Generic placeholder image

Anti-Cancer Agents in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1871-5206
ISSN (Online): 1875-5992

Review Article

Liposomal Nano-Based Drug Delivery Systems for Breast Cancer Therapy: Recent Advances and Progresses

Author(s): Mostafa Yazdan, Seyed Morteza Naghib* and M. R. Mozafari

Volume 24, Issue 12, 2024

Published on: 25 March, 2024

Page: [896 - 915] Pages: 20

DOI: 10.2174/0118715206293653240322041047

Price: $65

Abstract

Breast cancer is a highly prevalent disease on a global scale, with a 30% incidence rate among women and a 14% mortality rate. Developing countries bear a disproportionate share of the disease burden, while countries with greater technological advancements exhibit a higher incidence. A mere 7% of women under the age of 40 are diagnosed with breast cancer, and the prevalence of this ailment is significantly diminished among those aged 35 and younger. Chemotherapy, radiation therapy, and surgical intervention comprise the treatment protocol. However, the ongoing quest for a definitive cure for breast cancer continues. The propensity for cancer stem cells to metastasize and resistance to treatment constitute their Achilles' heel. The advancement of drug delivery techniques that target cancer cells specifically holds significant promise in terms of facilitating timely detection and effective intervention. Novel approaches to pharmaceutical delivery, including nanostructures and liposomes, may bring about substantial changes in the way breast cancer is managed. These systems offer a multitude of advantages, such as heightened bioavailability, enhanced solubility, targeted tumor destruction, and diminished adverse effects. The application of nano-drug delivery systems to administer anti-breast cancer medications is a significant subject of research. This article delves into the domain of breast cancer, conventional treatment methods, the incorporation of nanotechnology into managerial tactics, and strategic approaches aimed at tackling the disease at its core.

Keywords: Breast cancer, liposomes, anti-cancer agents, drug delivery, targeting, nanotechnology.

Graphical Abstract
[1]
Sahoo, B.M.; Banik, B.K.; Borah, P.; Jain, A. Reactive oxygen species (ROS): Key components in cancer therapies. Anticancer. Agents Med. Chem., 2022, 22(2), 215-222.
[http://dx.doi.org/10.2174/1871520621666210608095512] [PMID: 34102991]
[2]
Shams ul Hassan, S.; Abbas, S.Q. Computational exploration of anti-cancer potential of guaiane dimers from Xylopia vielana by targeting B-RAF kinase using chemo-informatics, molecular docking, and MD simulation studies. Anticancer. Agents Med. Chem., 2022, 22, 731-746.
[http://dx.doi.org/10.2174/1871520621666211013115500] [PMID: 34645380]
[3]
Fatima, M.; Iqubal, M.K.; Iqubal, A.; Kaur, H.; Gilani, S.J.; Rahman, M.H.; Ahmadi, A.; Rizwanullah, M. Current insight into the therapeutic potential of phytocompounds and their nanoparticle-based systems for effective management of lung cancer. Anticancer. Agents Med. Chem., 2022, 22(4), 668-686.
[http://dx.doi.org/10.2174/1871520621666210708123750] [PMID: 34238197]
[4]
Dawood, K.M.; Raslan, M.A.; Abbas, A.A.; Mohamed, B.E.; Nafie, M.S. Novel bis-amide-based bis-thiazoles as anti-colorectal cancer agents through Bcl-2 inhibition: Synthesis, in vitro, and in vivo studies. Anticancer. Agents Med. Chem., 2023, 23(3), 328-345.
[http://dx.doi.org/10.2174/1871520622666220615140239] [PMID: 35708084]
[5]
Rindi, G.; Klimstra, D.S.; Abedi-Ardekani, B.; Asa, S.L.; Bosman, F.T.; Brambilla, E.; Busam, K.J.; de Krijger, R.R.; Dietel, M.; El-Naggar, A.K.; Fernandez-Cuesta, L.; Klöppel, G.; McCluggage, W.G.; Moch, H.; Ohgaki, H.; Rakha, E.A.; Reed, N.S.; Rous, B.A.; Sasano, H.; Scarpa, A.; Scoazec, J.Y.; Travis, W.D.; Tallini, G.; Trouillas, J.; van Krieken, J.H.; Cree, I.A. A common classification framework for neuroendocrine neoplasms: An International Agency for Research on Cancer (IARC) and World Health Organization (WHO) expert consensus proposal. Mod. Pathol., 2018, 31(12), 1770-1786.
[http://dx.doi.org/10.1038/s41379-018-0110-y] [PMID: 30140036]
[6]
Fang, X.; Cao, J.; Shen, A. Advances in anti-breast cancer drugs and the application of nano-drug delivery systems in breast cancer therapy. J. Drug Deliv. Sci. Technol., 2020, 57, 101662.
[http://dx.doi.org/10.1016/j.jddst.2020.101662]
[7]
Yedjou, C.; Tchounwou, P.; Payton, M.; Miele, L.; Fonseca, D.; Lowe, L.; Alo, R. Assessing the racial and ethnic disparities in breast cancer mortality in the United States. Int. J. Environ. Res. Public Health, 2017, 14(5), 486.
[http://dx.doi.org/10.3390/ijerph14050486] [PMID: 28475137]
[8]
Feng, Y.; Spezia, M.; Huang, S.; Yuan, C.; Zeng, Z.; Zhang, L.; Ji, X.; Liu, W.; Huang, B.; Luo, W.; Liu, B.; Lei, Y.; Du, S.; Vuppalapati, A.; Luu, H.H.; Haydon, R.C.; He, T.C.; Ren, G. Breast cancer development and progression: Risk factors, cancer stem cells, signaling pathways, genomics, and molecular pathogenesis. Genes Dis., 2018, 5(2), 77-106.
[http://dx.doi.org/10.1016/j.gendis.2018.05.001] [PMID: 30258937]
[9]
Herdiana, Y.; Wathoni, N.; Shamsuddin, S.; Joni, I.M.; Muchtaridi, M. Chitosan-based nanoparticles of targeted drug delivery system in breast cancer treatment. Polymers, 2021, 13(11), 1717.
[http://dx.doi.org/10.3390/polym13111717] [PMID: 34074020]
[10]
Heymach, J.; Krilov, L.; Alberg, A.; Baxter, N.; Chang, S.M.; Corcoran, R.B.; Dale, W.; DeMichele, A.; Magid, D.C.S.; Dreicer, R.; Epstein, A.S.; Gillison, M.L.; Graham, D.L.; Jones, J.; Ko, A.H.; Lopez, A.M.; Maki, R.G.; Rodriguez-Galindo, C.; Schilsky, R.L.; Sznol, M.; Westin, S.N.; Burstein, H. Clinical cancer advances 2018: Annual report on progress against cancer from the american society of clinical oncology. J. Clin. Oncol., 2018, 36(10), 1020-1044.
[http://dx.doi.org/10.1200/JCO.2017.77.0446] [PMID: 29380678]
[11]
Prieto-Vila, M.; Takahashi, R.; Usuba, W.; Kohama, I.; Ochiya, T. Drug resistance driven by cancer stem cells and their niche. Int. J. Mol. Sci., 2017, 18(12), 2574.
[http://dx.doi.org/10.3390/ijms18122574] [PMID: 29194401]
[12]
Hu, C.; Cun, X.; Ruan, S.; Liu, R.; Xiao, W.; Yang, X.; Yang, Y.; Yang, C.; Gao, H. Enzyme-triggered size shrink and laser-enhanced NO release nanoparticles for deep tumor penetration and combination therapy. Biomaterials, 2018, 168, 64-75.
[http://dx.doi.org/10.1016/j.biomaterials.2018.03.046] [PMID: 29626787]
[13]
Momenimovahed, Z.; Salehiniya, H. Epidemiological characteristics of and risk factors for breast cancer in the world. Breast Cancer, 2019, 11, 151-164.
[http://dx.doi.org/10.2147/BCTT.S176070] [PMID: 31040712]
[14]
Kangarshahi, B.M.; Naghib, S.M.; Kangarshahi, G.M.; Mozafari, M.R. Bioprinting of self-healing materials and nanostructures for biomedical applications: Recent advances and progresses on fabrication and characterization techniques. Bioprinting, 2024, 38, e00335.
[http://dx.doi.org/10.1016/j.bprint.2024.e00335]
[15]
Goodman, J.; Lynch, H. Improving the international agency for research on cancer’s consideration of mechanistic evidence. Toxicol. Appl. Pharmacol., 2017, 319, 39-46.
[http://dx.doi.org/10.1016/j.taap.2017.01.020] [PMID: 28162991]
[16]
Wang, P.; Du, Y.; Wang, J. Indentification of breast cancer subtypes sensitive to HCQ-induced autophagy inhibition. Pathol. Res. Pract., 2019, 215(10), 152609.
[http://dx.doi.org/10.1016/j.prp.2019.152609] [PMID: 31488317]
[17]
Peng, Q.; Ren, X. Mapping of female breast cancer incidence and mortality rates to socioeconomic factors cohort: Path diagram analysis. Front. Public Health, 2022, 9, 761023.
[http://dx.doi.org/10.3389/fpubh.2021.761023] [PMID: 35178368]
[18]
Liang, Y.; Zhang, H.; Song, X.; Yang, Q. Metastatic heterogeneity of breast cancer: Molecular mechanism and potential therapeutic targets. Semin. Cancer Biol., 2020, 60, 14-27.
[http://dx.doi.org/10.1016/j.semcancer.2019.08.012] [PMID: 31421262]
[19]
De, A.; Kuppusamy, G. Metformin in breast cancer: Preclinical and clinical evidence. Curr. Probl. Cancer, 2020, 44(1), 100488.
[http://dx.doi.org/10.1016/j.currproblcancer.2019.06.003] [PMID: 31235186]
[20]
Al-thoubaity, F.K. Molecular classification of breast cancer: A retrospective cohort study. Ann. Med. Surg., 2020, 49, 44-48.
[http://dx.doi.org/10.1016/j.amsu.2019.11.021] [PMID: 31890196]
[21]
Pindiprolu, S.K.S.S.; Krishnamurthy, P.T.; Chintamaneni, P.K.; Karri, V.V.S.R. Nanocarrier based approaches for targeting breast cancer stem cells. Artif. Cells Nanomed. Biotechnol., 2018, 46(5), 885-898.
[http://dx.doi.org/10.1080/21691401.2017.1366337] [PMID: 28826237]
[22]
Akinyemiju, T.F.; Pisu, M.; Waterbor, J.W.; Altekruse, S.F. Socioeconomic status and incidence of breast cancer by hormone receptor subtype. Springerplus, 2015, 4(1), 508.
[http://dx.doi.org/10.1186/s40064-015-1282-2] [PMID: 26405628]
[23]
Thanki, K.; Gangwal, R.P.; Sangamwar, A.T.; Jain, S. Oral delivery of anticancer drugs: Challenges and opportunities. J. Control. Release, 2013, 170(1), 15-40.
[http://dx.doi.org/10.1016/j.jconrel.2013.04.020] [PMID: 23648832]
[24]
Tran, P.; Lee, S.E.; Kim, D.H.; Pyo, Y.C.; Park, J.S. Recent advances of nanotechnology for the delivery of anticancer drugs for breast cancer treatment. J. Pharm. Investig., 2020, 50(3), 261-270.
[http://dx.doi.org/10.1007/s40005-019-00459-7]
[25]
Wang, X.; Li, L.; Gao, J.; Liu, J.; Guo, M.; Liu, L.; Wang, W.; Wang, J.; Xing, Z.; Yu, Z.; Wang, X. The association between body size and breast cancer in han women in northern and eastern China. Oncologist, 2016, 21(11), 1362-1368.
[http://dx.doi.org/10.1634/theoncologist.2016-0147] [PMID: 27496041]
[26]
Caetano-Pinto, P.; Jansen, J.; Assaraf, Y.G.; Masereeuw, R. The importance of breast cancer resistance protein to the kidneys excretory function and chemotherapeutic resistance. Drug Resist. Updat., 2017, 30, 15-27.
[http://dx.doi.org/10.1016/j.drup.2017.01.002] [PMID: 28363332]
[27]
Pastor-Barriuso, R.; Fernández, M.F.; Castaño-Vinyals, G.; Whelan, D.; Pérez-Gómez, B.; Llorca, J.; Villanueva, C.M.; Guevara, M.; Molina-Molina, J.M.; Artacho-Cordón, F.; Barriuso-Lapresa, L.; Tusquets, I.; Dierssen-Sotos, T.; Aragonés, N.; Olea, N.; Kogevinas, M.; Pollán, M. Total effective xenoestrogen burden in serum samples and risk for breast cancer in a population-based multicase–control study in Spain. Environ. Health Perspect., 2016, 124(10), 1575-1582.
[http://dx.doi.org/10.1289/EHP157] [PMID: 27203080]
[28]
Howlader, N.; Altekruse, S.F.; Li, C.I.; Chen, V.W.; Clarke, C.A.; Ries, L.A.G.; Cronin, K.A. US incidence of breast cancer subtypes defined by joint hormone receptor and HER2 status. J. Natl. Cancer Inst., 2014, 106(5), dju055.
[http://dx.doi.org/10.1093/jnci/dju055] [PMID: 24777111]
[29]
Estrella, V.; Chen, T.; Lloyd, M.; Wojtkowiak, J.; Cornnell, H.H.; Ibrahim-Hashim, A.; Bailey, K.; Balagurunathan, Y.; Rothberg, J.M.; Sloane, B.F.; Johnson, J.; Gatenby, R.A.; Gillies, R.J. Acidity generated by the tumor microenvironment drives local invasion. Cancer Res., 2013, 73(5), 1524-1535.
[http://dx.doi.org/10.1158/0008-5472.CAN-12-2796] [PMID: 23288510]
[30]
Choi, J.; Cha, Y.J.; Koo, J.S. Adipocyte biology in breast cancer: From silent bystander to active facilitator. Prog. Lipid Res., 2018, 69, 11-20.
[http://dx.doi.org/10.1016/j.plipres.2017.11.002] [PMID: 29175445]
[31]
Park, J.; Choi, Y.; Chang, H.; Um, W.; Ryu, J.H.; Kwon, I.C. Alliance with EPR effect: Combined strategies to improve the EPR effect in the tumor microenvironment. Theranostics, 2019, 9(26), 8073-8090.
[http://dx.doi.org/10.7150/thno.37198] [PMID: 31754382]
[32]
Voduc, K.D.; Cheang, M.C.U.; Tyldesley, S.; Gelmon, K.; Nielsen, T.O.; Kennecke, H. Breast cancer subtypes and the risk of local and regional relapse. J. Clin. Oncol., 2010, 28(10), 1684-1691.
[http://dx.doi.org/10.1200/JCO.2009.24.9284] [PMID: 20194857]
[33]
El Saghir, N.S.; Adebamowo, C.A.; Anderson, B.O.; Carlson, R.W.; Bird, P.A.; Corbex, M.; Badwe, R.A.; Bushnaq, M.A.; Eniu, A.; Gralow, J.R.; Harness, J.K.; Masetti, R.; Perry, F.; Samiei, M.; Thomas, D.B.; Wiafe-Addai, B.; Cazap, E. Breast cancer management in low resource countries (LRCs): Consensus statement from the Breast Health Global Initiative. Breast, 2011, 20(Suppl. 2), S3-S11.
[http://dx.doi.org/10.1016/j.breast.2011.02.006] [PMID: 21392996]
[34]
Burstein, H.J.; Curigliano, G.; Thürlimann, B.; Weber, W.P.; Poortmans, P.; Regan, M.M.; Senn, H.J.; Winer, E.P.; Gnant, M.; Aebi, S.; André, F.; Barrios, C.; Bergh, J.; Bonnefoi, H.; Bretel Morales, D.; Brucker, S.; Burstein, H.; Cameron, D.; Cardoso, F.; Carey, L.; Chua, B.; Ciruelos, E.; Colleoni, M.; Curigliano, G.; Delaloge, S.; Denkert, C.; Dubsky, P.; Ejlertsen, B.; Fitzal, F.; Francis, P.; Galimberti, V.; Gamal El Din Mohamed Mahmoud, H.; Garber, J.; Gnant, M.; Gradishar, W.; Gulluoglu, B.; Harbeck, N.; Huang, C.S.; Huober, J.; Ilbawi, A.; Jiang, Z.; Johnston, S.; Lee, E.S.; Loibl, S.; Morrow, M.; Partridge, A.; Piccart, M.; Poortmans, P.; Prat, A.; Regan, M.; Rubio, I.; Rugo, H.; Rutgers, E.; Sedlmayer, F.; Semiglazov, V.; Senn, H.J.; Shao, Z.; Spanic, T.; Tesarova, P.; Thürlimann, B.; Tjulandin, S.; Toi, M.; Trudeau, M.; Turner, N.; Vaz Luis, I.; Viale, G.; Watanabe, T.; Weber, W.P.; Winer, E.P.; Xu, B. Customizing local and systemic therapies for women with early breast cancer: The St. Gallen International Consensus Guidelines for treatment of early breast cancer 2021. Ann. Oncol., 2021, 32(10), 1216-1235.
[http://dx.doi.org/10.1016/j.annonc.2021.06.023] [PMID: 34242744]
[35]
Anderson, B.O.; Yip, C.H.; Smith, R.A.; Shyyan, R.; Sener, S.F.; Eniu, A.; Carlson, R.W.; Azavedo, E.; Harford, J. Guideline implementation for breast healthcare in low-income and middle-income countries. Cancer, 2008, 113(S8)(Suppl.), 2221-2243.
[http://dx.doi.org/10.1002/cncr.23844] [PMID: 18816619]
[36]
Chen, Q.; Hongu, T.; Sato, T.; Zhang, Y.; Ali, W.; Cavallo, J.A.; van der Velden, A.; Tian, H.; Di Paolo, G.; Nieswandt, B.; Kanaho, Y.; Frohman, M.A. Key roles for the lipid signaling enzyme phospholipase d1 in the tumor microenvironment during tumor angiogenesis and metastasis. Sci. Signal., 2012, 5(249), ra79.
[http://dx.doi.org/10.1126/scisignal.2003257] [PMID: 23131846]
[37]
Mota, A.; Evangelista, A.; Macedo, T.; Oliveira, R.; Scapulatempo-Neto, C.; Vieira, R.; Marques, M. Molecular characterization of breast cancer cell lines by clinical immunohistochemical markers. Oncol. Lett., 2017, 13(6), 4708-4712.
[http://dx.doi.org/10.3892/ol.2017.6093] [PMID: 28588725]
[38]
Mohammed, M.; Syeda, J.; Wasan, K.; Wasan, E. An overview of chitosan nanoparticles and its application in non-parenteral drug delivery. Pharmaceutics, 2017, 9(4), 53.
[http://dx.doi.org/10.3390/pharmaceutics9040053] [PMID: 29156634]
[39]
Waks, A.G.; Winer, E.P. Breast cancer treatment. JAMA, 2019, 321(3), 288-300.
[http://dx.doi.org/10.1001/jama.2018.19323] [PMID: 30667505]
[40]
Hjerl, K.; Andersen, E.W.; Keiding, N.; Mouridsen, H.T.; Mortensen, P.B.; Jørgensen, T. Depression as a prognostic factor for breast cancer mortality. Psychosomatics, 2003, 44(1), 24-30.
[http://dx.doi.org/10.1176/appi.psy.44.1.24] [PMID: 12515834]
[41]
Kang, X.; Chen, H.; Li, S.; Jie, L.; Hu, J.; Wang, X.; Qi, J.; Ying, X.; Du, Y. Magnesium lithospermate B loaded PEGylated solid lipid nanoparticles for improved oral bioavailability. Colloids Surf. B Biointerfaces, 2018, 161, 597-605.
[http://dx.doi.org/10.1016/j.colsurfb.2017.11.008] [PMID: 29156336]
[42]
Kessenbrock, K.; Plaks, V.; Werb, Z. Matrix metalloproteinases: regulators of the tumor microenvironment. Cell, 2010, 141(1), 52-67.
[http://dx.doi.org/10.1016/j.cell.2010.03.015] [PMID: 20371345]
[43]
Nadimi, A.E.; Ebrahimipour, S.Y.; Afshar, E.G.; Falahati-pour, S.K.; Ahmadi, Z.; Mohammadinejad, R.; Mohamadi, M. Nano-scale drug delivery systems for antiarrhythmic agents. Eur. J. Med. Chem., 2018, 157, 1153-1163.
[http://dx.doi.org/10.1016/j.ejmech.2018.08.080] [PMID: 30189397]
[44]
Rosenblum, D.; Joshi, N.; Tao, W.; Karp, J.M.; Peer, D. Progress and challenges towards targeted delivery of cancer therapeutics. Nat. Commun., 2018, 9(1), 1410.
[http://dx.doi.org/10.1038/s41467-018-03705-y] [PMID: 29650952]
[45]
Li, Y.; Zhang, H.; Merkher, Y.; Chen, L.; Liu, N.; Leonov, S.; Chen, Y. Recent advances in therapeutic strategies for triple-negative breast cancer. J. Hematol. Oncol., 2022, 15(1), 121.
[http://dx.doi.org/10.1186/s13045-022-01341-0] [PMID: 36038913]
[46]
Place, A.E.; Jin Huh, S.; Polyak, K. The microenvironment in breast cancer progression: Biology and implications for treatment. Breast Cancer Res., 2011, 13(6), 227.
[http://dx.doi.org/10.1186/bcr2912] [PMID: 22078026]
[47]
Moradi Kashkooli, F.; Jakhmola, A.; Hornsby, T.K.; Tavakkoli, J.J.; Kolios, M.C. Ultrasound-mediated nano drug delivery for treating cancer: Fundamental physics to future directions. J. Control. Release, 2023, 355, 552-578.
[http://dx.doi.org/10.1016/j.jconrel.2023.02.009] [PMID: 36773959]
[48]
Sheikh, A.; Md, S.; Kesharwani, P. Aptamer grafted nanoparticle as targeted therapeutic tool for the treatment of breast cancer. Biomed. Pharmacother., 2022, 146, 112530.
[http://dx.doi.org/10.1016/j.biopha.2021.112530] [PMID: 34915416]
[49]
Lee, J.; Chatterjee, D.K.; Lee, M.H.; Krishnan, S. Gold nanoparticles in breast cancer treatment: Promise and potential pitfalls. Cancer Lett., 2014, 347(1), 46-53.
[http://dx.doi.org/10.1016/j.canlet.2014.02.006] [PMID: 24556077]
[50]
Deng, Z.J.; Morton, S.W.; Ben-Akiva, E.; Dreaden, E.C.; Shopsowitz, K.E.; Hammond, P.T. Layer-by-layer nanoparticles for systemic codelivery of an anticancer drug and siRNA for potential triple-negative breast cancer treatment. ACS Nano, 2013, 7(11), 9571-9584.
[http://dx.doi.org/10.1021/nn4047925] [PMID: 24144228]
[51]
Grobmyer, S.R.; Zhou, G.; Gutwein, L.G.; Iwakuma, N.; Sharma, P.; Hochwald, S.N. Nanoparticle delivery for metastatic breast cancer. Nanomedicine, 2012, 8(Suppl. 1), S21-S30.
[http://dx.doi.org/10.1016/j.nano.2012.05.011] [PMID: 22640908]
[52]
Mu, Q.; Wang, H.; Zhang, M. Nanoparticles for imaging and treatment of metastatic breast cancer. Expert opinion on drug delivery, 2017, 14(1), 123-136.
[http://dx.doi.org/10.1080/17425247.2016.1208650]
[53]
Luo, X.; Zhang, Q.; Chen, H.; Hou, K.; Zeng, N.; Wu, Y. Smart nanoparticles for breast cancer treatment based on the tumor microenvironment. Front. Oncol., 2022, 12, 907684.
[http://dx.doi.org/10.3389/fonc.2022.907684] [PMID: 35720010]
[54]
Raj, S.; Khurana, S.; Choudhari, R.; Kesari, K.K.; Kamal, M.A.; Garg, N.; Ruokolainen, J.; Das, B.C.; Kumar, D. Specific targeting cancer cells with nanoparticles and drug delivery in cancer therapy. Semin. Cancer Biol., 2021, 69, 166-177.
[http://dx.doi.org/10.1016/j.semcancer.2019.11.002] [PMID: 31715247]
[55]
Acharya, S.; Dilnawaz, F.; Sahoo, S.K. Targeted epidermal growth factor receptor nanoparticle bioconjugates for breast cancer therapy. Biomaterials, 2009, 30(29), 5737-5750.
[http://dx.doi.org/10.1016/j.biomaterials.2009.07.008] [PMID: 19631377]
[56]
Alamdari, S.G.; Amini, M.; Jalilzadeh, N.; Baradaran, B.; Mohammadzadeh, R.; Mokhtarzadeh, A.; Oroojalian, F. Recent advances in nanoparticle-based photothermal therapy for breast cancer. J. Control. Release, 2022, 349, 269-303.
[http://dx.doi.org/10.1016/j.jconrel.2022.06.050] [PMID: 35787915]
[57]
Nosrati, H.; Salehiabar, M.; Kheiri Manjili, H.; Davaran, S.; Danafar, H. Theranostic nanoparticles based on magnetic nanoparticles: Design, preparation, characterization, and evaluation as novel anticancer drug carrier and MRI contrast agent. Drug Dev. Ind. Pharm., 2018, 44(10), 1668-1678.
[http://dx.doi.org/10.1080/03639045.2018.1483398] [PMID: 29848101]
[58]
Danafar, H.; Sharafi, A.; Kheiri, M. H.; Andalib, S. Sulforaphane delivery using mPEG–PCL co-polymer nanoparticles to breast cancer cells. Pharm. Dev. Technol., 2017, 22(5), 642-651.
[http://dx.doi.org/10.3109/10837450.2016.1146296] [PMID: 26916923]
[59]
Jain, V.; Kumar, H.; Anod, H.V.; Chand, P.; Gupta, N.V.; Dey, S.; Kesharwani, S.S. A review of nanotechnology-based approaches for breast cancer and triple-negative breast cancer. J. Control. Release, 2020, 326, 628-647.
[http://dx.doi.org/10.1016/j.jconrel.2020.07.003] [PMID: 32653502]
[60]
Vasan, N.; Baselga, J.; Hyman, D.M. A view on drug resistance in cancer. Nature, 2019, 575(7782), 299-309.
[http://dx.doi.org/10.1038/s41586-019-1730-1] [PMID: 31723286]
[61]
Yap, K.M.; Sekar, M.; Fuloria, S.; Wu, Y.S.; Gan, S.H.; Mat Rani, N.N.I.; Subramaniyan, V.; Kokare, C.; Lum, P.T.; Begum, M.Y.; Mani, S.; Meenakshi, D.U.; Sathasivam, K.V.; Fuloria, N.K. Drug delivery of natural products through nanocarriers for effective breast cancer therapy: A comprehensive review of literature. Int. J. Nanomedicine, 2021, 16, 7891-7941.
[http://dx.doi.org/10.2147/IJN.S328135] [PMID: 34880614]
[62]
Mirza, Z.; Karim, S. Nanoparticles-based drug delivery and gene therapy for breast cancer: Recent advancements and future challenges; Elsevier Ltd, 2021, pp. 226-237.
[http://dx.doi.org/10.1016/j.semcancer.2019.10.020]
[63]
Manoharan, S.; Pugalendhi, P. Breast cancer. An Overview, 2010, 10, 2423-2432.
[64]
Akram, M.; Iqbal, M.; Daniyal, M.; Khan, A.U. Awareness and current knowledge of breast cancer. Biol. Res., 2017, 50(1), 33.
[http://dx.doi.org/10.1186/s40659-017-0140-9] [PMID: 28969709]
[65]
Kaur, N.; Aditya, R.N.; Singh, A.; Kuo, T.R. Biomedical applications for gold nanoclusters: Recent developments and future perspectives. Nanoscale Res. Lett., 2018, 13(1), 302.
[http://dx.doi.org/10.1186/s11671-018-2725-9] [PMID: 30259230]
[66]
Kaczmarczyk, O.; Andrzej, M. Żak. Comment on “Unveiling the antibacterial mechanism of gold nanoclusters via in situ transmission electron microscopy”. ACS Sustainable Chem. Eng., 2022, 10(32), 10440-10441.
[67]
Bahreyni, A.; Mohamud, Y.; Luo, H. Emerging nanomedicines for effective breast cancer immunotherapy. J. Nanobiotechnology, 2020, 18(1), 180.
[http://dx.doi.org/10.1186/s12951-020-00741-z] [PMID: 33298099]
[68]
Yougbaré, S.; Okoro, G.; Lin, I.; Nuh, M. Emerging trends in nanomaterials for antibacterial applications. Int. J. Nanomedicine, 2021, 16, 5831-5867.
[http://dx.doi.org/10.2147/IJN.S328767]
[69]
Nel, J.; Elkhoury, K.; Velot, É.; Bianchi, A.; Acherar, S.; Francius, G.; Tamayol, A.; Grandemange, S.; Arab-Tehrany, E. Functionalized liposomes for targeted breast cancer drug delivery. Bioact. Mater., 2023, 24, 401-437.
[http://dx.doi.org/10.1016/j.bioactmat.2022.12.027] [PMID: 36632508]
[70]
Azamjah, N.; Soltan-Zadeh, Y.; Zayeri, F. Global trend of breast cancer mortality rate: A 25-year study. Asian Pac. J. Cancer Prev., 2019, 20(7), 2015-2020.
[http://dx.doi.org/10.31557/APJCP.2019.20.7.2015] [PMID: 31350959]
[71]
Mutalik, C.; Wang, D.Y.; Krisnawati, D.I.; Jazidie, A.; Yougbare, S.; Kuo, T.R. Light-activated heterostructured nanomaterials for antibacterial applications. Nanomaterials, 2020, 10(4), 643.
[http://dx.doi.org/10.3390/nano10040643] [PMID: 32235565]
[72]
Trevisi, E.; La Salvia, A.; Daniele, L.; Brizzi, M.P.; De Rosa, G.; Scagliotti, G.V.; Di Maio, M. Neuroendocrine breast carcinoma: A rare but challenging entity. Med. Oncol., 2020, 37(8), 70.
[http://dx.doi.org/10.1007/s12032-020-01396-4] [PMID: 32712767]
[73]
Hernandez-Aya, L.F.; Gonzalez-Angulo, A.M. Adjuvant systemic therapies in breast cancer. Surg. Clin. North Am., 2013, 93(2), 473-491.
[http://dx.doi.org/10.1016/j.suc.2012.12.002] [PMID: 23464697]
[74]
Alimirzaie, S.; Bagherzadeh, M.; Akbari, M.R. Liquid biopsy in breast cancer: A comprehensive review. Clin. Genet., 2019, 95(6), 643-660.
[http://dx.doi.org/10.1111/cge.13514] [PMID: 30671931]
[75]
Haney, M.J.; Zhao, Y.; Jin, Y.S.; Li, S.M.; Bago, J.R.; Klyachko, N.L.; Kabanov, A.V.; Batrakova, E.V. Macrophage-derived extracellular vesicles as drug delivery systems for triple negative breast cancer (TNBC) therapy. J. Neuroimmune Pharmacol., 2020, 15(3), 487-500.
[http://dx.doi.org/10.1007/s11481-019-09884-9] [PMID: 31722094]
[76]
Riis, M. Modern surgical treatment of breast cancer. Ann. Med. Surg., 2020, 56, 95-107.
[http://dx.doi.org/10.1016/j.amsu.2020.06.016] [PMID: 32637082]
[77]
Thakur, V.; Kutty, R.V. Recent advances in nanotheranostics for triple negative breast cancer treatment. J. Exp. Clin. Cancer Res., 2019, 38(1), 430.
[http://dx.doi.org/10.1186/s13046-019-1443-1] [PMID: 31661003]
[78]
Tong, C.W.S.; Wu, M.; Cho, W.C.S.; To, K.K.W. Recent advances in the treatment of breast cancer. Front. Oncol., 2018, 8, 227.
[http://dx.doi.org/10.3389/fonc.2018.00227] [PMID: 29963498]
[79]
Nikolaou, M.; Pavlopoulou, A.; Georgakilas, A.G.; Kyrodimos, E. The challenge of drug resistance in cancer treatment: A current overview. Clin. Exp. Metastasis, 2018, 35(4), 309-318.
[http://dx.doi.org/10.1007/s10585-018-9903-0] [PMID: 29799080]
[80]
Lukong, K.E. Understanding breast cancer – The long and winding road. BBA Clin., 2017, 7, 64-77.
[http://dx.doi.org/10.1016/j.bbacli.2017.01.001] [PMID: 28194329]
[81]
Ma, D.; Wu, L.; Li, S.; Sun, Z.; Wang, K. Vasohibin2 promotes adriamycin resistance of breast cancer cells through regulating ABCG2 via AKT signaling pathway. Mol. Med. Rep., 2017, 16(6), 9729-9734.
[http://dx.doi.org/10.3892/mmr.2017.7792] [PMID: 29039601]
[82]
Amir, H.; Subramanian, V.; Sornambikai, S.; Ponpandian, N.; Viswanathan, C. Nitrogen-enhanced carbon quantum dots mediated immunosensor for electrochemical detection of HER2 breast cancer biomarker. Bioelectrochemistry, 2023, 155, 108589.
[http://dx.doi.org/10.1016/j.bioelechem.2023.108589] [PMID: 37918312]
[83]
Narod, S.A. BRCA mutations in the management of breast cancer: The state of the art. Nat. Rev. Clin. Oncol., 2010, 7(12), 702-707.
[http://dx.doi.org/10.1038/nrclinonc.2010.166] [PMID: 20956982]
[84]
Adedayo, A.O. Breast cancer subtypes based on ER/PR and Her2 expression: Comparison of clinicopathologic features and survival. Clin. Med. Res., 2009, 7(1-2), 4-13.
[http://dx.doi.org/10.3121/cmr.2009.825]
[85]
Malorni, L.; Shetty, P.B.; De Angelis, C.; Hilsenbeck, S.; Rimawi, M.F.; Elledge, R.; Osborne, C.K.; De Placido, S.; Arpino, G. Clinical and biologic features of triple-negative breast cancers in a large cohort of patients with long-term follow-up. Breast Cancer Res. Treat., 2012, 136(3), 795-804.
[http://dx.doi.org/10.1007/s10549-012-2315-y] [PMID: 23124476]
[86]
García-Aranda, M.; Redondo, M. Immunotherapy: A challenge of breast cancer treatment. Cancers, 2019, 11(12), 1822.
[http://dx.doi.org/10.3390/cancers11121822] [PMID: 31756919]
[87]
Bozorgi, A.; Khazaei, M.; Khazaei, M.R. New findings on breast cancer stem cells: A review. J. Breast Cancer, 2015, 18(4), 303-312.
[http://dx.doi.org/10.4048/jbc.2015.18.4.303] [PMID: 26770236]
[88]
Goldhirsch, A.; Wood, W.C.; Coates, A.S.; Gelber, R.D.; Thu, B. Strategies for subtypes — dealing with the diversity of breast cancer : Highlights of the St Gallen International Expert Consensus on the Primary. Therapy of Early Breast Cancer, 2011, 2011, 1736-1747.
[89]
Kinnel, B.; Singh, S.K.; Oprea-Ilies, G.; Singh, R. Targeted therapy and mechanisms of drug resistance in breast cancer. Cancers (Basel), 2023, 15(4), 1320.
[http://dx.doi.org/10.3390/cancers15041320] [PMID: 36831661]
[90]
Dupont, W.D.; Parl, F.F.; Hartmann, W.H.; Brinton, L.A.; Winfield, A.C.; Worrell, J.A.; Schuyler, P.A.; Plummer, W.D. Breast cancer risk associated with proliferative breast disease and atypical hyperplasia. Cancer, 1993, 71(4), 1258-1265.
[http://dx.doi.org/10.1002/1097-0142(19930215)71:4<1258:AID-CNCR2820710415>3.0.CO;2-I] [PMID: 8435803]
[91]
Nounou, M.I.; ElAmrawy, F.; Ahmed, N.; Abdelraouf, K.; Goda, S.; Syed-Sha-Qhattal, H. Breast cancer: Conventional diagnosis and treatment modalities and recent patents and technologies supplementary issue: Targeted therapies in breast cancer treatment. Breast Cancer, 2015, 9s2(Suppl. 2), BCBCR.S29420.
[http://dx.doi.org/10.4137/BCBCR.S29420] [PMID: 26462242]
[92]
Schousboe, J.T.; Kerlikowske, K.; Loh, A.; Cummings, S.R. Personalizing mammography by breast density and other risk factors for breast cancer: Analysis of health benefits and cost-effectiveness. Ann. Intern. Med., 2011, 155(1), 10-20.
[http://dx.doi.org/10.7326/0003-4819-155-1-201107050-00003] [PMID: 21727289]
[93]
Mansoori, B.; Mohammadi, A.; Davudian, S.; Shirjang, S.; Baradaran, B. The different mechanisms of cancer drug resistance: A brief review. Adv. Pharm. Bull., 2017, 7(3), 339-348.
[http://dx.doi.org/10.15171/apb.2017.041] [PMID: 29071215]
[94]
Goutsouliak, K.; Veeraraghavan, J.; Sethunath, V.; De Angelis, C.; Osborne, C.K.; Rimawi, M.F.; Schiff, R. Towards personalized treatment for early stage HER2-positive breast cancer. Nat. Rev. Clin. Oncol., 2020, 17(4), 233-250.
[http://dx.doi.org/10.1038/s41571-019-0299-9] [PMID: 31836877]
[95]
Barzaman, K.; Karami, J.; Zarei, Z.; Hosseinzadeh, A.; Kazemi, M.H.; Moradi-Kalbolandi, S.; Safari, E.; Farahmand, L. Breast cancer: Biology, biomarkers, and treatments. Int. Immunopharmacol., 2020, 84, 106535.
[http://dx.doi.org/10.1016/j.intimp.2020.106535] [PMID: 32361569]
[96]
Yeldag, G.; Rice, A.; Del Río Hernández, A. Chemoresistance and the self-maintaining tumor microenvironment. Cancers, 2018, 10(12), 471.
[http://dx.doi.org/10.3390/cancers10120471] [PMID: 30487436]
[97]
Ji, X.; Lu, Y.; Tian, H.; Meng, X.; Wei, M.; Cho, W.C. Chemoresistance mechanisms of breast cancer and their countermeasures. Biomed. Pharmacother., 2019, 114, 108800.
[http://dx.doi.org/10.1016/j.biopha.2019.108800] [PMID: 30921705]
[98]
Sun, C.C.; Li, S.J.; Hu, W.; Zhang, J.; Zhou, Q.; Liu, C.; Li, L.L.; Songyang, Y.Y.; Zhang, F.; Chen, Z.L.; Li, G.; Bi, Z.Y.; Bi, Y.Y.; Gong, F.Y.; Bo, T.; Yuan, Z.P.; Hu, W.D.; Zhan, B.T.; Zhang, Q.; He, Q.Q.; Li, D.J. RETRACTED: Comprehensive analysis of the expression and prognosis for E2Fs in human breast cancer. Mol. Ther., 2019, 27(6), 1153-1165.
[http://dx.doi.org/10.1016/j.ymthe.2019.03.019] [PMID: 31010740]
[99]
Gottesman, M.M. Mechanisms of cancer drug resistance. Annu. Rev. Med., 2002, 53(1), 615-627.
[http://dx.doi.org/10.1146/annurev.med.53.082901.103929] [PMID: 11818492]
[100]
Sedlmayer, F.; Zehentmayr, F.; Fastner, G. Partial breast re-irradiation for local recurrence of breast carcinoma: Benefit and long term side effects. Breast, 2013, 22(Suppl. 2), S141-S146.
[http://dx.doi.org/10.1016/j.breast.2013.07.026] [PMID: 24074775]
[101]
Hennequin, C.; Guillerm, S.; Quéro, L. The sentinel lymph node of breast cancer and the radiation oncologist. Cancer Radiother., 2018, 22(6-7), 473-477.
[http://dx.doi.org/10.1016/j.canrad.2018.06.012] [PMID: 30139693]
[102]
Nedeljković, M.; Damjanović, A. Mechanisms of chemotherapy resistance in triple-negative breast cancer-how we can rise to the challenge. Cells, 2019, 8(9), 957.
[http://dx.doi.org/10.3390/cells8090957] [PMID: 31443516]
[103]
Nogueras Pérez, R.; Heredia-Nicolás, N.; de Lara-Peña, L.; López de Andrés, J.; Marchal, J.A.; Jiménez, G.; Griñán-Lisón, C. Unraveling the potential of miRNAs from CSCs as an emerging clinical tool for breast cancer diagnosis and prognosis. Int. J. Mol. Sci., 2023, 24(21), 16010.
[http://dx.doi.org/10.3390/ijms242116010] [PMID: 37958993]
[104]
Kirkby, M.; Popatia, A.M.; Lavoie, J.R.; Wang, L. The potential of hormonal therapies for treatment of triple-negative breast cancer. Cancers, 2023, 15(19), 4702.
[http://dx.doi.org/10.3390/cancers15194702] [PMID: 37835396]
[105]
Shien, T.; Iwata, H. Adjuvant and neoadjuvant therapy for breast cancer. Jpn. J. Clin. Oncol., 2020, 50(3), 225-229.
[http://dx.doi.org/10.1093/jjco/hyz213] [PMID: 32147701]
[106]
Zheng, H.C. The molecular mechanisms of chemoresistance in cancers. Oncotarget, 2017, 8(35), 59950-59964.
[http://dx.doi.org/10.18632/oncotarget.19048] [PMID: 28938696]
[107]
Chen, S.; Wang, H.; Li, Z.; You, J.; Wu, Q.W.; Zhao, C.; Tzeng, C.M.; Zhang, Z.M. Interaction of WBP2 with ERα increases doxorubicin resistance of breast cancer cells by modulating MDR1 transcription. Br. J. Cancer, 2018, 119(2), 182-192.
[http://dx.doi.org/10.1038/s41416-018-0119-5] [PMID: 29937544]
[108]
Hussain, T.; Ramakrishna, S.; Abid, S. Nanofibrous drug delivery systems for breast cancer: A review. Nanotechnology, 2022, 33(10), 102001.
[http://dx.doi.org/10.1088/1361-6528/ac385c] [PMID: 34757956]
[109]
dos Reis, L.R.; Luiz, M.T.; Sábio, R.M.; Marena, G.D.; Di Filippo, L.D.; Duarte, J.L.; Souza Fernandes, L.; Sousa Araújo, V.H.; Oliveira Silva, V.A.; Chorilli, M. Design of rapamycin and resveratrol coloaded liposomal formulation for breast cancer therapy. Nanomedicine, 2023, 18(10), 789-801.
[http://dx.doi.org/10.2217/nnm-2022-0227] [PMID: 37199266]
[110]
Li, J.; Gong, C.; Chen, X.; Guo, H.; Tai, Z.; Ding, N.; Gao, S.; Gao, Y. Biomimetic liposomal nanozymes improve breast cancer chemotherapy with enhanced penetration and alleviated hypoxia. J. Nanobiotechnology, 2023, 21(1), 123.
[http://dx.doi.org/10.1186/s12951-023-01874-7] [PMID: 37038165]
[111]
Yu, D.; Wang, H.; Liu, H.; Xu, R. Liposomal ATM siRNA delivery for enhancing triple-negaitive breast cancer immune checkpoint blockade therapy. J. Biomater. Appl., 2023, 37(10), 1835-1846.
[http://dx.doi.org/10.1177/08853282231162111] [PMID: 37016537]
[112]
Dinakar, Y.H.; Karole, A.; Parvez, S.; Jain, V.; Mudavath, S.L. Folate receptor targeted NIR cleavable liposomal delivery system augment penetration and therapeutic efficacy in breast cancer. Biochim. Biophys. Acta, Gen. Subj., 2023, 1867(9), 130396.
[http://dx.doi.org/10.1016/j.bbagen.2023.130396] [PMID: 37271407]
[113]
Maghsoudi, S.; Hosseini, S.A.; Soraya, H.; Roosta, Y.; Mohammadzadeh, A. Development of doxorubicin-encapsulated magnetic liposome@PEG for treatment of breast cancer in BALB/c mice. Drug Deliv. Transl. Res., 2023, 13(10), 2589-2603.
[http://dx.doi.org/10.1007/s13346-023-01339-2] [PMID: 37133768]
[114]
Jensen, E.V.; Jacobson, H.I.; Walf, A.A.; Frye, C.A. Estrogen action: A historic perspective on the implications of considering alternative approaches. Physiol. Behav., 2010, 99(2), 151-162.
[http://dx.doi.org/10.1016/j.physbeh.2009.08.013] [PMID: 19737574]
[115]
Robertson, J.F.R.; Llombart-Cussac, A.; Rolski, J.; Feltl, D.; Dewar, J.; Macpherson, E.; Lindemann, J.; Ellis, M.J. Activity of fulvestrant 500 mg versus anastrozole 1 mg as first-line treatment for advanced breast cancer: results from the FIRST study. J. Clin. Oncol., 2009, 27(27), 4530-4535.
[http://dx.doi.org/10.1200/JCO.2008.21.1136] [PMID: 19704066]
[116]
Arciero, C.A.; Guo, Y.; Jiang, R.; Behera, M.; O’Regan, R.; Peng, L.; Li, X.E.R. +/HER2+ breast cancer has different metastatic patterns and better survival than ER−/HER2+ breast cancer. Clin. Breast Cancer, 2019, 19(4), 236-245.
[http://dx.doi.org/10.1016/j.clbc.2019.02.001] [PMID: 30846407]
[117]
Blasco-Benito, S.; Seijo-Vila, M.; Caro-Villalobos, M.; Tundidor, I.; Andradas, C.; García-Taboada, E.; Wade, J.; Smith, S.; Guzmán, M.; Pérez-Gómez, E.; Gordon, M.; Sánchez, C. Appraising the “entourage effect”: Antitumor action of a pure cannabinoid versus a botanical drug preparation in preclinical models of breast cancer. Biochem. Pharmacol., 2018, 157, 285-293.
[http://dx.doi.org/10.1016/j.bcp.2018.06.025] [PMID: 29940172]
[118]
Page, E.; Assouline, D.; Brun, O.; Coeffic, D.; Fric, D.; Winckel, P.; Seidman, A.D.; Pierri, M.K.; Hudis, C. Cardiac dysfunction in clinical trials of trastuzumab. J. Clin. Oncol., 2002, 20(19), 4119-4120.
[http://dx.doi.org/10.1200/JCO.2002.99.124] [PMID: 12351610]
[119]
Wilkinson, A.N. Demystifying breast cancer. Can. Fam. Physician, 2023, 69(7), 473-476.
[http://dx.doi.org/10.46747/cfp.6907473] [PMID: 37451990]
[120]
Krauss, W.C.; Park, J.W.; Kirpotin, D.B.; Hong, K.; Benz, C.C. Emerging antibody-based HER2 (ErbB-2/neu) therapeutics. Breast Dis., 2000, 11(1), 113-124.
[http://dx.doi.org/10.3233/BD-1999-11110] [PMID: 15687597]
[121]
Toomey, S.; Eustace, A.J.; Fay, J.; Sheehan, K.M.; Carr, A.; Milewska, M.; Madden, S.F.; Teiserskiene, A.; Kay, E.W.; O’Donovan, N.; Gallagher, W.; Grogan, L.; Breathnach, O.; Walshe, J.; Kelly, C.; Moulton, B.; Kennedy, M.J.; Gullo, G.; Hill, A.D.; Power, C.; Duke, D.; Hambly, N.; Crown, J.; Hennessy, B.T. Impact of somatic PI3K pathway and ERBB family mutations on pathological complete response (pCR) in HER2-positive breast cancer patients who received neoadjuvant HER2-targeted therapies. Breast Cancer Res., 2017, 19(1), 87.
[http://dx.doi.org/10.1186/s13058-017-0883-9] [PMID: 28750640]
[122]
Dimopoulou, I.; Bamias, A.; Lyberopoulos, P.; Dimopoulos, M.A. Pulmonary toxicity from novel antineoplastic agents. Ann. Oncol., 2006, 17(3), 372-379.
[http://dx.doi.org/10.1093/annonc/mdj057] [PMID: 16291774]
[123]
Dou, S.; Yao, Y.D.; Yang, X.Z.; Sun, T.M.; Mao, C.Q.; Song, E.W.; Wang, J. Anti-Her2 single-chain antibody mediated DNMTs-siRNA delivery for targeted breast cancer therapy. J. Control. Release, 2012, 161(3), 875-883.
[http://dx.doi.org/10.1016/j.jconrel.2012.05.015] [PMID: 22762887]
[124]
Goel, S.; Chirgwin, J.; Francis, P.; Stuart-Harris, R.; Dewar, J.; Mileshkin, L.; Snyder, R.; Michael, M.; Koczwara, B. Rational use of trastuzumab in metastatic and locally advanced breast cancer: Implications of recent research. Breast, 2011, 20(2), 101-110.
[http://dx.doi.org/10.1016/j.breast.2010.11.008] [PMID: 21183347]
[125]
Recupero, D.; Daniele, L.; Marchiò, C.; Molinaro, L.; Castellano, I.; Cassoni, P.; Righi, A.; Montemurro, F.; Sismondi, P.; Biglia, N.; Viale, G.; Risio, M.; Sapino, A. Spontaneous and pronase‐induced HER2 truncation increases the trastuzumab binding capacity of breast cancer tissues and cell lines. J. Pathol., 2013, 229(3), 390-399.
[http://dx.doi.org/10.1002/path.4074] [PMID: 22806884]
[126]
Matini, A.; Naghib, S.M. The necessity of nanotechnology in Mycoplasma pneumonia detection: A comprehensive examination. Sens. Biosensing Res., 2024, 100631.
[127]
Levitzki, A. Targeting the immune system to fight cancer using chemical receptor homing vectors carrying polyinosine/cytosine (PolyIC). Front. Oncol., 2012, 2, 4.
[http://dx.doi.org/10.3389/fonc.2012.00004] [PMID: 22649773]
[128]
Parveen, N.; Abourehab, M.A.S.; Shukla, R.; Thanikachalam, P.V.; Jain, G.K.; Kesharwani, P. Immunoliposomes as an emerging nanocarrier for breast cancer therapy. Eur. Polym. J., 2023, 184, 111781.
[http://dx.doi.org/10.1016/j.eurpolymj.2022.111781]
[129]
Gharoonpour, A.; Simiyari, D.; Yousefzadeh, A.; Badragheh, F.; Rahmati, M. Autophagy modulation in breast cancer utilizing nanomaterials and nanoparticles. Front. Oncol., 2023, 13, 1150492.
[http://dx.doi.org/10.3389/fonc.2023.1150492] [PMID: 37213283]
[130]
Vári, B.; Dókus, L.; Borbély, A.; Gaál, A.; Vári-Mező, D.; Ranđelović, I.; Sólyom-Tisza, A.; Varga, Z.; Szoboszlai, N.; Mező, G.; Tóvári, J. SREKA-targeted liposomes for highly metastatic breast cancer therapy. Drug Deliv., 2023, 30(1), 2174210.
[http://dx.doi.org/10.1080/10717544.2023.2174210] [PMID: 36752075]
[131]
Lu, W.; Liu, W.; Hu, A.; Shen, J.; Yi, H.; Cheng, Z. Combinatorial polydopamine-liposome nanoformulation as an effective anti-breast cancer therapy. Int. J. Nanomedicine, 2023, 18, 861-879.
[http://dx.doi.org/10.2147/IJN.S382109] [PMID: 36844433]
[132]
Zhang, W.; Yu, W.; Cai, G.; Zhu, J.; Zhang, C.; Li, S.; Guo, J.; Yin, G.; Chen, C.; Kong, L. Retracted article: A new synthetic derivative of cryptotanshinone KYZ3 as STAT3 inhibitor for triple-negative breast cancer therapy. Cell Death Dis., 2018, 9(11), 1098.
[http://dx.doi.org/10.1038/s41419-018-1139-z] [PMID: 30368518]
[133]
Pawar, A.; Prabhu, P. Nanosoldiers: A promising strategy to combat triple negative breast cancer. Biomed. Pharmacother., 2019, 110, 319-341.
[http://dx.doi.org/10.1016/j.biopha.2018.11.122] [PMID: 30529766]
[134]
Shir, A.; Ogris, M.; Roedl, W.; Wagner, E.; Levitzki, A. EGFR-homing dsRNA activates cancer-targeted immune response and eliminates disseminated EGFR-overexpressing tumors in mice. Clin. Cancer Res., 2011, 17(5), 1033-1043.
[http://dx.doi.org/10.1158/1078-0432.CCR-10-1140] [PMID: 21196415]
[135]
Castañeda, C.A.; Agullo-Ortuño, M.T.; Fresno Vara, J.A.; Cortes-Funes, H.; Gomez, H.L.; Ciruelos, E. Implication of miRNA in the diagnosis and treatment of breast cancer. Expert Rev. Anticancer Ther., 2011, 11(8), 1265-1275.
[http://dx.doi.org/10.1586/era.11.40] [PMID: 21916580]
[136]
Madrigano, J. Genetic changes NIH Public Access. Occup. Environ. Med., 2008, 23, 1-7.
[http://dx.doi.org/10.1007/s10555-010-9204-9.microRNAs]
[137]
Weil, M.K.; Chen, A.P. PARP inhibitor treatment in ovarian and breast cancer. Curr. Probl. Cancer, 2011, 35(1), 7-50.
[http://dx.doi.org/10.1016/j.currproblcancer.2010.12.002] [PMID: 21300207]
[138]
Khan, M.A.; Jain, V.K.; Rizwanullah, M.; Ahmad, J.; Jain, K. PI3K/AKT/mTOR pathway inhibitors in triple-negative breast cancer: A review on drug discovery and future challenges. Drug Discov. Today, 2019, 24(11), 2181-2191.
[http://dx.doi.org/10.1016/j.drudis.2019.09.001] [PMID: 31520748]
[139]
Yao, X.; Xie, R.; Cao, Y.; Tang, J.; Men, Y.; Peng, H.; Yang, W. Simvastatin induced ferroptosis for triple-negative breast cancer therapy. J. Nanobiotechnology, 2021, 19(1), 311.
[http://dx.doi.org/10.1186/s12951-021-01058-1] [PMID: 34627266]
[140]
Howe, E.N.; Cochrane, D.R.; Richer, J.K. The miR-200 and miR-221/222 microRNA families: Opposing effects on epithelial identity. J. Mammary Gland Biol. Neoplasia, 2012, 17(1), 65-77.
[http://dx.doi.org/10.1007/s10911-012-9244-6] [PMID: 22350980]
[141]
Yang, Z.; Zhang, Q.; Yu, L.; Zhu, J.; Cao, Y.; Gao, X. The signaling pathways and targets of traditional Chinese medicine and natural medicine in triple-negative breast cancer. J. Ethnopharmacol., 2021, 264, 113249.
[http://dx.doi.org/10.1016/j.jep.2020.113249] [PMID: 32810619]
[142]
Berrada, N.; Delaloge, S.; André, F. Treatment of triple-negative metastatic breast cancer: toward individualized targeted treatments or chemosensitization? Ann. Oncol., 2010, 21(Suppl. 7), vii30-vii35.
[http://dx.doi.org/10.1093/annonc/mdq279] [PMID: 20943632]
[143]
Jin, S.; Ye, K. Targeted drug delivery for breast cancer treatment. Recent Patents Anticancer Drug Discov., 2013, 8(2), 143-153.
[http://dx.doi.org/10.2174/1574892811308020003] [PMID: 23394116]
[144]
Bullard, R.S.; Gibson, W.; Bose, S.K.; Belgrave, J.K.; Eaddy, A.C.; Wright, C.J.; Hazen-Martin, D.J.; Lage, J.M.; Keane, T.E.; Ganz, T.A.; Donald, C.D. Functional analysis of the host defense peptide Human Beta Defensin-1: New insight into its potential role in cancer. Mol. Immunol., 2008, 45(3), 839-848.
[http://dx.doi.org/10.1016/j.molimm.2006.11.026] [PMID: 17868871]
[145]
Jahangiri, R.; Mosaffa, F.; Gharib, M.; Emami Razavi, A.N.; Abdirad, A.; Jamialahmadi, K. PAX2 expression is correlated with better survival in tamoxifen-treated breast carcinoma patients. Tissue Cell, 2018, 52, 135-142.
[http://dx.doi.org/10.1016/j.tice.2018.05.005] [PMID: 29857823]
[146]
Jahangiri, R.; Mosaffa, F.; Emami, R. A.; Teimoori-Toolabi, L.; Jamialahmadi, K. PAX2 promoter methylation and AIB1 overexpression promote tamoxifen resistance in breast carcinoma patients. J. Oncol. Pharm. Pract., 2022, 28(2), 310-325.
[http://dx.doi.org/10.1177/1078155221989404] [PMID: 33509057]
[147]
Hurtado, A.; Holmes, K.A.; Geistlinger, T.R.; Hutcheson, I.R.; Nicholson, R.I.; Brown, M.; Jiang, J.; Howat, W.J.; Ali, S.; Carroll, J.S. Regulation of ERBB2 by oestrogen receptor–PAX2 determines response to tamoxifen. Nature, 2008, 456(7222), 663-666.
[http://dx.doi.org/10.1038/nature07483] [PMID: 19005469]
[148]
Yang, S.; Gao, W.; Wang, H.; Zhang, X.; Mi, Y.; Ding, Y.; Geng, C.; Zhang, J.; Cheng, M.; Li, S. Role of PAX2 in breast cancer verified by bioinformatics analysis and in vitro validation. Ann. Transl. Med., 2023, 11(2), 58-58.
[http://dx.doi.org/10.21037/atm-22-6360] [PMID: 36819548]
[149]
Shan, Y. The role of PAX2 in breast cancer: A study based on bioinformatics analysis and in vitro validation. Preprint, 2021, 1-19.
[http://dx.doi.org/10.21203/rs.3.rs-738037/v1]
[150]
Comen, E.A.; Robson, M. Poly(ADP-ribose) polymerase inhibitors in triple-negative breast cancer, Cancer. Principles & Practice of Oncology: Annual Advances in Oncology, 2012, 2, 672-677.
[PMID: 22263793]
[151]
Bischoff, H.; Bigot, C.; Moinard-Butot, F.; Pflumio, C.; Fischbach, C.; Kalish, M.; Kurtz, J.E.; Pierard, L.; Demarchi, M.; Karouby, D.; Coliat, P.; Pivot, X.; Petit, T.; Cox, D.G.; Goepp, L.; Bender, L.; Trensz, P. A propensity score–weighted study comparing a two- versus four-weekly pegylated liposomal doxorubicin regimen in metastatic breast cancer. Breast Cancer Res. Treat., 2023, 198(1), 23-29.
[http://dx.doi.org/10.1007/s10549-022-06844-5] [PMID: 36562910]
[152]
Chavoshi, H.; Taheri, M.; Wan, M.L.Y.; Sabzichi, M. Crocin-loaded liposomes sensitize MDA-MB 231 breast cancer cells to doxorubicin by inducing apoptosis. Process Biochem., 2023, 130, 272-280.
[http://dx.doi.org/10.1016/j.procbio.2023.04.012]
[153]
Gu, H.; Shi, R.; Xu, C.; Lv, W.; Hu, X.; Xu, C.; Pan, Y.; He, X.; Wu, A.; Li, J. EGFR-targeted liposomes combined with ginsenoside Rh2 inhibit triple-negative breast cancer growth and metastasis. Bioconjug. Chem., 2023, 34(6), 1157-1165.
[http://dx.doi.org/10.1021/acs.bioconjchem.3c00207] [PMID: 37235785]
[154]
Tsai, J.H.; Li, C.L.; Yeh, D.C.; Hung, C.S.; Hung, C.C.; Lin, C.Y.; Kuo, Y.L. Neoadjuvant pegylated liposomal doxorubicin- and epirubicin-based combination therapy regimens for early breast cancer: A multicenter retrospective case–control study. Breast Cancer Res. Treat., 2023, 199(1), 47-55.
[http://dx.doi.org/10.1007/s10549-023-06867-6] [PMID: 36869992]
[155]
Hasanbegloo, K.; Banihashem, S.; Faraji Dizaji, B.; Bybordi, S.; Farrokh-Eslamlou, N.; Abadi, P.G.; Jazi, F.S.; Irani, M. Paclitaxel-loaded liposome-incorporated chitosan (core)/poly(ε-caprolactone)/chitosan (shell) nanofibers for the treatment of breast cancer. Int. J. Biol. Macromol., 2023, 230, 123380.
[http://dx.doi.org/10.1016/j.ijbiomac.2023.123380] [PMID: 36706885]
[156]
Wang, J.; Min, J.; Eghtesadi, S.A.; Kane, R.S.; Chilkoti, A. Quantitative study of the interaction of multivalent ligand-modified nanoparticles with breast cancer cells with tunable receptor density. ACS Nano, 2020, 14(1), 372-383.
[http://dx.doi.org/10.1021/acsnano.9b05689] [PMID: 31899613]
[157]
Juan, A.; Cimas, F.J.; Bravo, I.; Pandiella, A.; Ocaña, A.; Alonso-Moreno, C. An overview of antibody conjugated polymeric nanoparticles for breast cancer therapy. Pharmaceutics, 2020, 12(9), 802.
[http://dx.doi.org/10.3390/pharmaceutics12090802] [PMID: 32854255]
[158]
Shakeran, Z.; Keyhanfar, M.; Varshosaz, J.; Sutherland, D.S. Biodegradable nanocarriers based on chitosan-modified mesoporous silica nanoparticles for delivery of methotrexate for application in breast cancer treatment. Mater. Sci. Eng. C, 2021, 118, 111526.
[http://dx.doi.org/10.1016/j.msec.2020.111526] [PMID: 33255079]
[159]
Olov, N.; Bagheri-Khoulenjani, S.; Mirzadeh, H. Combinational drug delivery using nanocarriers for breast cancer treatments: A review. J. Biomed. Mater. Res. A, 2018, 106(8), 2272-2283.
[http://dx.doi.org/10.1002/jbm.a.36410] [PMID: 29577607]
[160]
Fathi, K.S.; Mohammadhosseini, M.; Panahi, Y.; Milani, M.; Zarghami, N.; Akbarzadeh, A.; Abasi, E.; Hosseini, A.; Davaran, S. Magnetic nanoparticles in cancer diagnosis and treatment: A review. Artif. Cells Nanomed. Biotechnol., 2017, 45(1), 1-5.
[http://dx.doi.org/10.3109/21691401.2016.1153483] [PMID: 27015806]
[161]
Kundu, M.; Sadhukhan, P.; Ghosh, N.; Chatterjee, S.; Manna, P.; Das, J.; Sil, P.C. pH-responsive and targeted delivery of curcumin via phenylboronic acid-functionalized ZnO nanoparticles for breast cancer therapy. J. Adv. Res., 2019, 18, 161-172.
[http://dx.doi.org/10.1016/j.jare.2019.02.036] [PMID: 31032117]
[162]
Li, Y.; Liu, X.; Pan, W.; Li, N.; Tang, B. Photothermal therapy-induced immunogenic cell death based on natural melanin nanoparticles against breast cancer. Chem. Commun., 2020, 56(9), 1389-1392.
[http://dx.doi.org/10.1039/C9CC08447A] [PMID: 31912821]
[163]
Minafra, L.; Porcino, N.; Bravatà, V.; Gaglio, D.; Bonanomi, M.; Amore, E.; Cammarata, F.P.; Russo, G.; Militello, C.; Savoca, G.; Baglio, M.; Abbate, B.; Iacoviello, G.; Evangelista, G.; Gilardi, M.C.; Bondì, M.L.; Forte, G.I. Radiosensitizing effect of curcumin-loaded lipid nanoparticles in breast cancer cells. Sci. Rep., 2019, 9(1), 11134.
[http://dx.doi.org/10.1038/s41598-019-47553-2] [PMID: 31366901]
[164]
Jin, K.T.; Lu, Z.B.; Chen, J.Y.; Liu, Y.Y.; Lan, H.R.; Dong, H.Y.; Yang, F.; Zhao, Y.Y.; Chen, X.Y. Recent trends in nanocarrier-based targeted chemotherapy: selective delivery of anticancer drugs for effective lung, colon, cervical, and breast cancer treatment. J. Nanomater., 2020, 2020, 1-14.
[http://dx.doi.org/10.1155/2020/9184284]
[165]
Fulton, M.D.; Najahi-Missaoui, W. Liposomes in cancer therapy: How did we start and where are we now. Int. J. Mol. Sci., 2023, 24(7), 6615.
[http://dx.doi.org/10.3390/ijms24076615] [PMID: 37047585]
[166]
Kar, S.S.; Dhar, A.K.; Bhatt, S. Nanocarriers and their role in the treatment of breast cancer. In: Therapeutic Nanocarriers in Cancer Treatment: Challenges and Future Perspective; Bentham Science Publishers, 2023; pp. 163-210.
[http://dx.doi.org/10.2174/9789815080506123010009]
[167]
Gupta, P.; Neupane, Y.R.; Parvez, S.; Kohli, K.; Sultana, Y. Combinatorial chemosensitive nanomedicine approach for the treatment of breast cancer. Curr. Mol. Med., 2023, 23(9), 876-888.
[http://dx.doi.org/10.2174/1566524023666220819122948] [PMID: 35986537]
[168]
Pandey, P.; Khan, F.; Maqsood, R.; Upadhyay, T.K. Current perspectives on nanoparticle-based targeted drug delivery approaches in breast cancer treatment. Endocr. Metab. Immune Disord. Drug Targets, 2023, 23(10), 1291-1302.
[http://dx.doi.org/10.2174/1871530323666230315145332] [PMID: 36924095]
[169]
Patel, P.; Kumar, K.; Jain, V.K.; Popli, H.; Yadav, A.K.; Jain, K. Nanotheranostics for diagnosis and treatment of breast cancer. Curr. Pharm. Des., 2023, 29(10), 732-747.
[http://dx.doi.org/10.2174/1381612829666230329122911] [PMID: 36999427]
[170]
Khan, M.S.; Gowda, B.H.J.; Nasir, N.; Wahab, S.; Pichika, M.R.; Sahebkar, A.; Kesharwani, P. Advancements in dextran-based nanocarriers for treatment and imaging of breast cancer. Int. J. Pharm., 2023, 643, 123276.
[http://dx.doi.org/10.1016/j.ijpharm.2023.123276] [PMID: 37516217]
[171]
Juan, A.; Cimas, F.J.; Bravo, I.; Pandiella, A.; Ocaña, A.; Alonso-Moreno, C. Antibody conjugation of nanoparticles as therapeutics for breast cancer treatment. Int. J. Mol. Sci., 2020, 21(17), 6018.
[http://dx.doi.org/10.3390/ijms21176018] [PMID: 32825618]
[172]
Marshall, S.K.; Angsantikul, P.; Pang, Z.; Nasongkla, N.; Hussen, R.S.D.; Thamphiwatana, S.D. Biomimetic targeted theranostic nanoparticles for breast cancer treatment. Molecules, 2022, 27(19), 6473.
[http://dx.doi.org/10.3390/molecules27196473] [PMID: 36235009]
[173]
Dongsar, T.T.; Dongsar, T.S.; Abourehab, M.A.S.; Gupta, N.; Kesharwani, P. Emerging application of magnetic nanoparticles for breast cancer therapy. Eur. Polym. J., 2023, 187, 111898.
[http://dx.doi.org/10.1016/j.eurpolymj.2023.111898]
[174]
England, C.G.; Gobin, A.M.; Frieboes, H.B. Evaluation of uptake and distribution of gold nanoparticles in solid tumors. Eur. Phys. J. Plus, 2015, 130(11), 231.
[http://dx.doi.org/10.1140/epjp/i2015-15231-1] [PMID: 27014559]
[175]
Montaseri, H.; Kruger, C.A.; Abrahamse, H. Inorganic nanoparticles applied for active targeted photodynamic therapy of breast cancer. Pharmaceutics, 2021, 13(3), 296.
[http://dx.doi.org/10.3390/pharmaceutics13030296] [PMID: 33668307]
[176]
Hosseinkazemi, H.; Samani, S.; O’Neill, A.; Soezi, M.; Moghoofei, M.; Azhdari, M.H.; Aavani, F.; Nazbar, A.; Keshel, S.H.; Doroudian, M. Applications of iron oxide nanoparticles against breast cancer. J. Nanomater., 2022, 2022, 1-12.
[http://dx.doi.org/10.1155/2022/6493458]
[177]
Aghebati-Maleki, A.; Dolati, S.; Ahmadi, M.; Baghbanzhadeh, A.; Asadi, M.; Fotouhi, A.; Yousefi, M.; Aghebati-Maleki, L. Nanoparticles and cancer therapy: Perspectives for application of nanoparticles in the treatment of cancers. J. Cell. Physiol., 2020, 235(3), 1962-1972.
[http://dx.doi.org/10.1002/jcp.29126] [PMID: 31441032]
[178]
Du, M.; Ouyang, Y.; Meng, F.; Ma, Q.; Liu, H.; Zhuang, Y.; Pang, M.; Cai, T.; Cai, Y. Nanotargeted agents: An emerging therapeutic strategy for breast cancer. Nanomedicine, 2019, 14(13), 1771-1786.
[http://dx.doi.org/10.2217/nnm-2018-0481] [PMID: 31298065]
[179]
Grewal, I.K.; Singh, S.; Arora, S.; Sharma, N. Polymeric nanoparticles for breast cancer therapy: A comprehensive review. Biointerface Res. Appl. Chem., 2020, 11(4), 11151-11171.
[http://dx.doi.org/10.33263/BRIAC114.1115111171]
[180]
Tagde, P.; Kulkarni, G.T.; Mishra, D.K.; Kesharwani, P. Recent advances in folic acid engineered nanocarriers for treatment of breast cancer. J. Drug Deliv. Sci. Technol., 2020, 56, 101613.
[http://dx.doi.org/10.1016/j.jddst.2020.101613]
[181]
Bangham, A.D.; Standish, M.M.; Watkins, J.C. Diffusion of univalent ions across the lamellae of swollen phospholipids. J. Mol. Biol., 1965, 13(1), 238-IN27.
[http://dx.doi.org/10.1016/S0022-2836(65)80093-6] [PMID: 5859039]
[182]
Jin, Y.; Tomeh, M.A.; Zhang, P.; Su, M.; Zhao, X.; Cai, Z. Microfluidic fabrication of photo-responsive Ansamitocin P-3 loaded liposomes for the treatment of breast cancer. Nanoscale, 2023, 15(8), 3780-3795.
[http://dx.doi.org/10.1039/D2NR06215A] [PMID: 36723377]
[183]
Liu, H.; Liu, Y.; Li, N.; Zhang, G-Q.; Wang, M. Ginsenoside Rg_3 based liposomes target delivery of dihydroartemisinin and paclitaxel for treatment of triple-negative breast cancer. Zhongguo Zhongyao Zazhi, 2023, 48(13), 3472-3484.
[http://dx.doi.org/10.19540/j.cnki.cjcmm.20230410.301] [PMID: 37474984]
[184]
Pogorzelska, A.; Mazur, M.; Świtalska, M.; Wietrzyk, J.; Sigorski, D.; Fronczyk, K.; Wiktorska, K. Anticancer effect and safety of doxorubicin and nutraceutical sulforaphane liposomal formulation in triple-negative breast cancer (TNBC) animal model. Biomed. Pharmacother., 2023, 161, 114490.
[http://dx.doi.org/10.1016/j.biopha.2023.114490] [PMID: 36931031]
[185]
Duarte, J.A.; Gomes, E.R.; De Barros, A.L.B.; Leite, E.A. Co-encapsulation of simvastatin and doxorubicin into pH-sensitive liposomes enhances antitumoral activity in breast cancer cell lines. Pharmaceutics, 2023, 15(2), 369.
[http://dx.doi.org/10.3390/pharmaceutics15020369] [PMID: 36839690]
[186]
Moudgil, A.; Salve, R.; Gajbhiye, V.; Chaudhari, B.P. Challenges and emerging strategies for next generation liposomal based drug delivery: An account of the breast cancer conundrum. Chem. Phys. Lipids, 2023, 250, 105258.
[http://dx.doi.org/10.1016/j.chemphyslip.2022.105258] [PMID: 36375540]
[187]
Cao, J.; Wang, R.; Gao, N.; Li, M.; Tian, X.; Yang, W.; Ruan, Y.; Zhou, C.; Wang, G.; Liu, X.; Tang, S.; Yu, Y.; Liu, Y.; Sun, G.; Peng, H.; Wang, Q. A7RC peptide modified paclitaxel liposomes dually target breast cancer. Biomater. Sci., 2015, 3(12), 1545-1554.
[http://dx.doi.org/10.1039/C5BM00161G] [PMID: 26291480]
[188]
Eloy, J.O.; Petrilli, R.; Topan, J.F.; Antonio, H.M.R.; Barcellos, J.P.A.; Chesca, D.L.; Serafini, L.N.; Tiezzi, D.G.; Lee, R.J.; Marchetti, J.M. Co-loaded paclitaxel/rapamycin liposomes: Development, characterization and in vitro and in vivo evaluation for breast cancer therapy. Colloids Surf. B Biointerfaces, 2016, 141, 74-82.
[http://dx.doi.org/10.1016/j.colsurfb.2016.01.032] [PMID: 26836480]
[189]
Deshpande, P.P.; Biswas, S.; Torchilin, V.P. Current trends in the use of liposomes for tumor targeting. Nanomedicine, 2013, 8(9), 1509-1528.
[http://dx.doi.org/10.2217/nnm.13.118] [PMID: 23914966]
[190]
Mitchell, M.J.; Billingsley, M.M.; Haley, R.M.; Wechsler, M.E.; Peppas, N.A.; Langer, R. Engineering precision nanoparticles for drug delivery. Nat. Rev. Drug Discov., 2021, 20(2), 101-124.
[http://dx.doi.org/10.1038/s41573-020-0090-8] [PMID: 33277608]
[191]
de Oliveira Silva, J.; Fernandes, R.S.; Ramos Oda, C.M.; Ferreira, T.H.; Machado, B.A.F.; Martins, M.M.; de Miranda, M.C.; Assis, G.D.; Dantas, C.G.; Townsend, D.M.; Rubello, D.; Oliveira, M.C.; de Barros, A.L.B. Folate-coated, long-circulating and pH-sensitive liposomes enhance doxorubicin antitumor effect in a breast cancer animal model. Biomed. Pharmacother., 2019, 118, 109323.
[http://dx.doi.org/10.1016/j.biopha.2019.109323] [PMID: 31400669]
[192]
Dunne, M.; Dou, Y.N.; Drake, D.M.; Spence, T.; Gontijo, S.M.L.; Wells, P.G.; Allen, C. Hyperthermia-mediated drug delivery induces biological effects at the tumor and molecular levels that improve cisplatin efficacy in triple negative breast cancer. J. Control. Release, 2018, 282, 35-45.
[http://dx.doi.org/10.1016/j.jconrel.2018.04.029] [PMID: 29673642]
[193]
García-Pinel, B.; Porras-Alcalá, C.; Ortega-Rodríguez, A.; Sarabia, F.; Prados, J.; Melguizo, C.; López-Romero, J.M. Lipid-based nanoparticles: Application and recent advances in cancer treatment. Nanomaterials , 2019, 9(4), 638.
[http://dx.doi.org/10.3390/nano9040638] [PMID: 31010180]
[194]
Lima, P.H.C.; Butera, A.P.; Cabeça, L.F.; Ribeiro-Viana, R.M. Liposome surface modification by phospholipid chemical reactions. Chem. Phys. Lipids, 2021, 237, 105084.
[http://dx.doi.org/10.1016/j.chemphyslip.2021.105084] [PMID: 33891960]
[195]
Gomes, E.R.; Novais, M.V.M.; Silva, I.T.; Barros, A.L.B.; Leite, E.A.; Munkert, J.; Frade, A.C.M.; Cassali, G.D.; Braga, F.C.; Pádua, R.M.; Oliveira, M.C. Long-circulating and fusogenic liposomes loaded with a glucoevatromonoside derivative induce potent antitumor response. Biomed. Pharmacother., 2018, 108, 1152-1161.
[http://dx.doi.org/10.1016/j.biopha.2018.09.109] [PMID: 30372816]
[196]
Strebhardt, K.; Ullrich, A. Paul Ehrlich’s magic bullet concept: 100 years of progress. Nat. Rev. Cancer, 2008, 8(6), 473-480.
[http://dx.doi.org/10.1038/nrc2394] [PMID: 18469827]
[197]
Eloy, J.O.; Petrilli, R.; Brueggemeier, R.W.; Marchetti, J.M.; Lee, R.J. Rapamycin-loaded immunoliposomes functionalized with trastuzumab: A strategy to enhance cytotoxicity to HER2-positive breast cancer cells. Anticancer. Agents Med. Chem., 2017, 17(1), 48-56.
[http://dx.doi.org/10.2174/1871520616666160526103432] [PMID: 27225450]
[198]
Sharma, G.; Anabousi, S.; Ehrhardt, C.; Ravi, K.M.N.V. Liposomes as targeted drug delivery systems in the treatment of breast cancer. J. Drug Target., 2006, 14(5), 301-310.
[http://dx.doi.org/10.1080/10611860600809112] [PMID: 16882550]
[199]
Yi, H.; Lu, W.; Liu, F.; Zhang, G.; Xie, F.; Liu, W.; Wang, L.; Zhou, W.; Cheng, Z. ROS-responsive liposomes with NIR light-triggered doxorubicin release for combinatorial therapy of breast cancer. J. Nanobiotechnology, 2021, 19(1), 134.
[http://dx.doi.org/10.1186/s12951-021-00877-6] [PMID: 33975609]
[200]
Riaz, M.; Riaz, M.; Zhang, X.; Lin, C.; Wong, K.; Chen, X.; Zhang, G.; Lu, A.; Yang, Z. Surface functionalization and targeting strategies of liposomes in solid tumor therapy: A review. Int. J. Mol. Sci., 2018, 19(1), 195.
[http://dx.doi.org/10.3390/ijms19010195] [PMID: 29315231]
[201]
Torchilin, V. Tumor delivery of macromolecular drugs based on the EPR effect. Adv. Drug Deliv. Rev., 2011, 63(3), 131-135.
[http://dx.doi.org/10.1016/j.addr.2010.03.011] [PMID: 20304019]
[202]
Tucci, S.T.; Kheirolomoom, A.; Ingham, E.S.; Mahakian, L.M.; Tam, S.M.; Foiret, J.; Hubbard, N.E.; Borowsky, A.D.; Baikoghli, M.; Cheng, R.H.; Ferrara, K.W. Tumor-specific delivery of gemcitabine with activatable liposomes. J. Control. Release, 2019, 309, 277-288.
[http://dx.doi.org/10.1016/j.jconrel.2019.07.014] [PMID: 31301340]
[203]
Hirota, K.; Czogala, E.; Pedrycz, W. Experimental result of membership and vagueness in questionnaire., 1983, 116-120.
[204]
Shi, J.F.; Sun, M.G.; Li, X.Y.; Zhao, Y.; Ju, R.J.; Mu, L.M.; Yan, Y.; Li, X.T.; Zeng, F.; Lu, W.L. A combination of targeted sunitinib liposomes and targeted vinorelbine liposomes for treating invasive breast cancer. J. Biomed. Nanotechnol., 2015, 11(9), 1568-1582.
[http://dx.doi.org/10.1166/jbn.2015.2075] [PMID: 26485927]
[205]
Kang, X.; Zheng, Z.; Liu, Z.; Wang, H.; Zhao, Y.; Zhang, W.; Shi, M.; He, Y.; Cao, Y.; Xu, Q.; Peng, C.; Huang, Y. Liposomal codelivery of doxorubicin and andrographolide inhibits breast cancer growth and metastasis. Mol. Pharm., 2018, 15(4), 1618-1626.
[http://dx.doi.org/10.1021/acs.molpharmaceut.7b01164] [PMID: 29498868]
[206]
Gu, W.; Meng, F.; Haag, R.; Zhong, Z. Actively targeted nanomedicines for precision cancer therapy: Concept, construction, challenges and clinical translation. J. Control. Release, 2021, 329, 676-695.
[http://dx.doi.org/10.1016/j.jconrel.2020.10.003] [PMID: 33022328]
[207]
Kulma, M.; Anderluh, G. Beyond pore formation: Reorganization of the plasma membrane induced by pore-forming proteins. Cell. Mol. Life Sci., 2021, 78(17-18), 6229-6249.
[http://dx.doi.org/10.1007/s00018-021-03914-7] [PMID: 34387717]
[208]
Chen, Y.; Cheng, Y.; Zhao, P.; Zhang, S.; Li, M.; He, C.; Zhang, X.; Yang, T.; Yan, R.; Ye, P.; Ma, X.; Xiang, G. Co-delivery of doxorubicin and imatinib by pH sensitive cleavable PEGylated nanoliposomes with folate-mediated targeting to overcome multidrug resistance. Int. J. Pharm., 2018, 542(1-2), 266-279.
[http://dx.doi.org/10.1016/j.ijpharm.2018.03.024] [PMID: 29551747]
[209]
Fu, M.; Tang, W.; Liu, J.J.; Gong, X.Q.; Kong, L.; Yao, X.M.; Jing, M.; Cai, F.Y.; Li, X.T.; Ju, R.J. Combination of targeted daunorubicin liposomes and targeted emodin liposomes for treatment of invasive breast cancer. J. Drug Target., 2020, 28(3), 245-258.
[http://dx.doi.org/10.1080/1061186X.2019.1656725] [PMID: 31462111]
[210]
Voinea, M.; Simionescu, M. Designing of ‘intelligent’ liposomes for efficient delivery of drugs. J. Cell. Mol. Med., 2002, 6(4), 465-474.
[http://dx.doi.org/10.1111/j.1582-4934.2002.tb00450.x] [PMID: 12611636]
[211]
Bawarski, W.E.; Chidlowsky, E.; Bharali, D.J.; Mousa, S.A. Emerging nanopharmaceuticals. Nanomedicine , 2008, 4(4), 273-282.
[http://dx.doi.org/10.1016/j.nano.2008.06.002] [PMID: 18640076]
[212]
Marqués-Gallego, P.; de Kroon, A.I.P.M. Ligation strategies for targeting liposomal nanocarriers. BioMed Res. Int., 2014, 2014, 1-12.
[http://dx.doi.org/10.1155/2014/129458] [PMID: 25126543]
[213]
Ross, C.; Taylor, M.; Fullwood, N.; Allsop, D. Liposome delivery systems for the treatment of Alzheimer’s disease. Int. J. Nanomedicine, 2018, 13, 8507-8522.
[http://dx.doi.org/10.2147/IJN.S183117] [PMID: 30587974]
[214]
Antimisiaris, S.G.; Marazioti, A.; Kannavou, M.; Natsaridis, E.; Gkartziou, F.; Kogkos, G.; Mourtas, S. Overcoming barriers by local drug delivery with liposomes. Adv. Drug Deliv. Rev., 2021, 174, 53-86.
[http://dx.doi.org/10.1016/j.addr.2021.01.019] [PMID: 33539852]
[215]
Basoglu, H.; Bilgin, M.D.; Demir, M.M. Protoporphyrin IX-loaded magnetoliposomes as a potential drug delivery system for photodynamic therapy: Fabrication, characterization and in vitro study. Photodiagn. Photodyn. Ther., 2016, 13, 81-90.
[http://dx.doi.org/10.1016/j.pdpdt.2015.12.010] [PMID: 26751701]
[216]
Abumanhal-Masarweh, H.; Da Silva, D.; Poley, M.; Zinger, A.; Goldman, E.; Krinsky, N.; Kleiner, R.; Shenbach, G.; Schroeder, J.E.; Shklover, J.; Shainsky-Roitman, J.; Schroeder, A. Tailoring the lipid composition of nanoparticles modulates their cellular uptake and affects the viability of triple negative breast cancer cells. J. Control. Release, 2019, 307, 331-341.
[http://dx.doi.org/10.1016/j.jconrel.2019.06.025] [PMID: 31238049]
[217]
Zahmatkeshan, M.; Gheybi, F.; Rezayat, S.M.; Jaafari, M.R. Improved drug delivery and therapeutic efficacy of PEgylated liposomal doxorubicin by targeting anti-HER2 peptide in murine breast tumor model. Eur. J. Pharm. Sci., 2016, 86, 125-135.
[http://dx.doi.org/10.1016/j.ejps.2016.03.009] [PMID: 26972276]
[218]
Yazdan, M.; Naghib, S.M. Smart ultrasound-responsive polymers for drug delivery: An overview on advanced stimuli-sensitive materials and techniques. Curr. Drug Deliv., 2024. [Epub ahead of Print]
[http://dx.doi.org/10.2174/0115672018283792240115053302] [PMID: 38288800]
[219]
Matini, A.; Naghib, S.M. Microwave-assisted natural gums for drug delivery systems: Recent progresses and advances over emerging biopolymers and technologies. Curr. Med. Chem., 2024.
[http://dx.doi.org/10.2174/0109298673283144231212055603] [PMID: 38192130]
[220]
Nikolova, M.P.; Kumar, E.M.; Chavali, M.S. Updates on responsive drug delivery based on liposome vehicles for cancer treatment. Pharmaceutics, 2022, 14(10), 2195.
[http://dx.doi.org/10.3390/pharmaceutics14102195] [PMID: 36297630]
[221]
Orthmann, A.; Peiker, L.; Fichtner, I.; Hoffmann, A.; Hilger, R.A.; Zeisig, R. Improved treatment of MT-3 breast cancer and brain metastases in a mouse xenograft by LRP-targeted oxaliplatin liposomes. J. Biomed. Nanotechnol., 2016, 12(1), 56-68.
[http://dx.doi.org/10.1166/jbn.2016.2143] [PMID: 27301172]
[222]
Huang, Y.; Zhang, Q.; Feng, P.; Li, W.; Li, X.; Li, Y.; Zhang, D. Hyperthermia-sensitive liposomes containing brucea javanica oil for synergistic photothermal-/chemo-therapy in breast cancer treatment. Curr. Drug Deliv., 2023, 20(2), 192-200.
[http://dx.doi.org/10.2174/1567201819666220411115632] [PMID: 35410599]
[223]
Poulios, E.; Koukounari, S.; Psara, E.; Vasios, G.K.; Sakarikou, C.; Giaginis, C. Anti-obesity properties of phytochemicals: Highlighting their molecular mechanisms against obesity. Curr. Med. Chem., 2024, 31(1), 25-61.
[http://dx.doi.org/10.2174/0929867330666230517124033] [PMID: 37198988]
[224]
Shanehband, N.; Naghib, S.M. Microfluidics-assisted tumor cell separation approaches for clinical applications: An overview on emerging devices. Comb. Chem. High Throughput Screen., 2024, 27.
[http://dx.doi.org/10.2174/0113862073277130231110111933] [PMID: 38275060]
[225]
Mohammad-Jafari, K.; Naghib, S.M. 3D printing of microfluidic-assisted liposomes production for drug delivery and nanobiomedicine: A review. Curr. Med. Chem., 2024.
[http://dx.doi.org/10.2174/0109298673285199231210170549] [PMID: 38299296]
[226]
Vaidya, T.; Straubinger, R.M.; Ait-Oudhia, S. Development and evaluation of tri-functional immunoliposomes for the treatment of HER2 positive breast cancer. Pharm. Res., 2018, 35(5), 95.
[http://dx.doi.org/10.1007/s11095-018-2365-x] [PMID: 29536232]
[227]
Abu Lila, A.S.; Ishida, T. Liposomal delivery systems: Design optimization and current applications. Biol. Pharm. Bull., 2017, 40(1), 1-10.
[http://dx.doi.org/10.1248/bpb.b16-00624] [PMID: 28049940]
[228]
Malam, Y.; Loizidou, M.; Seifalian, A.M. Liposomes and nanoparticles: Nanosized vehicles for drug delivery in cancer. Trends Pharmacol. Sci., 2009, 30(11), 592-599.
[http://dx.doi.org/10.1016/j.tips.2009.08.004] [PMID: 19837467]
[229]
Almeida, B.; Nag, O.K.; Rogers, K.E.; Delehanty, J.B. Recent progress in bioconjugation strategies for liposome-mediated drug delivery. Molecules, 2020, 25(23), 5672.
[http://dx.doi.org/10.3390/molecules25235672] [PMID: 33271886]
[230]
Li, X.; Ding, L.; Xu, Y.; Wang, Y.; Ping, Q. Targeted delivery of doxorubicin using stealth liposomes modified with transferrin. Int. J. Pharm., 2009, 373(1-2), 116-123.
[http://dx.doi.org/10.1016/j.ijpharm.2009.01.023] [PMID: 19429296]
[231]
Huwyler, J.; Drewe, J.; Krähenbuhl, S. Tumor targeting using liposomal antineoplastic drugs. Int. J. Nanomedicine, 2008, 3(1), 21-29.
[http://dx.doi.org/10.2147/IJN.S1253] [PMID: 18488413]
[232]
Wallrabenstein, T.; Daetwyler, E.; Oseledchyk, A.; Rochlitz, C.; Vetter, M. Pegylated liposomal doxorubicin (PLD) in daily practice—A single center experience of treatment with PLD in patients with comorbidities and older patients with metastatic breast cancer. Cancer Med., 2023, 12(12), 13388-13396.
[http://dx.doi.org/10.1002/cam4.6041] [PMID: 37148541]
[233]
Vila-Caballer, M.; Codolo, G.; Munari, F.; Malfanti, A.; Fassan, M.; Rugge, M.; Balasso, A.; de Bernard, M.; Salmaso, S. A pH-sensitive stearoyl-PEG-poly(methacryloyl sulfadimethoxine)-decorated liposome system for protein delivery: An application for bladder cancer treatment. J. Control. Release, 2016, 238, 31-42.
[http://dx.doi.org/10.1016/j.jconrel.2016.07.024] [PMID: 27444816]
[234]
Paliwal, S.R.; Paliwal, R.; Vyas, S.P. A review of mechanistic insight and application of pH-sensitive liposomes in drug delivery. Drug Deliv., 2015, 22(3), 231-242.
[http://dx.doi.org/10.3109/10717544.2014.882469] [PMID: 24524308]
[235]
Swami, R.; Kumar, Y.; Chaudhari, D.; Katiyar, S.S.; Kuche, K.; Katare, P.B.; Banerjee, S.K.; Jain, S. pH sensitive liposomes assisted specific and improved breast cancer therapy using co-delivery of SIRT1 shRNA and Docetaxel. Mater. Sci. Eng. C, 2021, 120, 111664.
[http://dx.doi.org/10.1016/j.msec.2020.111664] [PMID: 33545830]
[236]
Ferreira, D.S.; Lopes, S.C.A.; Franco, M.S.; Oliveira, M.C. pH-sensitive liposomes for drug delivery in cancer treatment. Ther. Deliv., 2013, 4(9), 1099-1123.
[http://dx.doi.org/10.4155/tde.13.80] [PMID: 24024511]
[237]
Karanth, H.; Murthy, R.S.R. pH-Sensitive liposomes-principle and application in cancer therapy. J. Pharm. Pharmacol., 2010, 59(4), 469-483.
[http://dx.doi.org/10.1211/jpp.59.4.0001] [PMID: 17430630]
[238]
Lee, Y.; Thompson, D.H. Stimuli‐responsive liposomes for drug delivery. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol., 2017, 9(5), e1450.
[http://dx.doi.org/10.1002/wnan.1450] [PMID: 28198148]
[239]
Medeiros, S.F.; Santos, A.M.; Fessi, H.; Elaissari, A. Stimuli-responsive magnetic particles for biomedical applications. Int. J. Pharm., 2011, 403(1-2), 139-161.
[http://dx.doi.org/10.1016/j.ijpharm.2010.10.011] [PMID: 20951779]
[240]
Karve, S.; Bandekar, A.; Ali, M.R.; Sofou, S. The pH-dependent association with cancer cells of tunable functionalized lipid vesicles with encapsulated doxorubicin for high cell-kill selectivity. Biomaterials, 2010, 31(15), 4409-4416.
[http://dx.doi.org/10.1016/j.biomaterials.2010.01.064] [PMID: 20189243]
[241]
Vaishnavi, D.C.; Shubhangi, R.M. Liposomal drug delivery system: An overview. IRJMETS, 2023, 5(3), 4412-4424.
[242]
Zhang, W.; Ngo, L.; Tsao, S.C.H.; Liu, D.; Wang, Y. Engineered cancer-derived small extracellular vesicle-liposome hybrid delivery system for targeted treatment of breast cancer. ACS Appl. Mater. Interfaces, 2023, 15(13), 16420-16433.
[http://dx.doi.org/10.1021/acsami.2c22749] [PMID: 36961985]
[243]
Song, Y.; Sheng, Z.; Xu, Y.; Dong, L.; Xu, W.; Li, F.; Wang, J.; Wu, Z.; Yang, Y.; Su, Y.; Sun, X.; Ling, D.; Lu, Y. Magnetic liposomal emodin composite with enhanced killing efficiency against breast cancer. Biomater. Sci., 2019, 7(3), 867-875.
[http://dx.doi.org/10.1039/C8BM01530A] [PMID: 30648710]
[244]
García, M.C.; Naitlho, N.; Calderón-Montaño, J.M.; Drago, E.; Rueda, M.; Longhi, M.; Rabasco, A.M.; López-Lázaro, M.; Prieto-Dapena, F.; González-Rodríguez, M.L. Cholesterol levels affect the performance of aunps-decorated thermo-sensitive liposomes as nanocarriers for controlled doxorubicin delivery. Pharmaceutics, 2021, 13(7), 973.
[http://dx.doi.org/10.3390/pharmaceutics13070973] [PMID: 34199018]
[245]
Shen, S.; Huang, D.; Cao, J.; Chen, Y.; Zhang, X.; Guo, S.; Ma, W.; Qi, X.; Ge, Y.; Wu, L. Magnetic liposomes for light-sensitive drug delivery and combined photothermal–chemotherapy of tumors. J. Mater. Chem. B Mater. Biol. Med., 2019, 7(7), 1096-1106.
[http://dx.doi.org/10.1039/C8TB02684J] [PMID: 32254777]
[246]
Dorjsuren, B.; Chaurasiya, B.; Ye, Z.; Liu, Y.; Li, W.; Wang, C.; Shi, D.; Evans, C.E.; Webster, T.J.; Shen, Y. Cetuximab-coated thermo-sensitive liposomes loaded with magnetic nanoparticles and doxorubicin for targeted EGFR-expressing breast cancer combined therapy. Int. J. Nanomedicine, 2020, 15, 8201-8215.
[http://dx.doi.org/10.2147/IJN.S261671] [PMID: 33122906]
[247]
Enzian, P.; Schell, C.; Link, A.; Malich, C.; Pries, R.; Wollenberg, B.; Rahmanzadeh, R. Optically controlled drug release from light-sensitive liposomes with the new photosensitizer 5,10-DiOH. Mol. Pharm., 2020, 17(8), 2779-2788.
[http://dx.doi.org/10.1021/acs.molpharmaceut.9b01173] [PMID: 32543848]
[248]
Sofou, S.; Sgouros, G. Antibody-targeted liposomes in cancer therapy and imaging. Expert Opin. Drug Deliv., 2008, 5(2), 189-204.
[http://dx.doi.org/10.1517/17425247.5.2.189] [PMID: 18248318]
[249]
Drummond, D.C.; Noble, C.O.; Guo, Z.; Hayes, M.E.; Connolly-Ingram, C.; Gabriel, B.S.; Hann, B.; Liu, B.; Park, J.W.; Hong, K.; Benz, C.C.; Marks, J.D.; Kirpotin, D.B. Development of a highly stable and targetable nanoliposomal formulation of topotecan. J. Control. Release, 2010, 141(1), 13-21.
[http://dx.doi.org/10.1016/j.jconrel.2009.08.006] [PMID: 19686789]
[250]
Shah, S.A.; Aslam Khan, M.U.; Arshad, M.; Awan, S.U.; Hashmi, M.U.; Ahmad, N. Doxorubicin-loaded photosensitive magnetic liposomes for multi-modal cancer therapy. Colloids Surf. B Biointerfaces, 2016, 148, 157-164.
[http://dx.doi.org/10.1016/j.colsurfb.2016.08.055] [PMID: 27595890]
[251]
Lin, C.; Zhang, X.; Chen, H.; Bian, Z.; Zhang, G.; Riaz, M.K.; Tyagi, D.; Lin, G.; Zhang, Y.; Wang, J.; Lu, A.; Yang, Z. Dual-ligand modified liposomes provide effective local targeted delivery of lung-cancer drug by antibody and tumor lineage-homing cell-penetrating peptide. Drug Deliv., 2018, 25(1), 256-266.
[http://dx.doi.org/10.1080/10717544.2018.1425777] [PMID: 29334814]
[252]
Wang, J.; Liu, J.; Liu, Y.; Wang, L.; Cao, M.; Ji, Y.; Wu, X.; Xu, Y.; Bai, B.; Miao, Q.; Chen, C.; Zhao, Y. Gd‐hybridized plasmonic Au‐nanocomposites enhanced tumor‐interior drug permeability in multimodal imaging‐guided therapy. Adv. Mater., 2016, 28(40), 8950-8958.
[http://dx.doi.org/10.1002/adma.201603114] [PMID: 27562240]
[253]
Galović Rengel, R.; Barišić, K.; Pavelić, Ž.; Žanić Grubišić, T.; Čepelak, I.; Filipović-Grčić, J. High efficiency entrapment of superoxide dismutase into mucoadhesive chitosan-coated liposomes. Eur. J. Pharm. Sci., 2002, 15(5), 441-448.
[http://dx.doi.org/10.1016/S0928-0987(02)00030-1] [PMID: 12036721]
[254]
Jackson, M.B.; Sturtevant, J.M. Phase transitions of the purple membranes of Halobacterium halobium. Biochemistry, 1978, 17(5), 911-915.
[http://dx.doi.org/10.1021/bi00598a026] [PMID: 629940]
[255]
Smith, B.; Lyakhov, I.; Loomis, K.; Needle, D.; Baxa, U.; Yavlovich, A.; Capala, J.; Blumenthal, R.; Puri, A. Hyperthermia-triggered intracellular delivery of anticancer agent to HER2+ cells by HER2-specific affibody (ZHER2-GS-Cys)-conjugated thermosensitive liposomes (HER2+ affisomes). J. Control. Release, 2011, 153(2), 187-194.
[http://dx.doi.org/10.1016/j.jconrel.2011.04.005] [PMID: 21501640]
[256]
Franco, M.S.; Roque, M.C.; de Barros, A.L.B.; de Oliveira Silva, J.; Cassali, G.D.; Oliveira, M.C. Investigation of the antitumor activity and toxicity of long-circulating and fusogenic liposomes co-encapsulating paclitaxel and doxorubicin in a murine breast cancer animal model. Biomed. Pharmacother., 2019, 109, 1728-1739.
[http://dx.doi.org/10.1016/j.biopha.2018.11.011] [PMID: 30551427]
[257]
Potluri, P.; Betageri, G.V. Mixed-micellar proliposomal systems for enhanced oral delivery of progesterone. Drug Deliv., 2006, 13(3), 227-232.
[http://dx.doi.org/10.1080/10717540500395007] [PMID: 16556576]
[258]
Nguyen, V.D.; Zheng, S.; Han, J.; Le, V.H.; Park, J.O.; Park, S. Nanohybrid magnetic liposome functionalized with hyaluronic acid for enhanced cellular uptake and near-infrared-triggered drug release. Colloids Surf. B Biointerfaces, 2017, 154, 104-114.
[http://dx.doi.org/10.1016/j.colsurfb.2017.03.008] [PMID: 28329728]
[259]
Yan, F.; Duan, W.; Li, Y.; Wu, H.; Zhou, Y.; Pan, M.; Liu, H.; Liu, X.; Zheng, H. NIR-laser-controlled drug release from DOX/IR-780-loaded temperature-sensitive-liposomes for chemo-photothermal synergistic tumor therapy. Theranostics, 2016, 6(13), 2337-2351.
[http://dx.doi.org/10.7150/thno.14937] [PMID: 27877239]
[260]
Meerovich, G.A.; Akhlyustina, E.V.; Tiganova, I.G.; Lukyanets, E.A.; Makarova, E.A.; Tolordava, E.R.; Yuzhakova, O.A.; Romanishkin, I.D.; Philipova, N.I.; Zhizhimova, Y.S.; Romanova, Y.M.; Loschenov, V.B.; Gintsburg, A.L. Novel polycationic photosensitizers for antibacterial photodynamic therapy. Adv. Exp. Med. Biol., 2019, 1282, 1-19.
[http://dx.doi.org/10.1007/5584_2019_431] [PMID: 31446610]
[261]
Wong, M.Y.; Chiu, G.N.C. Simultaneous liposomal delivery of quercetin and vincristine for enhanced estrogen-receptor-negative breast cancer treatment. Anticancer Drugs, 2010, 21(4), 401-410.
[http://dx.doi.org/10.1097/CAD.0b013e328336e940] [PMID: 20110806]
[262]
Van Ballegooie, C.; Man, A.; Win, M.; Yapp, D.T. Spatially specific liposomal cancer therapy triggered by clinical external sources of energy. Pharmaceutics, 2019, 11(3), 125.
[http://dx.doi.org/10.3390/pharmaceutics11030125]
[263]
Kono, K. Thermosensitive polymer-modified liposomes. Adv. Drug Deliv. Rev., 2001, 53(3), 307-319.
[http://dx.doi.org/10.1016/S0169-409X(01)00204-6] [PMID: 11744174]
[264]
Dabbagh, A.; Abdullah, B.J.J.; Abdullah, H.; Hamdi, M.; Kasim, N.H.A. Triggering mechanisms of thermosensitive nanoparticles under hyperthermia condition. J. Pharm. Sci., 2015, 104(8), 2414-2428.
[http://dx.doi.org/10.1002/jps.24536] [PMID: 26073304]
[265]
Dou, Y.N.; Chaudary, N.; Chang, M.C.; Dunne, M.; Huang, H.; Jaffray, D.A.; Milosevic, M.; Allen, C. Tumor microenvironment determines response to a heat-activated thermosensitive liposome formulation of cisplatin in cervical carcinoma. J. Control. Release, 2017, 262, 182-191.
[http://dx.doi.org/10.1016/j.jconrel.2017.07.039] [PMID: 28760449]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy