2006.09.032] [PMID: 17045707]
[44]
Altschul, S.F.; Wootton, J.C.; Gertz, E.M.; Agarwala, R.; Morgulis, A.; Schäffer, A.A.; Yu, Y.K. Protein database searches using compositionally adjusted substitution matrices. FEBS J., 2005, 272(20), 5101-5109.
[http://dx.doi.org/10.1111/j.1742-4658.2005.04945.x] [PMID: 16218944]
[45]
Xu, L.; Dong, Z.; Fang, L.; Luo, Y.; Wei, Z.; Guo, H.; Zhang, G.; Gu, Y.Q.; Coleman-Derr, D.; Xia, Q.; Wang, Y. OrthoVenn2: A web server for whole-genome comparison and annotation of orthologous clusters across multiple species. Nucleic Acids Res., 2019, 47(W1), W52-W58.
[http://dx.doi.org/10.1093/nar/gkz333] [PMID: 31053848]
[46]
Zimmermann, L.; Stephens, A.; Nam, S.Z.; Rau, D.; Kübler, J.; Lozajic, M.; Gabler, F.; Söding, J.; Lupas, A.N.; Alva, V. A completely reimplemented MPI bioinformatics toolkit with a new HHpred server at its core. J. Mol. Biol., 2018, 430(15), 2237-2243.
[http://dx.doi.org/10.1016/j.jmb.2017.12.007] [PMID: 29258817]
[47]
Vita, R. The immune epitope database (IEDB): 2018 update. Nucleic Acids Res, 2019, 47, D339.
[48]
Jespersen, M.C.; Peters, B.; Nielsen, M.; Marcatili, P. BepiPred-2.0: Improving sequence-based B-cell epitope prediction using conformational epitopes. Nucleic Acids Res., 2017, 45(W1), W24-W29.
[http://dx.doi.org/10.1093/nar/gkx346] [PMID: 28472356]
[49]
Rice, P.; Longden, I.; Bleasby, A. EMBOSS: The european molecular biology open software suite. Trends Genet., 2000, 16(6), 276-277.
[http://dx.doi.org/10.1016/S0168-9525(00)02024-2] [PMID: 10827456]
[50]
Lomize, M.A.; Pogozheva, I.D.; Joo, H.; Mosberg, H.I.; Lomize, A.L. OPM database and PPM web server: Resources for positioning of proteins in membranes. Nucleic Acids Res., 2012, 40(D1), D370-D376.
[http://dx.doi.org/10.1093/nar/gkr703] [PMID: 21890895]
[51]
Kringelum, J.V.; Lundegaard, C.; Lund, O.; Nielsen, M. Reliable B cell epitope predictions: Impacts of method development and improved benchmarking. PLOS Comput. Biol., 2012, 8(12), e1002829.
[http://dx.doi.org/10.1371/journal.pcbi.1002829] [PMID: 23300419]
[52]
Šali, A.; Potterton, L.; Yuan, F.; van Vlijmen, H.; Karplus, M. Evaluation of comparative protein modeling by M ODELLER. Proteins, 1995, 23(3), 318-326.
[http://dx.doi.org/10.1002/prot.340230306] [PMID: 8710825]
[53]
Gabler, F.; Nam, S.Z.; Till, S.; Mirdita, M.; Steinegger, M.; Söding, J.; Lupas, A.N.; Alva, V. Protein sequence analysis using the MPI bioinformatics toolkit. Curr. Protoc. Bioinformatics, 2020, 72(1), e108.
[http://dx.doi.org/10.1002/cpbi.108] [PMID: 33315308]
[54]
Altschul, S.; Madden, T.L.; Schäffer, A.A.; Zhang, J.; Zhang, Z.; Miller, W.; Lipman, D.J. Gapped BLAST and PSI-BLAST: A new generation of protein database search programs. Nucleic Acids Res., 1997, 25(17), 3389-3402.
[http://dx.doi.org/10.1093/nar/25.17.3389] [PMID: 9254694]
[55]
Burley, S.K.; Berman, H.M.; Bhikadiya, C.; Bi, C.; Chen, L.; Di Costanzo, L.; Christie, C.; Dalenberg, K.; Duarte, J.M.; Dutta, S.; Feng, Z.; Ghosh, S.; Goodsell, D.S.; Green, R.K.; Guranović, V.; Guzenko, D.; Hudson, B.P.; Kalro, T.; Liang, Y.; Lowe, R.; Namkoong, H.; Peisach, E.; Periskova, I.; Prlić, A.; Randle, C.; Rose, A.; Rose, P.; Sala, R.; Sekharan, M.; Shao, C.; Tan, L.; Tao, Y.P.; Valasatava, Y.; Voigt, M.; Westbrook, J.; Woo, J.; Yang, H.; Young, J.; Zhuravleva, M.; Zardecki, C. RCSB protein data bank: Biological macromolecular structures enabling research and education in fundamental biology, biomedicine, biotechnology and energy. Nucleic Acids Res., 2019, 47(D1), D464-D474.
[http://dx.doi.org/10.1093/nar/gky1004] [PMID: 30357411]
[56]
Berman, H.M.; Westbrook, J.; Feng, Z.; Gilliland, G.; Bhat, T.N.; Weissig, H.; Shindyalov, I.N.; Bourne, P.E. The protein data bank. Nucleic Acids Res., 2000, 28(1), 235-242.
[http://dx.doi.org/10.1093/nar/28.1.235] [PMID: 10592235]
[57]
Wang, Y.; Geer, L.Y.; Chappey, C.; Kans, J.A.; Bryant, S.H. Cn3D: Sequence and structure views for Entrez. Trends Biochem. Sci., 2000, 25(6), 300-302.
[http://dx.doi.org/10.1016/S0968-0004(00)01561-9] [PMID: 10838572]
[58]
Pettersen, E.F.; Goddard, T.D.; Huang, C.C.; Couch, G.S.; Greenblatt, D.M.; Meng, E.C.; Ferrin, T.E. UCSF Chimera—A visualization system for exploratory research and analysis. J. Comput. Chem., 2004, 25(13), 1605-1612.
[http://dx.doi.org/10.1002/jcc.20084] [PMID: 15264254]
[59]
Schrodinger, LLC The PyMOL Molecular Graphics System, Version 1.8., 2015.
[60]
Bui, H.H.; Sidney, J.; Li, W.; Fusseder, N.; Sette, A. Development of an epitope conservancy analysis tool to facilitate the design of epitope-based diagnostics and vaccines. BMC Bioinf., 2007, 8, 361.
[61]
Yang, J.; Zhang, Y. I-TASSER server: New development for protein structure and function predictions. Nucleic Acids Res., 2015, 43(W1), W174-W181.
[http://dx.doi.org/10.1093/nar/gkv342] [PMID: 25883148]
[62]
Zhou, X. I-TASSER-MTD: A deep-learning-based platform for multi-domain protein structure and function prediction. Nat Protoc, 2022, 17(10), 2326-2356.
[http://dx.doi.org/10.1038/s41596-022-00728-0]
[63]
Zheng , W.; Zhang , C.; Li , Y. Folding non-homologous proteins by coupling deep-learning contact maps with I-TASSER assembly simulations. Cell Rep Methods. , 2021, 1(3), 100014.
[http://dx.doi.org/10.1016/j.crmeth.2021.100014]
[64]
Källberg, M.; Wang, H.; Wang, S.; Peng, J.; Wang, Z.; Lu, H.; Xu, J. Template-based protein structure modeling using the RaptorX web server. Nat. Protoc., 2012, 7(8), 1511-1522.
[http://dx.doi.org/10.1038/nprot.2012.085] [PMID: 22814390]
[65]
Kelley, L.A.; Mezulis, S.; Yates, C.M.; Wass, M.N.; Sternberg, M.J.E. The Phyre2 web portal for protein modeling, prediction and analysis. Nat. Protoc., 2015, 10(6), 845-858.
[http://dx.doi.org/10.1038/nprot.2015.053] [PMID: 25950237]
[66]
Wiederstein, M.; Sippl, M.J. ProSA-web: Interactive web service for the recognition of errors in three-dimensional structures of proteins. Nucleic Acids Res., 2007, 35(Web Server), W407-W410.
[http://dx.doi.org/10.1093/nar/gkm290] [PMID: 17517781]
[67]
Gasteiger, E. Protein analysis tools on the ExPASy server 571 571 from: The proteomics protocols handbook protein identification and analysis tools on the expasy server. Available from: http://www.expasy.org/tools/
[68]
Vázquez-López, R. Acinetobacter baumannii resistance: A real challenge for clinicians. Antibiotics, 2020, 9(4), 205.
[http://dx.doi.org/10.3390/antibiotics9040205]
[69]
Iswarya Jaisankar, A.; Smiline Girija, A.S.; Gunasekaran, S.; Vijayashree Priyadharsini, J. Molecular characterisation of csgA gene among ESBL strains of A. baumannii and targeting with essential oil compounds from Azadirachta indica. J. King Saud Univ. Sci., 2020, 32(8), 3380-3387.
[http://dx.doi.org/10.1016/j.jksus.2020.09.025]
[70]
Khoramrooz, S.S.; Eslami, S.; Motamedifar, M.; Bazargani, A.; Zomorodian, K. High frequency of class I and II integrons and the presence of aada2 and dfra12 gene cassettes in the clinical isolates of Acinetobacter baumannii from shiraz, southwest of Iran. Jundishapur J. Microbiol., 2021, 14(12), 2021.
[71]
Singh, J.K.; Adams, F.G.; Brown, M.H. Diversity and function of capsular polysaccharide in Acinetobacter baumannii. Front. Microbiol., 2019, 9(JAN), 3301.
[http://dx.doi.org/10.3389/fmicb.2018.03301] [PMID: 30687280]
[72]
Wilkie, E. D.; Alao, J. O.; Akinmolayan, T. A.; Wilkie, E. D.; Alao, J. O.; Akinmolayan, T. A. Host-pathogen interactions in Acinetobacter baumannii infections: Mechanisms of immune evasion and potential therapeutic targets. In: Acinetobacter baumannii - The Rise of a Resistant Pathogen; IntechOpen, 2023.
[http://dx.doi.org/10.5772/intechopen.1002740]
[73]
Islam, A.H.M.S.; Singh, K.K.B.; Ismail, A. Demonstration of an outer membrane protein that is antigenically specific for Acinetobacter baumannii. Diagn. Microbiol. Infect. Dis., 2011, 69(1), 38-44.
[http://dx.doi.org/10.1016/j.diagmicrobio.2010.09.008] [PMID: 21146712]
[74]
Naghipour Erami, A.; Rasooli, I.; Jahangiri, A.; Darvish Alipour Astaneh, S. Anti-Omp34 antibodies protect against Acinetobacter baumannii in a murine sepsis model. Microb. Pathog., 2021, 161(Pt B), 105291.
[http://dx.doi.org/10.1016/j.micpath.2021.105291] [PMID: 34798280]
[75]
Huang, W.; Zhang, Q.; Li, W.; Chen, Y.; Shu, C.; Li, Q.; Zhou, J.; Ye, C.; Bai, H.; Sun, W.; Yang, X.; Ma, Y. Anti-outer membrane vesicle antibodies increase antibiotic sensitivity of pan-drug-resistant Acinetobacter baumannii. Front. Microbiol., 2019, 10(JUN), 1379.
[http://dx.doi.org/10.3389/fmicb.2019.01379] [PMID: 31275290]
[76]
Chiang, M.H.; Sung, W.C.; Lien, S.P.; Chen, Y.Z.; Lo, A.F.; Huang, J.H.; Kuo, S.C.; Chong, P. Identification of novel vaccine candidates against Acinetobacter baumannii using reverse vaccinology. Hum. Vaccin. Immunother., 2015, 11(4), 1065-1073.
[http://dx.doi.org/10.1080/21645515.2015.1010910] [PMID: 25751377]
[77]
Gellings, P.S.; Wilkins, A.A.; Morici, L.A. Recent advances in the pursuit of an effective Acinetobacter baumannii vaccine. Pathogens, 2020, 9(12), 1066.
[http://dx.doi.org/10.3390/pathogens9121066] [PMID: 33352688]
[78]
Zhang, L.; Skolnick, J. What should the Z-score of native protein structures be? Protein Sci., 1998, 7(5), 1201-1207.
[http://dx.doi.org/10.1002/pro.5560070515] [PMID: 9605325]
[79]
Sippl, M.J. Recognition of errors in three-dimensional structures of proteins. Proteins, 1993, 17(4), 355-362.
[http://dx.doi.org/10.1002/prot.340170404] [PMID: 8108378]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy