Generic placeholder image

Current Pharmaceutical Design

Editor-in-Chief

ISSN (Print): 1381-6128
ISSN (Online): 1873-4286

Mini-Review Article

Cellular and Mitochondrial Pathways Contribute to SGLT2 Inhibitors-mediated Tissue Protection: Experimental and Clinical Data

Author(s): Raúl Lelio Sanz, Sebastián García Menéndez, Felipe Inserra, León Ferder and Walter Manucha*

Volume 30, Issue 13, 2024

Published on: 27 March, 2024

Page: [969 - 974] Pages: 6

DOI: 10.2174/0113816128289350240320063045

Price: $65

Open Access Journals Promotions 2
Abstract

In metabolic syndrome and diabetes, compromised mitochondrial function emerges as a critical driver of cardiovascular disease, fueling its development and persistence, culminating in cardiac remodeling and adverse events. In this context, angiotensin II - the main interlocutor of the renin-angiotensin-aldosterone system - promotes local and systemic oxidative inflammatory processes. To highlight, the low activity/expression of proteins called sirtuins negatively participates in these processes, allowing more significant oxidative imbalance, which impacts cellular and tissue responses, causing tissue damage, inflammation, and cardiac and vascular remodeling. The reduction in energy production of mitochondria has been widely described as a significant element in all types of metabolic disorders. Additionally, high sirtuin levels and AMPK signaling stimulate hypoxia- inducible factor 1 beta and promote ketonemia. Consequently, enhanced autophagy and mitophagy advance through cardiac cells, sweeping away debris and silencing the orchestra of oxidative stress and inflammation, ultimately protecting vulnerable tissue from damage. To highlight and of particular interest, SGLT2 inhibitors (SGLT2i) profoundly influence all these mechanisms. Randomized clinical trials have evidenced a compelling picture of SGLT2i emerging as game-changers, wielding their power to demonstrably improve cardiac function and slash the rates of cardiovascular and renal events. Furthermore, driven by recent evidence, SGLT2i emerge as cellular supermolecules, exerting their beneficial actions to increase mitochondrial efficiency, alleviate oxidative stress, and curb severe inflammation. Its actions strengthen tissues and create a resilient defense against disease. In conclusion, like a treasure chest brimming with untold riches, the influence of SGLT2i on mitochondrial function holds untold potential for cardiovascular health. Unlocking these secrets, like a map guiding adventurers to hidden riches, promises to pave the way for even more potent therapeutic strategies.

Keywords: SGLT2i, cardiovascular diseases, sirtuins, oxidative stress, inflammation, mitochondrial dysfunction.

[1]
Virani SS, Alonso A, Aparicio HJ, et al. Heart disease and stroke statistics-2021 update. Circulation 2021; 143(8): e254-743.
[http://dx.doi.org/10.1161/CIR.0000000000000950] [PMID: 33501848]
[2]
Jia G, Bai H, Mather B, Hill MA, Jia G, Sowers JR. Diabetic vasculopathy: Molecular mechanisms and clinical insights. Int J Mol Sci 2024; 25(2): 804.
[http://dx.doi.org/10.3390/ijms25020804] [PMID: 38255878]
[3]
Zhang J, Lv W, Zhang G, et al. Nrf2 and mitochondria form a mutually regulating circuit in the prevention and treatment of metabolic syndrome. Antioxid Redox Signal 2024; 2024: 0339.
[http://dx.doi.org/10.1089/ars.2023.0339] [PMID: 38183629]
[4]
Todosenko N, Khaziakhmatova O, Malashchenko V, et al. Mitochondrial dysfunction associated with mtdna in metabolic syndrome and obesity. Int J Mol Sci 2023; 24(15): 12012.
[http://dx.doi.org/10.3390/ijms241512012] [PMID: 37569389]
[5]
Li A, Lian L, Chen X, et al. The role of mitochondria in myocardial damage caused by energy metabolism disorders: From mechanisms to therapeutics. Free Radic Biol Med 2023; 208: 236-51.
[http://dx.doi.org/10.1016/j.freeradbiomed.2023.08.009] [PMID: 37567516]
[6]
Preston KJ, Kawai T, Torimoto K, et al. Mitochondrial fission inhibition protects against hypertension induced by angiotensin II. Hypertens Res 2024; 2024: 7.
[http://dx.doi.org/10.1038/s41440-024-01610-0] [PMID: 38383894]
[7]
Actis Dato V, Lange S, Cho Y. Metabolic flexibility of the heart: The role of fatty acid metabolism in health, heart failure, and cardiometabolic diseases. Int J Mol Sci 2024; 25(2): 1211.
[http://dx.doi.org/10.3390/ijms25021211] [PMID: 38279217]
[8]
Santamans AM, Cicuéndez B, Mora A, et al. MCJ: A mitochondrial target for cardiac intervention in pulmonary hypertension. Sci Adv 2024; 10(3): 6524.
[http://dx.doi.org/10.1126/sciadv.adk6524] [PMID: 38241373]
[9]
Hang L, Zhang Y, Zhang Z, Jiang H, Xia L. Metabolism serves as a bridge between cardiomyocytes and immune cells in cardiovascular diseases. Cardiovasc Drugs Ther 2024; 2024: 26.
[http://dx.doi.org/10.1007/s10557-024-07545-5] [PMID: 38236378]
[10]
Lin X, Fei MZ, Huang AX, Yang L, Zeng ZJ, Gao W. Breviscapine protects against pathological cardiac hypertrophy by targeting FOXO3a-mitofusin-1 mediated mitochondrial fusion. Free Radic Biol Med 2024; 212: 477-92.
[http://dx.doi.org/10.1016/j.freeradbiomed.2024.01.007] [PMID: 38190924]
[11]
Sanz RL, Inserra F, Garcia Menéndez S, Mazzei L, Ferder L, Manucha W. Metabolic syndrome and cardiac remodeling due to mitochondrial oxidative stress involving gliflozins and sirtuins. Curr Hypertens Rep 2023; 25(6): 91-106.
[http://dx.doi.org/10.1007/s11906-023-01240-w] [PMID: 37052810]
[12]
Wang M, Pan W, Xu Y, Zhang J, Wan J, Jiang H. Microglia-mediated neuroinflammation: A potential target for the treatment of cardiovascular diseases. J Inflamm Res 2022; 15: 3083-94.
[http://dx.doi.org/10.2147/JIR.S350109] [PMID: 35642214]
[13]
Poznyak AV, Bharadwaj D, Prasad G, Grechko AV, Sazonova MA, Orekhov AN. Renin-angiotensin system in pathogenesis of atherosclerosis and treatment of CVD. Int J Mol Sci 2021; 22(13): 6702.
[http://dx.doi.org/10.3390/ijms22136702] [PMID: 34206708]
[14]
Ferder L, Inserra F, Martinez-Maldonado M. Inflammation and the metabolic syndrome: Role of angiotensin II and oxidative stress. Curr Hypertens Rep 2006; 8(3): 191-8.
[http://dx.doi.org/10.1007/s11906-006-0050-7] [PMID: 17147916]
[15]
Cabandugama PK, Gardner MJ, Sowers JR. The renin angiotensin aldosterone system in obesity and hypertension. Med Clin North Am 2017; 101(1): 129-37.
[http://dx.doi.org/10.1016/j.mcna.2016.08.009] [PMID: 27884224]
[16]
Verdejo HE, del Campo A, Troncoso R, et al. Mitochondria, myocardial remodeling, and cardiovascular disease. Curr Hypertens Rep 2012; 14(6): 532-9.
[http://dx.doi.org/10.1007/s11906-012-0305-4] [PMID: 22972531]
[17]
de Cavanagh EMV, Inserra F, Ferder L. Angiotensin II blockade: How its molecular targets may signal to mitochondria and slow aging. Coincidences with calorie restriction and mTOR inhibition. Am J Physiol Heart Circ Physiol 2015; 309(1): H15-44.
[http://dx.doi.org/10.1152/ajpheart.00459.2014] [PMID: 25934099]
[18]
Maissan P, Mooij E, Barberis M. Sirtuins-mediated system-level regulation of mammalian tissues at the interface between metabolism and cell cycle: A systematic review. Biology (Basel) 2021; 10(3): 194.
[http://dx.doi.org/10.3390/biology10030194] [PMID: 33806509]
[19]
Wan TT, Li Y, Li JX, et al. ACE2 activation alleviates sepsis-induced cardiomyopathy by promoting MasR-Sirt1-mediated mitochondrial biogenesis. Arch Biochem Biophys 2024; 752: 109855.
[http://dx.doi.org/10.1016/j.abb.2023.109855] [PMID: 38097099]
[20]
Yu H, Gan D, Luo Z, et al. α-Ketoglutarate improves cardiac insufficiency through NAD+-SIRT1 signaling-mediated mitophagy and ferroptosis in pressure overload-induced mice. Mol Med 2024; 30(1): 15.
[http://dx.doi.org/10.1186/s10020-024-00783-1] [PMID: 38254035]
[21]
Ding T, Zeng L, Xia Y, Zhang B, Cui D. MiR-135a mediate mitochondrial oxidative respiratory function through SIRT1 to regulate atrial fibrosis. Cardiology 2024; 24: 1-11.
[http://dx.doi.org/10.1159/000536059] [PMID: 38228115]
[22]
Ye H, Zhang Y, Yun Q, et al. [Resveratrol alleviates hyperglycemia-induced cardiomyocyte hypertrophy by maintaining mitochondrial homeostasis via enhancing SIRT1 expression]. Nan Fang Yi Ke Da Xue Xue Bao 2024; 44(1): 45-51.
[PMID: 38293975]
[23]
Singh CK, Chhabra G, Ndiaye MA, Garcia-Peterson LM, Mack NJ, Ahmad N. The role of sirtuins in antioxidant and redox signaling. Antioxid Redox Signal 2018; 28(8): 643-61.
[http://dx.doi.org/10.1089/ars.2017.7290] [PMID: 28891317]
[24]
Merksamer PI, Liu Y, He W, Hirschey MD, Chen D, Verdin E. The sirtuins, oxidative stress and aging: An emerging link. Aging (Albany NY) 2013; 5(3): 144-50.
[http://dx.doi.org/10.18632/aging.100544] [PMID: 23474711]
[25]
O’Neill S, O’Driscoll L. Metabolic syndrome: A closer look at the growing epidemic and its associated pathologies. Obes Rev 2015; 16(1): 1-12.
[http://dx.doi.org/10.1111/obr.12229] [PMID: 25407540]
[26]
Zhang Y, Wang X, Li XK, et al. Sirtuin 2 deficiency aggravates ageing-induced vascular remodelling in humans and mice. Eur Heart J 2023; 44(29): 2746-59.
[http://dx.doi.org/10.1093/eurheartj/ehad381] [PMID: 37377116]
[27]
Ren CZ, Wu ZT, Wang W, et al. SIRT1 exerts anti-hypertensive effect via FOXO1 activation in the rostral ventrolateral medulla. Free Radic Biol Med 2022; 188: 1-13.
[http://dx.doi.org/10.1016/j.freeradbiomed.2022.06.003] [PMID: 35688305]
[28]
Gui M, Yao L, Lu B, et al. Huoxue Qianyang Qutan recipe attenuates Ang II-induced cardiomyocyte hypertrophy by regulating reactive oxygen species production. Exp Ther Med 2021; 22(6): 1446.
[http://dx.doi.org/10.3892/etm.2021.10881] [PMID: 34721688]
[29]
Kalupahana NS, Moustaid-Moussa N, Claycombe KJ. Immunity as a link between obesity and insulin resistance. Mol Aspects Med 2012; 33(1): 26-34.
[http://dx.doi.org/10.1016/j.mam.2011.10.011] [PMID: 22040698]
[30]
Abadir PM, Foster DB, Crow M, et al. Identification and characterization of a functional mitochondrial angiotensin system. Proc Natl Acad Sci USA 2011; 108(36): 14849-54.
[http://dx.doi.org/10.1073/pnas.1101507108] [PMID: 21852574]
[31]
Manucha W, Ritchie B, Ferder L. Hypertension and insulin resistance: Implications of mitochondrial dysfunction. Curr Hypertens Rep 2015; 17(1): 504.
[http://dx.doi.org/10.1007/s11906-014-0504-2] [PMID: 25432896]
[32]
Matsushima S, Sadoshima J. The role of sirtuins in cardiac disease. Am J Physiol Heart Circ Physiol 2015; 309(9): H1375-89.
[http://dx.doi.org/10.1152/ajpheart.00053.2015] [PMID: 26232232]
[33]
Ahn BH, Kim HS, Song S, et al. A role for the mitochondrial deacetylase Sirt3 in regulating energy homeostasis. Proc Natl Acad Sci USA 2008; 105(38): 14447-52.
[http://dx.doi.org/10.1073/pnas.0803790105] [PMID: 18794531]
[34]
Luo YX, Tang X, An XZ, et al. SIRT4 accelerates Ang II-induced pathological cardiac hypertrophy by inhibiting manganese superoxide dismutase activity. Eur Heart J 2017; 38(18): 1389-98.
[PMID: 27099261]
[35]
Li H, Shin SE, Seo MS, et al. The anti-diabetic drug dapagliflozin induces vasodilation via activation of PKG and Kv channels. Life Sci 2018; 197: 46-55.
[http://dx.doi.org/10.1016/j.lfs.2018.01.032] [PMID: 29409796]
[36]
Zhang N, Feng B, Ma X, Sun K, Xu G, Zhou Y. Dapagliflozin improves left ventricular remodeling and aorta sympathetic tone in a pig model of heart failure with preserved ejection fraction. Cardiovasc Diabetol 2019; 18(1): 107.
[http://dx.doi.org/10.1186/s12933-019-0914-1] [PMID: 31429767]
[37]
Huang Y, Zhang K, Liu M, et al. An herbal preparation ameliorates heart failure with preserved ejection fraction by alleviating microvascular endothelial inflammation and activating NO-cGMP-PKG pathway. Phytomedicine 2021; 91: 153633.
[http://dx.doi.org/10.1016/j.phymed.2021.153633] [PMID: 34320423]
[38]
Packer M. Mitigation of the adverse consequences of nutrient excess on the kidney: A unified hypothesis to explain the renoprotective effects of sodium-glucose cotransporter 2 inhibitors. Am J Nephrol 2020; 51(4): 289-93.
[http://dx.doi.org/10.1159/000506534] [PMID: 32126558]
[39]
Xu L, Nagata N, Nagashimada M, et al. SGLT2 inhibition by empagliflozin promotes fat utilization and browning and attenuates inflammation and insulin resistance by polarizing M2 macrophages in diet-induced obese mice. EBioMed 2017; 20: 137-49.
[http://dx.doi.org/10.1016/j.ebiom.2017.05.028] [PMID: 28579299]
[40]
Yang X, Liu Q, Li Y, et al. The diabetes medication canagliflozin promotes mitochondrial remodelling of adipocyte via the AMPK-Sirt1-Pgc-1α signalling pathway. Adipocyte 2020; 9(1): 484-94.
[http://dx.doi.org/10.1080/21623945.2020.1807850] [PMID: 32835596]
[41]
Packer M. Differential pathophysiological mechanisms in heart failure with a reduced or preserved ejection fraction in diabetes. JACC Heart Fail 2021; 9(8): 535-49.
[http://dx.doi.org/10.1016/j.jchf.2021.05.019] [PMID: 34325884]
[42]
Huang S, Wu B, He Y, et al. Canagliflozin ameliorates the development of NAFLD by preventing NLRP3-mediated pyroptosis through FGF21-ERK1/2 pathway. Hepatol Commun 2023; 7(3): e0045.
[http://dx.doi.org/10.1097/HC9.0000000000000045] [PMID: 36757426]
[43]
Osataphan S, Macchi C, Singhal G, et al. SGLT2 inhibition reprograms systemic metabolism via FGF21-dependent and -independent mechanisms. JCI Insight 2019; 4(5): e123130.
[http://dx.doi.org/10.1172/jci.insight.123130] [PMID: 30843877]
[44]
Ding P, Yang R, Li C, et al. Fibroblast growth factor 21 attenuates ventilator-induced lung injury by inhibiting the NLRP3/caspase-1/GSDMD pyroptotic pathway. Crit Care 2023; 27(1): 196.
[http://dx.doi.org/10.1186/s13054-023-04488-5] [PMID: 37218012]
[45]
Cinti S. Obese adipocytes have altered redox homeostasis with metabolic consequences. Antioxidants 2023; 12(7): 1449.
[http://dx.doi.org/10.3390/antiox12071449] [PMID: 37507987]
[46]
Saponaro C, Pattou F, Bonner C. SGLT2 inhibition and glucagon secretion in humans. Diabetes Metab 2018; 44(5): 383-5.
[http://dx.doi.org/10.1016/j.diabet.2018.06.005] [PMID: 30017776]
[47]
Liu P, Zhang Z, Wang J, Zhang X, Yu X, Li Y. Empagliflozin protects diabetic pancreatic tissue from damage by inhibiting the activation of the NLRP3/caspase-1/GSDMD pathway in pancreatic β cells: In vitro and in vivo studies. Bioengineered 2021; 12(2): 9356-66.
[http://dx.doi.org/10.1080/21655979.2021.2001240] [PMID: 34823419]
[48]
Gao YM, Feng ST, Wen Y, Tang TT, Wang B, Liu BC. Cardiorenal protection of SGLT2 inhibitors-perspectives from metabolic reprogramming. EBioMedicine 2022; 83: 104215.
[http://dx.doi.org/10.1016/j.ebiom.2022.104215] [PMID: 35973390]
[49]
Inoue MK, Matsunaga Y, Nakatsu Y, et al. Possible involvement of normalized Pin1 expression level and AMPK activation in the molecular mechanisms underlying renal protective effects of SGLT2 inhibitors in mice. Diabetol Metab Syndr 2019; 11(1): 57.
[http://dx.doi.org/10.1186/s13098-019-0454-6] [PMID: 31367234]
[50]
Yang Y, Li Q, Ling Y, et al. m6A eraser FTO modulates autophagy by targeting SQSTM1/P62 in the prevention of canagliflozin against renal fibrosis. Front Immunol 2023; 13: 1094556.
[http://dx.doi.org/10.3389/fimmu.2022.1094556] [PMID: 36685533]
[51]
Pirklbauer M, Schupart R, Fuchs L, et al. Unraveling reno-protective effects of SGLT2 inhibition in human proximal tubular cells. Am J Physiol Renal Physiol 2019; 316(3): F449-62.
[http://dx.doi.org/10.1152/ajprenal.00431.2018] [PMID: 30539648]
[52]
Chino Y, Samukawa Y, Sakai S, et al. SGLT2 inhibitor lowers serum uric acid through alteration of uric acid transport activity in renal tubule by increased glycosuria. Biopharm Drug Dispos 2014; 35(7): 391-404.
[http://dx.doi.org/10.1002/bdd.1909] [PMID: 25044127]
[53]
Lopaschuk GD, Verma S. Mechanisms of cardiovascular benefits of sodium glucose co-transporter 2 (SGLT2) inhibitors: A state-of-the-art review. JACC Basic Transl Sci 2020; 5(6): 632-44.
[http://dx.doi.org/10.1016/j.jacbts.2020.02.004] [PMID: 32613148]
[54]
Zou R, Shi W, Qiu J, et al. Empagliflozin attenuates cardiac microvascular ischemia/reperfusion injury through improving mitochondrial homeostasis. Cardiovasc Diabetol 2022; 21(1): 106.
[http://dx.doi.org/10.1186/s12933-022-01532-6] [PMID: 35705980]
[55]
Kitada M, Kume S, Takeda-Watanabe A, Kanasaki K, Koya D. Sirtuins and renal diseases: Relationship with aging and diabetic nephropathy. Clin Sci (Lond) 2013; 124(3): 153-64.
[http://dx.doi.org/10.1042/CS20120190] [PMID: 23075334]
[56]
Lin PY, Chen CH, Wallace CG, et al. Therapeutic effect of rosuvastatin and propylthiouracil on ameliorating high-cholesterol diet-induced fatty liver disease, fibrosis and inflammation in rabbit. Am J Transl Res 2017; 9(8): 3827-41.
[PMID: 28861173]
[57]
Lee FY, Shao PL, Wallace C, et al. Combined therapy with SS31 and mitochondria mitigates myocardial ischemia-reperfusion injury in rats. Int J Mol Sci 2018; 19(9): 2782.
[http://dx.doi.org/10.3390/ijms19092782] [PMID: 30223594]
[58]
Sung PH, Luo CW, Chiang JY, Yip HK. The combination of G9a histone methyltransferase inhibitors with erythropoietin protects heart against damage from acute myocardial infarction. Am J Transl Res 2020; 12(7): 3255-71.
[PMID: 32774698]
[59]
Kundu A, Gali S, Sharma S, et al. Dendropanoxide alleviates thioacetamide-induced hepatic fibrosis via inhibition of ROS production and inflammation in BALB/C mice. Int J Biol Sci 2023; 19(9): 2630-47.
[http://dx.doi.org/10.7150/ijbs.80743] [PMID: 37324954]
[60]
Horton JL, Davidson MT, Kurishima C, et al. The failing heart utilizes 3-hydroxybutyrate as a metabolic stress defense. JCI Insight 2019; 4(4): e124079.
[http://dx.doi.org/10.1172/jci.insight.124079] [PMID: 30668551]
[61]
Wang CY, Chen CC, Lin MH, et al. TLR9 binding to beclin 1 and mitochondrial SIRT3 by a sodium-glucose co-transporter 2 inhibitor protects the heart from doxorubicin toxicity. Biology (Basel) 2020; 9(11): 369.
[http://dx.doi.org/10.3390/biology9110369] [PMID: 33138323]
[62]
Noriega LG, Feige JN, Canto C, et al. CREB and ChREBP oppositely regulate SIRT1 expression in response to energy availability. EMBO Rep 2011; 12(10): 1069-76.
[http://dx.doi.org/10.1038/embor.2011.151] [PMID: 21836635]
[63]
Penke M, Larsen PS, Schuster S, et al. Hepatic NAD salvage pathway is enhanced in mice on a high-fat diet. Mol Cell Endocrinol 2015; 412: 65-72.
[http://dx.doi.org/10.1016/j.mce.2015.05.028] [PMID: 26033245]
[64]
Cantó C, Gerhart-Hines Z, Feige JN, et al. AMPK regulates energy expenditure by modulating NAD+ metabolism and SIRT1 activity. Nature 2009; 458(7241): 1056-60.
[http://dx.doi.org/10.1038/nature07813] [PMID: 19262508]
[65]
Wichaiyo S, Saengklub N. Alterations of sodium-hydrogen exchanger 1 function in response to SGLT2 inhibitors: What is the evidence? Heart Fail Rev 2022; 27(6): 1973-90.
[http://dx.doi.org/10.1007/s10741-022-10220-2] [PMID: 35179683]
[66]
Packer M. Critical reanalysis of the mechanisms underlying the cardiorenal benefits of SGLT2 inhibitors and reaffirmation of the nutrient deprivation signaling/autophagy hypothesis. Circulation 2022; 146(18): 1383-405.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.122.061732] [PMID: 36315602]
[67]
Uthman L, Baartscheer A, Bleijlevens B. Class effects of SGLT2 inhibitors in mouse cardiomyocytes and hearts: Inhibition of Na+/H+ exchanger, lowering of cytosolic Na+ and vasodilation. Diabetologia 2018; 61(3): 722-6.
[68]
Wang J, Wang Y, Wang Y, et al. Effects of first-line antidiabetic drugs on the improvement of arterial stiffness: A Bayesian network meta-analysis. J Diabetes 2023; 15(8): 685-98.
[http://dx.doi.org/10.1111/1753-0407.13405] [PMID: 37165762]
[69]
Fujiki S, Tanaka A, Imai T, et al. Body fluid regulation via chronic inhibition of sodium-glucose cotransporter-2 in patients with heart failure: A post hoc analysis of the CANDLE trial. Clin Res Cardiol 2023; 112(1): 87-97.
[http://dx.doi.org/10.1007/s00392-022-02049-4] [PMID: 35729430]
[70]
Anker SD, Butler J, Filippatos G, et al. Empagliflozin in heart failure with a preserved ejection fraction. N Engl J Med 2021; 385(16): 1451-61.
[http://dx.doi.org/10.1056/NEJMoa2107038] [PMID: 34449189]
[71]
Packer M. Cardioprotective effects of sirtuin-1 and its downstream effectors. Circ Heart Fail 2020; 13(9): e007197.
[http://dx.doi.org/10.1161/CIRCHEARTFAILURE.120.007197] [PMID: 32894987]
[72]
Peng K, Yang F, Qiu C, Yang Y, Lan C. Rosmarinic acid protects against lipopolysaccharide-induced cardiac dysfunction via activating Sirt1/PGC-1α pathway to alleviate mitochondrial impairment. Clin Exp Pharmacol Physiol 2023; 50(3): 218-27.
[http://dx.doi.org/10.1111/1440-1681.13734] [PMID: 36350269]
[73]
Martinez-Moreno JM, Fontecha-Barriuso M, Martin-Sanchez D, et al. Epigenetic modifiers as potential therapeutic targets in diabetic kidney disease. Int J Mol Sci 2020; 21(11): 4113.
[http://dx.doi.org/10.3390/ijms21114113] [PMID: 32526941]
[74]
Kogot-Levin A, Riahi Y, Abramovich I, et al. Mapping the metabolic reprogramming induced by sodium-glucose cotransporter 2 inhibition. JCI Insight 2023; 8(7): e164296.
[http://dx.doi.org/10.1172/jci.insight.164296] [PMID: 36809274]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy