Generic placeholder image

Current Pharmaceutical Design

Editor-in-Chief

ISSN (Print): 1381-6128
ISSN (Online): 1873-4286

Review Article

Innovative Strategies to Enhance mRNA Vaccine Delivery and Effectiveness: Mechanisms and Future Outlook

Author(s): Abhishek Verma and Ankit Awasthi*

Volume 30, Issue 14, 2024

Published on: 28 March, 2024

Page: [1049 - 1059] Pages: 11

DOI: 10.2174/0113816128296588240321072042

Price: $65

Abstract

The creation of mRNA vaccines has transformed the area of vaccination and allowed for the production of COVID-19 vaccines with previously unheard-of speed and effectiveness. The development of novel strategies to enhance the delivery and efficiency of mRNA vaccines has been motivated by the ongoing constraints of the present mRNA vaccine delivery systems. In this context, intriguing methods to get beyond these restrictions include lipid nanoparticles, self-amplifying RNA, electroporation, microneedles, and cell-targeted administration. These innovative methods could increase the effectiveness, safety, and use of mRNA vaccines, making them more efficient, effective, and broadly available. Additionally, mRNA technology may have numerous and far-reaching uses in the field of medicine, opening up fresh avenues for the diagnosis and treatment of disease. This paper gives an overview of the existing drawbacks of mRNA vaccine delivery techniques, the creative solutions created to address these drawbacks, and their prospective public health implications. The development of mRNA vaccines for illnesses other than infectious diseases and creating scalable and affordable manufacturing processes are some of the future directions for research in this area that are covered in this paper.

Keywords: mRNA, vaccines, self-amplifying RNA, electroporation, lipid nanoparticles, microneedles.

Next »
[1]
Kim SC, Sekhon SS, Shin WR, et al. Modifications of mRNA vaccine structural elements for improving mRNA stability and translation efficiency. Mol Cell Toxicol 2022; 18(1): 1-8.
[http://dx.doi.org/10.1007/s13273-021-00171-4] [PMID: 34567201]
[2]
Machado BAS, Hodel KVS, Fonseca LMS, et al. The importance of RNA-based vaccines in the fight against COVID-19: An overview. Vaccines 2021; 9(11): 1345.
[http://dx.doi.org/10.3390/vaccines9111345] [PMID: 34835276]
[3]
Knezevic I, Liu MA, Peden K, Zhou T, Kang HN. Development of mRNA vaccines: Scientific and regulatory issues. Vaccines 2021; 9(2): 81.
[http://dx.doi.org/10.3390/vaccines9020081] [PMID: 33498787]
[4]
Liang Y, Huang L, Liu T. Development and delivery systems of mRNA vaccines. Front Bioeng Biotechnol 2021; 9: 718753.
[http://dx.doi.org/10.3389/fbioe.2021.718753] [PMID: 34386486]
[5]
To KKW, Cho WCS. An overview of rational design of mRNA-based therapeutics and vaccines. Expert Opin Drug Discov 2021; 16(11): 1307-17.
[http://dx.doi.org/10.1080/17460441.2021.1935859] [PMID: 34058918]
[6]
Pardi N, Hogan MJ, Porter FW, Weissman D. mRNA vaccines - A new era in vaccinology. Nat Rev Drug Discov 2018; 17(4): 261-79.
[http://dx.doi.org/10.1038/nrd.2017.243] [PMID: 29326426]
[7]
Miao L, Zhang Y, Huang L. mRNA vaccine for cancer immunotherapy. Mol Cancer 2021; 20(1): 41.
[http://dx.doi.org/10.1186/s12943-021-01335-5] [PMID: 33632261]
[8]
Dolgin E. The tangled history of mRNA vaccines. Nature 2021; 597(7876): 318-24.
[http://dx.doi.org/10.1038/d41586-021-02483-w] [PMID: 34522017]
[9]
Chilamakuri R, Agarwal S. COVID-19: Characteristics and therapeutics. Cells 2021; 10(2): 206.
[http://dx.doi.org/10.3390/cells10020206] [PMID: 33494237]
[10]
Park JW, Lagniton PNP, Liu Y, Xu RH. mRNA vaccines for COVID-19: What, why and how. Int J Biol Sci 2021; 17(6): 1446-60.
[http://dx.doi.org/10.7150/ijbs.59233] [PMID: 33907508]
[11]
Pardi N, Hogan MJ, Weissman D. Recent advances in mRNA vaccine technology. Curr Opin Immunol 2020; 65: 14-20.
[http://dx.doi.org/10.1016/j.coi.2020.01.008] [PMID: 32244193]
[12]
Aldosari BN, Alfagih IM, Almurshedi AS. Lipid nanoparticles as delivery systems for RNA-based vaccines. Pharmaceutics 2021; 13(2): 206.
[http://dx.doi.org/10.3390/pharmaceutics13020206] [PMID: 33540942]
[13]
Al Fayez N, Nassar MS, Alshehri AA, et al. Recent advancement in mRNA vaccine development and applications. Pharmaceutics 2023; 15(7): 1972.
[http://dx.doi.org/10.3390/pharmaceutics15071972] [PMID: 37514158]
[14]
Hald Albertsen C, Kulkarni JA, Witzigmann D, Lind M, Petersson K, Simonsen JB. The role of lipid components in lipid nanoparticles for vaccines and gene therapy. Adv Drug Deliv Rev 2022; 188: 114416.
[http://dx.doi.org/10.1016/j.addr.2022.114416] [PMID: 35787388]
[15]
Qaid TS, Mazaar H, Alqahtani MS, Raweh AA, Alakwaa W. Deep sequence modelling for predicting COVID-19 mRNA vaccine degradation. PeerJ Comput Sci 2021; 7: e597.
[http://dx.doi.org/10.7717/peerj-cs.597] [PMID: 34239977]
[16]
Wang Y, Zhang Z, Luo J, Han X, Wei Y, Wei X. mRNA vaccine: A potential therapeutic strategy. Mol Cancer 2021; 20(1): 33.
[http://dx.doi.org/10.1186/s12943-021-01311-z] [PMID: 33593376]
[17]
Kon E, Elia U, Peer D. Principles for designing an optimal mRNA lipid nanoparticle vaccine. Curr Opin Biotechnol 2022; 73: 329-36.
[http://dx.doi.org/10.1016/j.copbio.2021.09.016] [PMID: 34715546]
[18]
Chen S, Huang X, Xue Y, et al. Nanotechnology-based mRNA vaccines. Nat Rev Methods Primers 2023; 3(1): 63.
[http://dx.doi.org/10.1038/s43586-023-00246-7]
[19]
Li M, Zhao M, Fu Y, et al. Enhanced intranasal delivery of mRNA vaccine by overcoming the nasal epithelial barrier via intra- and paracellular pathways. J Control Release 2016; 228: 9-19.
[http://dx.doi.org/10.1016/j.jconrel.2016.02.043] [PMID: 26941035]
[20]
Ahmed R, Sayegh N, Graciotti M, Kandalaft LE. Electroporation as a method of choice to generate genetically modified dendritic cell cancer vaccines. Curr Opin Biotechnol 2020; 65: 142-55.
[http://dx.doi.org/10.1016/j.copbio.2020.02.009] [PMID: 32240923]
[21]
Wang EY, Sarmadi M, Ying B, Jaklenec A, Langer R. Recent advances in nano- and micro-scale carrier systems for controlled delivery of vaccines. Biomaterials 2023; 303: 122345.
[http://dx.doi.org/10.1016/j.biomaterials.2023.122345] [PMID: 37918182]
[22]
Yokoo H, Oba M, Uchida S. Cell-penetrating peptides: Emerging tools for mRNA delivery. Pharmaceutics 2021; 14(1): 78.
[http://dx.doi.org/10.3390/pharmaceutics14010078] [PMID: 35056974]
[23]
Peletta A, Prompetchara E, Tharakhet K, et al. DNA vaccine administered by cationic lipoplexes or by in vivo electroporation induces comparable antibody responses against SARS-CoV-2 in mice. Vaccines 2021; 9(8): 874.
[http://dx.doi.org/10.3390/vaccines9080874] [PMID: 34451998]
[24]
Xue L, Thatte AS, Mai D, et al. Responsive biomaterials: Optimizing control of cancer immunotherapy. Nat Rev Mater 2023; 9(2): 100-18.
[http://dx.doi.org/10.1038/s41578-023-00617-2]
[25]
Ramachandran S, Satapathy SR, Dutta T. Delivery strategies for mRNA vaccines. Pharmaceut Med 2022; 36(1): 11-20.
[http://dx.doi.org/10.1007/s40290-021-00417-5] [PMID: 35094366]
[26]
Yu MZ, Wang NN, Zhu JQ, Lin YX. The clinical progress and challenges of mRNA vaccines. Wiley Interdiscip Rev Nanomed Nanobiotechnol 2023; 15(5): e1894.
[http://dx.doi.org/10.1002/wnan.1894] [PMID: 37096256]
[27]
Midoux P, Pichon C. Lipid-based mRNA vaccine delivery systems. Expert Rev Vaccines 2015; 14(2): 221-34.
[http://dx.doi.org/10.1586/14760584.2015.986104] [PMID: 25540984]
[28]
Oude Blenke E, Örnskov E, Schöneich C, et al. The storage and in-use stability of mRNA vaccines and therapeutics: Not a cold case. J Pharm Sci 2023; 112(2): 386-403.
[http://dx.doi.org/10.1016/j.xphs.2022.11.001] [PMID: 36351479]
[29]
Kim Y-A, Mousavi K, Yazdi A, et al. Computational design of mRNA vaccines. Vaccine 2023; S0264-410X(23)00836-8.
[PMID: 37479613]
[30]
Lee J, Woodruff MC, Kim EH, Nam JH. Knife’s edge: Balancing immunogenicity and reactogenicity in mRNA vaccines. Exp Mol Med 2023; 55(7): 1305-13.
[http://dx.doi.org/10.1038/s12276-023-00999-x] [PMID: 37430088]
[31]
Lee Y, Jeong M, Park J, Jung H, Lee H. Immunogenicity of lipid nanoparticles and its impact on the efficacy of mRNA vaccines and therapeutics. Exp Mol Med 2023; 55(10): 2085-96.
[http://dx.doi.org/10.1038/s12276-023-01086-x] [PMID: 37779140]
[32]
Jackson NA, Kester KE, Casimiro D, Gurunathan S, DeRosa F. The promise of mRNA vaccines: A biotech and industrial perspective. npj. Vaccines 2020; 5(1): 11.
[PMID: 33375677]
[33]
Sapkota B, Saud B, Shrestha R, et al. Heterologous prime-boost strategies for COVID-19 vaccines. J Travel Med 2022; 29(3): taab191.
[PMID: 34918097]
[34]
Goel RR, Painter MM, Apostolidis SA, et al. mRNA vaccines induce durable immune memory to SARS-CoV-2 and variants of concern. Science 2021; 374(6572): abm0829.
[http://dx.doi.org/10.1126/science.abm0829] [PMID: 34648302]
[35]
Huang X, Zhang G, Tang TY, Gao X, Liang TB. Personalized pancreatic cancer therapy: From the perspective of mRNA vaccine. Mil Med Res 2022; 9(1): 53.
[http://dx.doi.org/10.1186/s40779-022-00416-w] [PMID: 36224645]
[36]
Kowalzik F, Schreiner D, Jensen C, Teschner D, Gehring S, Zepp F. mRNA-based vaccines. Vaccines 2021; 9(4): 390.
[http://dx.doi.org/10.3390/vaccines9040390] [PMID: 33921028]
[37]
Aga AM, Kelel M, Gemeda MT. Recent advances in mRNA vaccine development. Preprints 2023.
[http://dx.doi.org/10.20944/preprints202308.0245.v1]
[38]
Duan LJ, Wang Q, Zhang C, Yang DX, Zhang XY. Potentialities and challenges of mRNA vaccine in cancer immunotherapy. Front Immunol 2022; 13: 923647.
[http://dx.doi.org/10.3389/fimmu.2022.923647] [PMID: 35711457]
[39]
Blakney AK, McKay PF, Hu K, et al. Polymeric and lipid nanoparticles for delivery of self-amplifying RNA vaccines. J Control Release 2021; 338: 201-10.
[http://dx.doi.org/10.1016/j.jconrel.2021.08.029] [PMID: 34418521]
[40]
Blakney AK, Ip S, Geall AJ. An update on self-amplifying mRNA vaccine development. Vaccines 2021; 9(2): 97.
[http://dx.doi.org/10.3390/vaccines9020097] [PMID: 33525396]
[41]
Schmidt C, Schnierle BS. Self-amplifying RNA vaccine candidates: Alternative platforms for mRNA vaccine development. Pathogens 2023; 12(1): 138.
[http://dx.doi.org/10.3390/pathogens12010138] [PMID: 36678486]
[42]
Ballesteros-Briones MC, Silva-Pilipich N, Herrador-Cañete G, Vanrell L, Smerdou C. A new generation of vaccines based on alphavirus self-amplifying RNA. Curr Opin Virol 2020; 44: 145-53.
[http://dx.doi.org/10.1016/j.coviro.2020.08.003] [PMID: 32898764]
[43]
Bathula NV, Popova P, Blakney A. Delivery vehicles for self-amplifying RNA messenger RNA therapeutics. Springer 2022; pp. 355-70.
[http://dx.doi.org/10.1007/978-3-031-08415-7_16]
[44]
Liu Y, Li Y, Hu Q. Advances in saRNA vaccine research against emerging/re-emerging viruses. Vaccines 2023; 11(7): 1142.
[http://dx.doi.org/10.3390/vaccines11071142] [PMID: 37514957]
[45]
Su Q, Lv X. Revealing new landscape of cardiovascular disease through circular RNA-miRNA-mRNA axis. Genomics 2020; 112(2): 1680-5.
[http://dx.doi.org/10.1016/j.ygeno.2019.10.006] [PMID: 31626900]
[46]
Holmqvist E, Berggren S, Rizvanovic A. RNA-binding activity and regulatory functions of the emerging sRNA-binding protein ProQ. Biochim Biophys Acta Gene Regul Mech 2020; 1863(9): 194596.
[http://dx.doi.org/10.1016/j.bbagrm.2020.194596] [PMID: 32565402]
[47]
Legen J, Dühnen S, Gauert A, Götz M, Schmitz-Linneweber C. A CRR2-dependent sRNA sequence supports papillomavirus vaccine expression in tobacco chloroplasts. Metabolites 2023; 13(3): 315.
[http://dx.doi.org/10.3390/metabo13030315] [PMID: 36984756]
[48]
Qin S, Tang X, Chen Y, et al. mRNA-based therapeutics: Powerful and versatile tools to combat diseases. Signal Transduct Target Ther 2022; 7(1): 166.
[http://dx.doi.org/10.1038/s41392-022-01007-w] [PMID: 35597779]
[49]
Guidi C, De Wannemaeker L, De Baets J, et al. Dynamic feedback regulation for efficient membrane protein production using a small RNA-based genetic circuit in Escherichia coli. Microb Cell Fact 2022; 21(1): 260.
[http://dx.doi.org/10.1186/s12934-022-01983-2] [PMID: 36522655]
[50]
Yin C, Zhu H, Jiang Y, Shan Y, Gong L. Silencing dicer-like genes reduces virulence and sRNA generation in Penicillium italicum, the cause of citrus blue mold. Cells 2020; 9(2): 363.
[http://dx.doi.org/10.3390/cells9020363] [PMID: 32033176]
[51]
Li M, Li Y, Li S, et al. The nano delivery systems and applications of mRNA. Eur J Med Chem 2022; 227: 113910.
[http://dx.doi.org/10.1016/j.ejmech.2021.113910] [PMID: 34689071]
[52]
Bowman EK, Mihailovic MK, Li B, Contreras LM. Bioinformatic application of fluorescence-based in vivo RNA regional accessibility data to identify novel sRNA targets. RNA Spectrosc: Methods Protoc 2020; 41-71.
[http://dx.doi.org/10.1007/978-1-0716-0278-2_5]
[53]
Šečić E, Kogel KH. Requirements for fungal uptake of dsRNA and gene silencing in RNAi-based crop protection strategies. Curr Opin Biotechnol 2021; 70: 136-42.
[http://dx.doi.org/10.1016/j.copbio.2021.04.001] [PMID: 34000482]
[54]
Tenchov R, Bird R, Curtze AE, Zhou Q. Lipid nanoparticles-from liposomes to mrna vaccine delivery, a landscape of research diversity and advancement. ACS Nano 2021; 15(11): 16982-7015.
[http://dx.doi.org/10.1021/acsnano.1c04996] [PMID: 34181394]
[55]
Reichmuth AM, Oberli MA, Jaklenec A, Langer R, Blankschtein D. mRNA vaccine delivery using lipid nanoparticles. Ther Deliv 2016; 7(5): 319-34.
[http://dx.doi.org/10.4155/tde-2016-0006] [PMID: 27075952]
[56]
Hassett KJ, Higgins J, Woods A, et al. Impact of lipid nanoparticle size on mRNA vaccine immunogenicity. J Control Release 2021; 335: 237-46.
[http://dx.doi.org/10.1016/j.jconrel.2021.05.021] [PMID: 34019945]
[57]
Swetha K, Kotla NG, Tunki L, et al. Recent advances in the lipid nanoparticle-mediated delivery of mRNA vaccines. Vaccines 2023; 11(3): 658.
[http://dx.doi.org/10.3390/vaccines11030658] [PMID: 36992242]
[58]
Wang Z, Ma W, Fu X, Qi Y, Zhao Y, Zhang S. Development and applications of mRNA treatment based on lipid nanoparticles. Biotechnol Adv 2023; 65: 108130.
[http://dx.doi.org/10.1016/j.biotechadv.2023.108130] [PMID: 36933868]
[59]
Khan MS, Baskoy SA, Yang C, et al. Lipid-based colloidal nanoparticles for applications in targeted vaccine delivery. Nanoscale Adv 2023; 5(7): 1853-69.
[http://dx.doi.org/10.1039/D2NA00795A] [PMID: 36998671]
[60]
Lambricht L, Lopes A, Kos S, Sersa G, Préat V, Vandermeulen G. Clinical potential of electroporation for gene therapy and DNA vaccine delivery. Expert Opin Drug Deliv 2016; 13(2): 295-310.
[http://dx.doi.org/10.1517/17425247.2016.1121990] [PMID: 26578324]
[61]
Cu Y, Broderick K, Banerjee K, et al. Enhanced delivery and potency of self-amplifying mRNA vaccines by electroporation in situ. Vaccines 2013; 1(3): 367-83.
[http://dx.doi.org/10.3390/vaccines1030367] [PMID: 26344119]
[62]
Brito LA, Kommareddy S, Maione D, et al. Self-amplifying mRNA vaccines. Adv Genet 2015; 89: 179-233.
[http://dx.doi.org/10.1016/bs.adgen.2014.10.005] [PMID: 25620012]
[63]
Bolhassani A, Khavari A, Orafa Z. Electroporation-advantages and drawbacks for delivery of drug, gene and vaccine. Application of nanotechnology in drug delivery 2014; 369-77.
[http://dx.doi.org/10.5772/58376]
[64]
Broderick KE, Humeau LM. Enhanced delivery of DNA or RNA vaccines by electroporation. RNA Vaccines: Methods and Protocols 2017; 193-200.
[http://dx.doi.org/10.1007/978-1-4939-6481-9_12]
[65]
Menon I, Bagwe P, Gomes KB, et al. Microneedles: A new generation vaccine delivery system. Micromachines 2021; 12(4): 435.
[http://dx.doi.org/10.3390/mi12040435] [PMID: 33919925]
[66]
Mansoor I, Eassa HA, Mohammed KHA, et al. Microneedle-based vaccine delivery: Review of an emerging technology. AAPS PharmSciTech 2022; 23(4): 103.
[http://dx.doi.org/10.1208/s12249-022-02250-8] [PMID: 35381906]
[67]
Ma G, Gu Z, Wei W. Advanced vaccine delivery. Adv Drug Deliv Rev 2022; 183: 114170.
[http://dx.doi.org/10.1016/j.addr.2022.114170] [PMID: 35217115]
[68]
Kim YC, Park JH, Prausnitz MR. Microneedles for drug and vaccine delivery. Adv Drug Deliv Rev 2012; 64(14): 1547-68.
[http://dx.doi.org/10.1016/j.addr.2012.04.005] [PMID: 22575858]
[69]
Kuwentrai C. Development of microneedle-based vaccine delivery systems and mRNA-based vaccines. HKU Theses Online 2023.
[70]
Subramanya S, Armant M, Salkowitz JR, et al. Enhanced induction of HIV-specific cytotoxic T lymphocytes by dendritic cell-targeted delivery of SOCS-1 siRNA. Mol Ther 2010; 18(11): 2028-37.
[http://dx.doi.org/10.1038/mt.2010.148] [PMID: 20648001]
[71]
Li X, Wei Z, Xue C. Oral cell-targeted delivery systems constructed of edible materials: Advantages and challenges. Molecules 2022; 27(22): 7991.
[http://dx.doi.org/10.3390/molecules27227991] [PMID: 36432092]
[72]
Zhang C, Wang GX, Zhu B. Application of antigen presenting cell-targeted nanovaccine delivery system in rhabdovirus disease prophylactics using fish as a model organism. J Nanobiotechnol 2020; 18(1): 24.
[http://dx.doi.org/10.1186/s12951-020-0584-x] [PMID: 32000788]
[73]
Zhang Y, Li M, Du G, Chen X, Sun X. Advanced oral vaccine delivery strategies for improving the immunity. Adv Drug Deliv Rev 2021; 177: 113928.
[http://dx.doi.org/10.1016/j.addr.2021.113928] [PMID: 34411689]
[74]
Farris E, Brown DM, Ramer-Tait AE, Pannier AK. Micro- and nanoparticulates for DNA vaccine delivery. Exp Biol Med 2016; 241(9): 919-29.
[http://dx.doi.org/10.1177/1535370216643771] [PMID: 27048557]
[75]
Khurana A, Allawadhi P, Khurana I, et al. Role of nanotechnology behind the success of mRNA vaccines for COVID-19. Nano Today 2021; 38: 101142.
[http://dx.doi.org/10.1016/j.nantod.2021.101142] [PMID: 33815564]
[76]
Chen G, Zhao B, Ruiz EF, Zhang F. Advances in the polymeric delivery of nucleic acid vaccines. Theranostics 2022; 12(9): 4081-109.
[http://dx.doi.org/10.7150/thno.70853] [PMID: 35673570]
[77]
Ho W, Gao M, Li F, Li Z, Zhang XQ, Xu X. Next-generation vaccines: Nanoparticle-mediated dna and mrna delivery. Adv Healthc Mater 2021; 10(8): 2001812.
[http://dx.doi.org/10.1002/adhm.202001812] [PMID: 33458958]
[78]
Ledesma-Feliciano C, Chapman R, Hooper JW, et al. Improved DNA vaccine delivery with needle-free injection systems. Vaccines 2023; 11(2): 280.
[http://dx.doi.org/10.3390/vaccines11020280] [PMID: 36851159]
[79]
Soto ER, Specht CA, Lee CK, Levitz SM, Ostroff GR. One step purification-vaccine delivery system. Pharmaceutics 2023; 15(5): 1390.
[http://dx.doi.org/10.3390/pharmaceutics15051390] [PMID: 37242632]
[80]
Huang P, Jiang L, Pan H, et al. An integrated polymeric mRNA vaccine without inflammation side effects for cellular immunity mediated cancer therapy. Adv Mater 2023; 35(3): 2207471.
[http://dx.doi.org/10.1002/adma.202207471] [PMID: 36326183]
[81]
Huang X, Kong N, Zhang X, Cao Y, Langer R, Tao W. The landscape of mRNA nanomedicine. Nat Med 2022; 28(11): 2273-87.
[http://dx.doi.org/10.1038/s41591-022-02061-1] [PMID: 36357682]
[82]
Guevara ML, Persano S, Persano F. Lipid-based vectors for therapeutic mRNA-based anti-cancer vaccines. Curr Pharm Des 2019; 25(13): 1443-54.
[http://dx.doi.org/10.2174/1381612825666190619150221] [PMID: 31258071]
[83]
Song M, Liu C, Chen S, Zhang W. Nanocarrier-based drug delivery for melanoma therapeutics. Int J Mol Sci 2021; 22(4): 1873.
[http://dx.doi.org/10.3390/ijms22041873] [PMID: 33668591]
[84]
Antimisiaris SG, Marazioti A, Kannavou M, et al. Overcoming barriers by local drug delivery with liposomes. Adv Drug Deliv Rev 2021; 174: 53-86.
[http://dx.doi.org/10.1016/j.addr.2021.01.019] [PMID: 33539852]
[85]
Tenchov R, Bird R, Curtze AE, Zhou Q. Lipid nanoparticles- from liposomes to mRNA vaccine delivery, a landscape of research diversity and advancement. ACS Nano 2021; 15(11): 16982-7015.
[http://dx.doi.org/10.1021/acsnano.1c04996] [PMID: 34181394]
[86]
Tomé I, Francisco V, Fernandes H, Ferreira L. High-throughput screening of nanoparticles in drug delivery. APL Bioeng 2021; 5(3): 031511.
[http://dx.doi.org/10.1063/5.0057204] [PMID: 34476328]
[87]
Fan Y, Moon J. Nanoparticle drug delivery systems designed to improve cancer vaccines and immunotherapy. Vaccines 2015; 3(3): 662-85.
[http://dx.doi.org/10.3390/vaccines3030662] [PMID: 26350600]
[88]
Linares-Fernández S, Lacroix C, Exposito JY, Verrier B. Tailoring mRNA vaccine to balance innate/adaptive immune response. Trends Mol Med 2020; 26(3): 311-23.
[http://dx.doi.org/10.1016/j.molmed.2019.10.002] [PMID: 31699497]
[89]
Duong VA, Nguyen TTL, Maeng HJ. Recent advances in intranasal liposomes for drug, gene, and vaccine delivery. Pharmaceutics 2023; 15(1): 207.
[http://dx.doi.org/10.3390/pharmaceutics15010207] [PMID: 36678838]
[90]
Nahar UJ, Toth I, Skwarczynski M. Mannose in vaccine delivery. J Control Release 2022; 351: 284-300.
[http://dx.doi.org/10.1016/j.jconrel.2022.09.038] [PMID: 36150579]
[91]
Fan X, Wang K, Lu Q, Lu Y, Sun J. Cell-based drug delivery systems participate in the cancer immunity cycle for improved cancer immunotherapy. Small 2023; 19(4): 2205166.
[http://dx.doi.org/10.1002/smll.202205166] [PMID: 36437050]
[92]
Malek-Khatabi A, Tabandeh Z, Nouri A, et al. Long-term vaccine delivery and immunological responses using biodegradable polymer-based carriers. ACS Appl Bio Mater 2022; 5(11): 5015-40.
[http://dx.doi.org/10.1021/acsabm.2c00638] [PMID: 36214209]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy