Generic placeholder image

Current HIV Research

Editor-in-Chief

ISSN (Print): 1570-162X
ISSN (Online): 1873-4251

Research Article

Discovery of Ten Anti-HIV Hit Compounds and Preliminary Pharmacological Mechanisms Studies

Author(s): Yushan Lian, Zhimin Huang, Xinyi Liu, Zhicheng Deng, Dan Gao* and Xiaohui Wang*

Volume 22, Issue 2, 2024

Published on: 26 March, 2024

Page: [82 - 90] Pages: 9

DOI: 10.2174/011570162X301289240320082840

Price: $65

Abstract

Background: The research and development of HIV drugs is very important, but at the same time it is a long cycle and expensive system project. High-throughput drug screening systems and molecular libraries of potential hit compounds remain the main ways for the discovery of hit compounds with anti-HIV activity.

Objective: The aim of this study was to screen out the hit compounds against HIV-1 in the natural product molecule library and the antiviral molecule library, and elucidate the molecular mechanism of their inhibition of HIV-1, so as to provide a new choice for AIDS drug research.

Methods: In this study, a drug screening system using HIV Rev-dependent indicator cell line (Rev-A3R5-GFP reporter cells) with pseudoviruses (pNL4-3) was used. The natural drug molecule library and antiviral molecule library were screened, and preliminary drug mechanism studies were performed.

Results: Ten promising hit compounds were screened. These ten molecules and their drug inhibitory IC50 were as follows: Cephaeline (0.50 μM), Yadanziolide A (8.82 μM), Bruceine D (2.48 μM), Astragaloside IV (4.30 μM), RX-3117 (1.32 μM), Harringtonine (0.63 μM), Tubercidin (0.41 μM), Theaflavine-3, 3'-digallate (0.41 μM), Ginkgetin (10.76 μM), ZK756326 (5.97 μM). The results of the Time of additions showed that except for Astragaloside IV and Theaflavine-3, 3'-digallate had a weak entry inhibition effect, and it was speculated that all ten compounds had an intracellular inhibition effect. Cephaeline, Harringtonine, Astragaloside IV, Bruceine D, and Tubercidin may have pre-reverse transcriptional inhibition. Yadanziolide A, Theaflavine-3, 3'-digallate, Ginkgetin and RX-3117 may be in the post-reverse transcriptional inhibition. The inhibitory effect of ZK 75632 may be in the reverse transcriptional process.

Conclusion: A drug screening system using Rev-A3R5-GFP reporter cells with pseudoviruses (pNL4-3) is highly efficient. This study provided potential hit compounds for new HIV drug research.

Keywords: Bruceine D, HIV, drug screening, precursor compounds, harringtonine, natural product molecular libraries, antiviral molecular libraries.

[1]
Deeks SG. Treatment of antiretroviral-drug-resistant HIV-1 infection. Lancet 2003; 362(9400): 2002-11.
[http://dx.doi.org/10.1016/S0140-6736(03)15022-2] [PMID: 14683662]
[2]
Blassel L, Zhukova A, Villabona-Arenas CJ, Atkins KE, Hué S, Gascuel O. Drug resistance mutations in HIV: New bioinformatics approaches and challenges. Curr Opin Virol 2021; 51: 56-64.
[http://dx.doi.org/10.1016/j.coviro.2021.09.009] [PMID: 34597873]
[3]
Gaikwad SY, Phatak P, Mukherjee A. Cutting edge strategies for screening of novel anti-HIV drug candidates against HIV infection: A concise overview of cell based assays. Heliyon 2023; 9(5): e16027.
[http://dx.doi.org/10.1016/j.heliyon.2023.e16027] [PMID: 37215829]
[4]
Blair WS, Isaacson J, Li X, et al. A novel HIV-1 antiviral high throughput screening approach for the discovery of HIV-1 inhibitors. Antiviral Res 2005; 65(2): 107-16.
[http://dx.doi.org/10.1016/j.antiviral.2004.11.001] [PMID: 15708637]
[5]
Ellinger B, Pohlmann D, Woens J, et al. A High-throughput HIV-1 drug screening platform, based on lentiviral vectors and compatible with biosafety level-1. Viruses 2020; 12(5): 580.
[http://dx.doi.org/10.3390/v12050580] [PMID: 32466195]
[6]
Blay V, Tolani B, Ho SP, Arkin MR. High-throughput screening: Today’s biochemical and cell-based approaches. Drug Discov Today 2020; 25(10): 1807-21.
[http://dx.doi.org/10.1016/j.drudis.2020.07.024] [PMID: 32801051]
[7]
Blanco J, Clotet-Codina I, Bosch B, Armand-Ugón M, Clotet B, Esté JA. Multiparametric assay to screen and dissect the mode of action of anti-human immunodeficiency virus envelope drugs. Antimicrob Agents Chemother 2005; 49(9): 3926-9.
[http://dx.doi.org/10.1128/AAC.49.9.3926-3929.2005] [PMID: 16127073]
[8]
de Béthune MP. Non-nucleoside reverse transcriptase inhibitors (NNRTIs), their discovery, development, and use in the treatment of HIV-1 infection: A review of the last 20 years (1989–2009). Antiviral Res 2010; 85(1): 75-90.
[http://dx.doi.org/10.1016/j.antiviral.2009.09.008] [PMID: 19781578]
[9]
Aguilar-Cordova E, Chinen J, Donehower L, Lewis D, Belmont JW. A sensitive reporter cell line for HIV-1 tat activity, HIV-1 inhibitors, and T cell activation effects. AIDS Res Hum Retroviruses 1994; 10(3): 295-301.
[http://dx.doi.org/10.1089/aid.1994.10.295] [PMID: 8018390]
[10]
Van Loock M, Meersseman G, Van Acker K, et al. A novel high-throughput cellular screening assay for the discovery of HIV-1 integrase inhibitors. J Virol Methods 2012; 179(2): 396-401.
[http://dx.doi.org/10.1016/j.jviromet.2011.11.029] [PMID: 22172974]
[11]
An WF, Tolliday N. Cell-based assays for high-throughput screening. Mol Biotechnol 2010; 45(2): 180-6.
[http://dx.doi.org/10.1007/s12033-010-9251-z] [PMID: 20151227]
[12]
Jegede O, Khodyakova A, Chernov M, et al. Identification of low-molecular weight inhibitors of HIV-1 reverse transcriptase using a cell-based high-throughput screening system. Antiviral Res 2011; 91(2): 94-8.
[http://dx.doi.org/10.1016/j.antiviral.2011.05.004] [PMID: 21600931]
[13]
Chiba-Mizutani T, Miura H, Matsuda M, et al. Use of new T-cell-based cell lines expressing two luciferase reporters for accurately evaluating susceptibility to anti-human immunodeficiency virus type 1 drugs. J Clin Microbiol 2007; 45(2): 477-87.
[http://dx.doi.org/10.1128/JCM.01708-06] [PMID: 17182760]
[14]
Kimpton J, Emerman M. Detection of replication-competent and pseudotyped human immunodeficiency virus with a sensitive cell line on the basis of activation of an integrated beta-galactosidase gene. J Virol 1992; 66(4): 2232-9.
[http://dx.doi.org/10.1128/jvi.66.4.2232-2239.1992] [PMID: 1548759]
[15]
Spenlehauer C, Gordon CA, Trkola A, Moore JP. A luciferase-reporter gene-expressing T-cell line facilitates neutralization and drug-sensitivity assays that use either R5 or X4 strains of human immunodeficiency virus type 1. Virology 2001; 280(2): 292-300.
[http://dx.doi.org/10.1006/viro.2000.0780] [PMID: 11162843]
[16]
Westby M, Nakayama G, Butler S, Blair W. Cell-based and biochemical screening approaches for the discovery of novel HIV-1 inhibitors. Antiviral Res 2005; 67(3): 121-40.
[http://dx.doi.org/10.1016/j.antiviral.2005.06.006] [PMID: 16112209]
[17]
Montefiori DC. Measuring HIV neutralization in a luciferase reporter gene assay. Methods Mol Biol 2009; 485: 395-405.
[http://dx.doi.org/10.1007/978-1-59745-170-3_26] [PMID: 19020839]
[18]
Sarzotti-Kelsoe M, Bailer RT, Turk E, et al. Optimization and validation of the TZM-bl assay for standardized assessments of neutralizing antibodies against HIV-1. J Immunol Methods 2014; 409: 131-46.
[http://dx.doi.org/10.1016/j.jim.2013.11.022] [PMID: 24291345]
[19]
Wu Y, Beddall MH, Marsh JW. Rev-dependent lentiviral expression vector. Retrovirology 2007; 4(1): 12.
[http://dx.doi.org/10.1186/1742-4690-4-12] [PMID: 17286866]
[20]
Shuck-Lee D, Chang H, Sloan EA, Hammarskjold ML, Rekosh D. Single-nucleotide changes in the HIV Rev-response element mediate resistance to compounds that inhibit Rev function. J Virol 2011; 85(8): 3940-9.
[http://dx.doi.org/10.1128/JVI.02683-10] [PMID: 21289114]
[21]
Prado S, Beltrán M, Coiras M, Bedoya LM, Alcamí J, Gallego J. Bioavailable inhibitors of HIV-1 RNA biogenesis identified through a Rev-based screen. Biochem Pharmacol 2016; 107: 14-28.
[http://dx.doi.org/10.1016/j.bcp.2016.02.007] [PMID: 26896646]
[22]
Plaza A, Bewley CA. Largamides A-H, unusual cyclic peptides from the marine cyanobacterium Oscillatoria sp. J Org Chem 2006; 71(18): 6898-907.
[http://dx.doi.org/10.1021/jo061044e] [PMID: 16930043]
[23]
Plaza A, Bifulco G, Keffer JL, Lloyd JR, Baker HL, Bewley CA. Celebesides A-C and theopapuamides B-D, depsipeptides from an Indonesian sponge that inhibit HIV-1 entry. J Org Chem 2009; 74(2): 504-12.
[http://dx.doi.org/10.1021/jo802232u] [PMID: 19072692]
[24]
Richard K, Williams D, de Silva E, et al. Identification of novel HIV-1 latency-reversing agents from a library of marine natural products. Viruses 2018; 10(7): 348.
[http://dx.doi.org/10.3390/v10070348] [PMID: 29954099]
[25]
Garcia JM, Gao A, He PL, et al. High-throughput screening using pseudotyped lentiviral particles: A strategy for the identification of HIV-1 inhibitors in a cell-based assay. Antiviral Res 2009; 81(3): 239-47.
[http://dx.doi.org/10.1016/j.antiviral.2008.12.004] [PMID: 19118579]
[26]
Adelson ME, Pacchia AL, Kaul M, et al. Toward the development of a virus-cell-based assay for the discovery of novel compounds against human immunodeficiency virus type 1. Antimicrob Agents Chemother 2003; 47(2): 501-8.
[http://dx.doi.org/10.1128/AAC.47.2.501-508.2003] [PMID: 12543650]
[27]
Richman L, Meylan PRA, Munoz M, Pinaud S, Mirkovitch J. An adenovirus-based fluorescent reporter vector to identify and isolate HIV-infected cells. J Virol Methods 2002; 99(1-2): 9-21.
[http://dx.doi.org/10.1016/S0166-0934(01)00375-5] [PMID: 11684299]
[28]
Gervaix A, West D, Leoni LM, Richman DD, Wong-Staal F, Corbeil J. A new reporter cell line to monitor HIV infection and drug susceptibility in vitro. Proc Natl Acad Sci 1997; 94(9): 4653-8.
[http://dx.doi.org/10.1073/pnas.94.9.4653] [PMID: 9114046]
[29]
Yuntao Wu , Beddall MH, Marsh JW. Rev-dependent indicator T cell line. Curr HIV Res 2007; 5(4): 394-402.
[http://dx.doi.org/10.2174/157016207781024018] [PMID: 17627502]
[30]
Sarzotti-Kelsoe M, Daniell X, Todd CA, et al. Optimization and validation of a neutralizing antibody assay for HIV-1 in A3R5 cells. J Immunol Methods 2014; 409: 147-60.
[http://dx.doi.org/10.1016/j.jim.2014.02.013] [PMID: 24607608]
[31]
Yi F, Guo J, Dabbagh D, et al. Discovery of novel small-molecule inhibitors of LIM domain kinase for inhibiting HIV-1. J Virol 2017; 91(13): e02418-16.
[http://dx.doi.org/10.1128/JVI.02418-16] [PMID: 28381571]
[32]
Abookleesh FL, Al-Anzi BS, Ullah A. Potential antiviral action of alkaloids. Molecules 2022; 27(3): 903.
[http://dx.doi.org/10.3390/molecules27030903] [PMID: 35164173]
[33]
Chowdhury P, Sahuc ME, Rouillé Y, et al. Theaflavins, polyphenols of black tea, inhibit entry of hepatitis C virus in cell culture. PLoS One 2018; 13(11): e0198226.
[http://dx.doi.org/10.1371/journal.pone.0198226] [PMID: 30485282]
[34]
Wang S, Li J, Huang H, et al. Anti-hepatitis B virus activities of astragaloside IV isolated from radix Astragali. Biol Pharm Bull 2009; 32(1): 132-5.
[http://dx.doi.org/10.1248/bpb.32.132] [PMID: 19122295]
[35]
Zhang Y, Zhu H, Huang C, et al. Astragaloside IV exerts antiviral effects against coxsackievirus B3 by upregulating interferon-gamma. J Cardiovasc Pharmacol 2006; 47(2): 190-5.
[http://dx.doi.org/10.1097/01.fjc.0000199683.43448.64] [PMID: 16495755]
[36]
Zhao L, Li C, Zhang Y, Wen Q, Ren D. Phytochemical and biological activities of an anticancer plant medicine: Brucea javanica. Anticancer Agents Med Chem 2014; 14(3): 440-58.
[http://dx.doi.org/10.2174/18715206113136660336] [PMID: 24066797]
[37]
Zhang J, Xu HX, Dou YX, Huang QH, Xian YF, Lin ZX. Major constituents from brucea javanica and their pharmacological actions. Front Pharmacol 2022; 13: 853119.
[http://dx.doi.org/10.3389/fphar.2022.853119] [PMID: 35370639]
[38]
Lin Z-X, Lin ZX, Leung PS, Chen LH, Zhao M, Liang J. Involvement of the mitochondrial pathway in bruceine D-induced apoptosis in Capan-2 human pancreatic adenocarcinoma cells. Int J Mol Med 2012; 30(1): 93-9.
[http://dx.doi.org/10.3892/ijmm.2012.980] [PMID: 22552257]
[39]
Haskell CA, Horuk R, Liang M, et al. Identification and characterization of a potent, selective nonpeptide agonist of the CC chemokine receptor CCR8. Mol Pharmacol 2006; 69(1): 309-16.
[http://dx.doi.org/10.1124/mol.105.014779] [PMID: 16221874]
[40]
Peters GJ, Smid K, Vecchi L, et al. Metabolism, mechanism of action and sensitivity profile of fluorocyclopentenylcytosine (RX-3117; TV-1360). Invest New Drugs 2013; 31(6): 1444-57.
[http://dx.doi.org/10.1007/s10637-013-0025-x] [PMID: 24048768]
[41]
Choi WJ, Chung HJ, Chandra G, et al. Fluorocyclopentenyl-cytosine with broad spectrum and potent antitumor activity. J Med Chem 2012; 55(9): 4521-5.
[http://dx.doi.org/10.1021/jm3004009] [PMID: 22524616]
[42]
Yosifov DY, Idler I, Bhattacharya N, et al. Oxidative stress as candidate therapeutic target to overcome microenvironmental protection of CLL. Leukemia 2020; 34(1): 115-27.
[http://dx.doi.org/10.1038/s41375-019-0513-x] [PMID: 31300746]
[43]
De Clercq E, Bergstrom DE, John AH, Montgomery A. Broad-spectrum antiviral activity of adenosine analogues. Antiviral Res 1984; 4(3): 119-33.
[http://dx.doi.org/10.1016/0166-3542(84)90012-3] [PMID: 6476818]
[44]
Miki K, Nagai T, Suzuki K, et al. Anti-influenza virus activity of biflavonoids. Bioorg Med Chem Lett 2007; 17(3): 772-5.
[http://dx.doi.org/10.1016/j.bmcl.2006.10.075] [PMID: 17110111]
[45]
Das K, Arnold E. HIV-1 reverse transcriptase and antiviral drug resistance. Part 2. Curr Opin Virol 2013; 3(2): 119-28.
[http://dx.doi.org/10.1016/j.coviro.2013.03.014] [PMID: 23602470]
[46]
Skoog MT, Hargrave KD, Miglietta JJ, Kopp EB, Merluzzi VJ. Inhibition of HIV‐1 reverse transcriptase and virus replication by a non‐nucleoside dipyridodiazepinone BI‐RG‐587 (nevirapine). Med Res Rev 1992; 12(1): 27-40.
[http://dx.doi.org/10.1002/med.2610120103] [PMID: 1371177]
[47]
Arion D, Fletcher RS, Borkow G, et al. Differences in the inhibition of human immunodeficiency virus type 1 reverse transcriptase DNA polymerase activity by analogs of nevirapine and [2′,5′-bis-O-(tert-butyldimethylsilyl)-3′-spiro-5"-(4"-amino-1", 2"-oxathiole-2",2"-dioxide] (TSAO). Mol Pharmacol 1996; 50(5): 1057-64.
[PMID: 8913335]
[48]
Zhou M, Wang H, Zeng X, et al. Mortality, morbidity, and risk factors in China and its provinces, 1990–2017: A systematic analysis for the global burden of disease study 2017. Lancet 2019; 394(10204): 1145-58.
[http://dx.doi.org/10.1016/S0140-6736(19)30427-1] [PMID: 31248666]
[49]
Kyu HH, Abate D, Abate KH, et al. Global, regional, and national disability-adjusted life-years (DALYs) for 359 diseases and injuries and healthy life expectancy (HALE) for 195 countries and territories, 1990–2017: A systematic analysis for the Global Burden of Disease Study 2017. Lancet 2018; 392(10159): 1859-922.
[http://dx.doi.org/10.1016/S0140-6736(18)32335-3] [PMID: 30415748]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy