Generic placeholder image

CNS & Neurological Disorders - Drug Targets

Editor-in-Chief

ISSN (Print): 1871-5273
ISSN (Online): 1996-3181

Systematic Review Article

Gastrointestinal Issues in Depression, Anxiety, and Neurodegenerative Diseases: A Systematic Review on Pathways and Clinical Targets Implications

Author(s): Ian Richard Lucena Andriolo, Bruna Longo, Dayse Machado de Melo, Márcia Maria de Souza, Rui Daniel Prediger and Luisa Mota da Silva*

Volume 23, Issue 11, 2024

Published on: 18 March, 2024

Page: [1371 - 1391] Pages: 21

DOI: 10.2174/0118715273289138240306050532

Price: $65

Abstract

Introduction: Multiple illnesses commonly involve both the Central Nervous System (CNS) and the Gastrointestinal Tract (GI) simultaneously. Consistent evidence suggests that neurological disorders impair GI tract function and worsen the symptomatology and pathophysiology of digestive disorders. On the other hand, it has been proposed that early functional changes in the GI tract contribute to the genesis of several CNS illnesses. Additionally, the role played by the gut in these diseases can be seen as a paradigm for how the gut and the brain interact.

Methods: We mentioned significant GI symptoms and discussed how the GI tract affects central nervous system illnesses, including depression, anxiety, Alzheimer's disease, and Parkinson's disease in this study. We also explored potential pathophysiological underpinnings and novel targets for the creation of future therapies targeted at gut-brain connections.

Results & Discussion: In this situation, modulating the gut microbiota through the administration of fecal microbiota transplants or probiotics may represent a new therapeutic option for this population, not only to treat GI problems but also behavioral problems, given the role that dysbiosis and leaky gut play in many neurological disorders.

Conclusion: Accurate diagnosis and treatment of co-existing illnesses also require coordination between psychiatrists, neurologists, gastroenterologists, and other specialties, as well as a thorough history and thorough physical examination.

Keywords: Gut-brain, Parkinson’s disease, Alzheimer’s disease, mood disorders, microbiota, fecal transplantation, probiotics.

Graphical Abstract
[1]
Mayer EA, Nance K, Chen S. The gut–brain axis. Annu Rev Med 2022; 73(1): 439-53.
[http://dx.doi.org/10.1146/annurev-med-042320-014032] [PMID: 34669431]
[2]
WHO. COVID-19 pandemic triggers 25% increase in prevalence of anxiety and depression worldwide. 2022. Available from: https://www.who.int/news/item/02-03-2022-covid-19-pandemic-triggers-25-increase-in-prevalence-of-anxiety-and-depression-worldwide/
[3]
Showraki M, Showraki T, Brown K. Generalized anxiety disorder: Revisited. Psychiatr Q 2020; 91(3): 905-14.
[http://dx.doi.org/10.1007/s11126-020-09747-0] [PMID: 32383134]
[4]
ADAA. Anxiety disorders - facts & statistics. 2022. Available from: https://adaa.org/understanding-anxiety/facts-statistics/
[5]
Depressive disorder (depression). 2021. Available from: https://www.who.int/news-room/fact-sheets/detail/depression/
[6]
Singh A. Mental health and alcohol use disorder (AUD) comorbidity. In: Neurobiology of Alcohol and the Brain. Academic Press 2021.
[7]
Navabi S, Gorrepati VS, Yadav S, et al. Influences and impact of anxiety and depression in the setting of inflammatory bowel disease. Inflamm Bowel Dis 2018; 24(11): 2303-8.
[http://dx.doi.org/10.1093/ibd/izy143] [PMID: 29788469]
[8]
Roy U, Gálvez EJC, Iljazovic A, et al. Distinct microbial communities trigger colitis development upon intestinal barrier damage via innate or adaptive immune cells. Cell Rep 2017; 21(4): 994-1008.
[http://dx.doi.org/10.1016/j.celrep.2017.09.097] [PMID: 29069606]
[9]
Yuan X, Chen B, Duan Z, et al. Depression and anxiety in patients with active ulcerative colitis: Crosstalk of gut microbiota, metabolomics and proteomics. Gut Microbes 2021; 13(1): 1987779.
[http://dx.doi.org/10.1080/19490976.2021.1987779] [PMID: 34806521]
[10]
Spadoni I, Zagato E, Bertocchi A, et al. A gut-vascular barrier controls the systemic dissemination of bacteria. Science 2015; 350(6262): 830-4.
[http://dx.doi.org/10.1126/science.aad0135] [PMID: 26564856]
[11]
Carloni S, Bertocchi A, Mancinelli S, et al. Identification of a choroid plexus vascular barrier closing during intestinal inflammation. Science 2021; 374(6566): 439-48.
[http://dx.doi.org/10.1126/science.abc6108] [PMID: 34672740]
[12]
Guo Q, Lin H, Chen P, et al. Dynamic changes of intestinal flora in patients with irritable bowel syndrome combined with anxiety and depression after oral administration of enterobacteria capsules. Bioengineered 2021; 12(2): 11885-97.
[http://dx.doi.org/10.1080/21655979.2021.1999374] [PMID: 34923901]
[13]
Kilinçarslan S, Evrensel A. The effect of fecal microbiota transplantation on psychiatric symptoms among patients with inflammatory bowel disease: An experimental study. Actas Esp Psiquiatr 2020; 48(1): 1-7.
[PMID: 32297646]
[14]
Jang HM, Kim JK, Joo MK, et al. Transplantation of fecal microbiota from patients with inflammatory bowel disease and depression alters immune response and behavior in recipient mice. Sci Rep 2021; 11(1): 20406.
[http://dx.doi.org/10.1038/s41598-021-00088-x] [PMID: 34650107]
[15]
Meng Y, Sun J, Zhang G. Pick fecal microbiota transplantation to enhance therapy for major depressive disorder. Prog Neuropsychopharmacol Biol Psychiatry 2024; 128: 110860.
[http://dx.doi.org/10.1016/j.pnpbp.2023.110860] [PMID: 37678703]
[16]
Settanni CR, Ianiro G, Bibbò S, Cammarota G, Gasbarrini A. Gut microbiota alteration and modulation in psychiatric disorders: Current evidence on fecal microbiota transplantation. Prog Neuropsychopharmacol Biol Psychiatry 2021; 109: 110258.
[http://dx.doi.org/10.1016/j.pnpbp.2021.110258] [PMID: 33497754]
[17]
Carloni S, Rescigno M. The gut-brain vascular axis in neuroinflammation. Semin Immunol 2023; 69: 101802.
[http://dx.doi.org/10.1016/j.smim.2023.101802] [PMID: 37422929]
[18]
Konsman JP, Luheshi GN, Bluthé RM, Dantzer R. The vagus nerve mediates behavioural depression, but not fever, in response to peripheral immune signals; A functional anatomical analysis. Eur J Neurosci 2000; 12(12): 4434-46.
[http://dx.doi.org/10.1046/j.0953-816X.2000.01319.x] [PMID: 11122354]
[19]
Bravo JA, Forsythe P, Chew MV, et al. Ingestion of Lactobacillus strain regulates emotional behavior and central GABA receptor expression in a mouse via the vagus nerve. Proc Natl Acad Sci 2011; 108(38): 16050-5.
[http://dx.doi.org/10.1073/pnas.1102999108] [PMID: 21876150]
[20]
Zhang J, Ma L, Chang L, Pu Y, Qu Y, Hashimoto K. A key role of the subdiaphragmatic vagus nerve in the depression-like phenotype and abnormal composition of gut microbiota in mice after lipopolysaccharide administration. Transl Psychiatry 2020; 10(1): 186.
[http://dx.doi.org/10.1038/s41398-020-00878-3] [PMID: 32518376]
[21]
Cheng Y, Wang Y, Zhang W, Yin J, Dong J, Liu J. Relationship between intestinal flora, inflammation, BDNF gene polymorphism and generalized anxiety disorder: A clinical investigation. Medicine 2022; 101(29): e28910.
[http://dx.doi.org/10.1097/MD.0000000000028910] [PMID: 35866837]
[22]
Morozova MV, Borisova MA, Snytnikova OA, et al. Colitis-associated intestinal microbiota regulates brain glycine and host behavior in mice. Sci Rep 2022; 12(1): 16345.
[http://dx.doi.org/10.1038/s41598-022-19219-z] [PMID: 36175462]
[23]
Dempsey E, Daly AÁ, Docherty NG, Medina C, Harkin A. Persistent central inflammation and region specific cellular activation accompany depression- and anxiety-like behaviours during the resolution phase of experimental colitis. Brain Behav Immun 2019; 80: 616-32.
[http://dx.doi.org/10.1016/j.bbi.2019.05.007] [PMID: 31063848]
[24]
Wei D, Zhao N, Xie L, et al. Electroacupuncture and moxibustion improved anxiety behavior in dss-induced colitis mice. Gastroenterol Res Pract 2019; 2019: 1-12.
[http://dx.doi.org/10.1155/2019/2345890] [PMID: 30881446]
[25]
Wang Z, Xu M, Shi Z, et al. Mild moxibustion for irritable bowel syndrome with diarrhea (IBS-D): A randomized controlled trial. J Ethnopharmacol 2022; 289: 115064.
[http://dx.doi.org/10.1016/j.jep.2022.115064] [PMID: 35114338]
[26]
Zhou F, Jiang H, Kong N, et al. Electroacupuncture attenuated anxiety and depression-like behavior via inhibition of hippocampal inflammatory response and metabolic disorders in TNBS-induced IBD rats. Oxid Med Cell Longev 2022; 2022: 1-19.
[http://dx.doi.org/10.1155/2022/8295580] [PMID: 35087621]
[27]
França TCS, Ribeiro AJ, Mariano LNB, et al. Baccharis dracunculifolia DC hydroalcoholic extract improves intestinal and hippocampal inflammation and decreases behavioral changes of colitis mice. Evid Based Complement Alternat Med 2022; 2022: 1-14.
[http://dx.doi.org/10.1155/2022/5833840] [PMID: 35295931]
[28]
Dong X, Lu K, Lin P, et al. Saccharina japonica ethanol extract ameliorates depression/anxiety-like behavior by inhibiting inflammation, oxidative stress, and apoptosis in dextran sodium sulfate induced ulcerative colitis mice. Front Nutr 2021; 8: 784532.
[http://dx.doi.org/10.3389/fnut.2021.784532] [PMID: 34977127]
[29]
Sudeep HV, Venkatakrishna K, Raj A, Reethi B, Shyamprasad K. Viphyllin™, a standardized extract from black pepper seeds, mitigates intestinal inflammation, oxidative stress, and anxiety‐like behavior in DSS ‐induced colitis mice. J Food Biochem 2022; 46(10): e14306.
[http://dx.doi.org/10.1111/jfbc.14306] [PMID: 35766031]
[30]
Zhao B, Wu J, Li J, et al. Lycopene alleviates DSS-induced colitis and behavioral disorders via mediating microbes-gut–brain axis balance. J Agric Food Chem 2020; 68(13): 3963-75.
[http://dx.doi.org/10.1021/acs.jafc.0c00196] [PMID: 32162923]
[31]
Xie J, Liu L, Guo H, et al. Orally administered melanin from Sepiapharaonis ink ameliorates depression-anxiety-like behaviors in DSS-induced colitis by mediating inflammation pathway and regulating apoptosis. Int Immunopharmacol 2022; 106: 108625.
[http://dx.doi.org/10.1016/j.intimp.2022.108625] [PMID: 35180627]
[32]
Camilleri M. Diagnosis and treatment of irritable bowel syndrome. JAMA 2021; 325(9): 865-77.
[http://dx.doi.org/10.1001/jama.2020.22532] [PMID: 33651094]
[33]
Forootan M, Bagheri N, Darvishi M. Chronic constipation. Medicine 2018; 97(20): e10631.
[http://dx.doi.org/10.1097/MD.0000000000010631] [PMID: 29768326]
[34]
Wald A, Scarpignato C, Kamm MA, et al. The burden of constipation on quality of life: Results of a multinational survey. Aliment Pharmacol Ther 2007; 26(2): 227-36.
[http://dx.doi.org/10.1111/j.1365-2036.2007.03376.x] [PMID: 17593068]
[35]
Albiani JJ, Hart SL, Katz L, et al. Impact of depression and anxiety on the quality of life of constipated patients. J Clin Psychol Med Settings 2013; 20(1): 123-32.
[http://dx.doi.org/10.1007/s10880-012-9306-3] [PMID: 22581107]
[36]
Adibi P, Abdoli M, Daghaghzadeh H, et al. Relationship between depression and constipation: Results from a large cross-sectional study in adults. Korean J Gastroenterol 2022; 80(2): 77-84.
[http://dx.doi.org/10.4166/kjg.2022.038] [PMID: 36004635]
[37]
Li B, Li M, Luo Y, Li R, Li W, Liu Z. Engineered 5-HT producing gut probiotic improves gastrointestinal motility and behavior disorder. Front Cell Infect Microbiol 2022; 12: 1013952.
[http://dx.doi.org/10.3389/fcimb.2022.1013952] [PMID: 36339343]
[38]
Zou H, Gao H, Liu Y, et al. Dietary inulin alleviated constipation induced depression and anxiety-like behaviors: Involvement of gut microbiota and microbial metabolite short-chain fatty acid. Int J Biol Macromol 2024; 259(Pt 2): 129420.
[http://dx.doi.org/10.1016/j.ijbiomac.2024.129420] [PMID: 38219945]
[39]
Chu C, Trivette RS, Michail S. Chronic diarrhea. Curr Probl Pediatr Adolesc Health Care 2020; 50(8): 100841.
[http://dx.doi.org/10.1016/j.cppeds.2020.100841] [PMID: 32863166]
[40]
Ballou S, Katon J, Singh P, et al. Chronic diarrhea and constipation are more common in depressed individuals. Clin Gastroenterol Hepatol 2019; 17(13): 2696-703.
[http://dx.doi.org/10.1016/j.cgh.2019.03.046] [PMID: 30954714]
[41]
Oliva V, Lippi M, Paci R, et al. Gastrointestinal side effects associated with antidepressant treatments in patients with major depressive disorder: A systematic review and meta-analysis. Prog Neuropsychopharmacol Biol Psychiatry 2021; 109: 110266.
[http://dx.doi.org/10.1016/j.pnpbp.2021.110266] [PMID: 33549697]
[42]
Rangan V, Singh P, Ballou S, et al. Improvement in constipation and diarrhea is associated with improved abdominal pain in patients with functional bowel disorders. Neurogastroenterol Motil 2022; 34(4): e14253.
[http://dx.doi.org/10.1111/nmo.14253] [PMID: 34520617]
[43]
McWilliams LA, Goodwin RD, Cox BJ. Depression and anxiety associated with three pain conditions: Results from a nationally representative sample. Pain 2004; 111(1): 77-83.
[http://dx.doi.org/10.1016/j.pain.2004.06.002] [PMID: 15327811]
[44]
Goodwin RD, Talley NJ, Hotopf M, Cowles RA, Galea S, Jacobi F. A link between physician-diagnosed ulcer and anxiety disorders among adults. Ann Epidemiol 2013; 23(4): 189-92.
[http://dx.doi.org/10.1016/j.annepidem.2013.01.003] [PMID: 23453387]
[45]
Wu DY, Guo M, Gao YS, et al. Clinical effects of psychological intervention and drug therapy against peptic ulcer. Asian Pac J Trop Med 2012; 5(10): 831-3.
[http://dx.doi.org/10.1016/S1995-7645(12)60153-9] [PMID: 23043926]
[46]
Talley NJ, Locke GR, Saito YA, et al. Effect of amitriptyline and escitalopram on functional dyspepsia: A multicenter, randomized controlled study. Gastroenterology 2015; 149(2): 340-349.e2.
[http://dx.doi.org/10.1053/j.gastro.2015.04.020] [PMID: 25921377]
[47]
Rahmadi M, Su’aida N, Yustisari P, et al. Gastroprotective effect of fluvoxamine and ondansetron on stress-induced gastric ulcers in mice. J Basic Clin Physiol Pharmacol 2021; 32(4): 485-90.
[http://dx.doi.org/10.1515/jbcpp-2020-0424] [PMID: 34214344]
[48]
Elsaed WM, Alahmadi AM, Al-Ahmadi BT, Taha JA, Tarabishi RM. Gastroprotective and antioxidant effects of fluvoxamine on stress-induced peptic ulcer in rats. J Taibah Univ Med Sci 2018; 13(5): 422-31.
[http://dx.doi.org/10.1016/j.jtumed.2018.04.010] [PMID: 31555068]
[49]
Khotib J, Rahmadi M, Ardianto C, et al. Selective serotonin reuptake inhibitor fluvoxamine ameliorates stress- and NSAID-induced peptic ulcer possibly by involving Hsp70. J Basic Clin Physiol Pharmacol 2019; 30(2): 195-203.
[http://dx.doi.org/10.1515/jbcpp-2018-0067] [PMID: 30730837]
[50]
Venzon L, Meurer MC, dos França STC, et al. Geraniol accelerates the gastric healing, minimizes ulcers recurrence, and reduces anxiolytic-like behavior in ulcerated rodents by oral or inhaled route. Inflammopharmacology 2022; 30(6): 2331-44.
[http://dx.doi.org/10.1007/s10787-022-01068-x] [PMID: 36121588]
[51]
Venzon L, Mariano LNB, Somensi LB, et al. Essential oil of Cymbopogon citratus (lemongrass) and geraniol, but not citral, promote gastric healing activity in mice. Biomed Pharmacother 2018; 98: 118-24.
[http://dx.doi.org/10.1016/j.biopha.2017.12.020] [PMID: 29248831]
[52]
Wu Y, Murray GK, Byrne EM, Sidorenko J, Visscher PM, Wray NR. GWAS of peptic ulcer disease implicates Helicobacter pylori infection, other gastrointestinal disorders and depression. Nat Commun 2021; 12(1): 1146.
[http://dx.doi.org/10.1038/s41467-021-21280-7] [PMID: 33608531]
[53]
Ali SB, Mahmood K, Saeed R, Salman T, Choudhary MI, Haleem DJ. Elevated anxiety, hypoactivity, memory deficits, decreases of brain serotonin and 5-HT-1A receptors expression in rats treated with omeprazole. Toxicol Res 2021; 37(2): 237-48.
[http://dx.doi.org/10.1007/s43188-020-00060-3] [PMID: 33868980]
[54]
Fossmark R, Martinsen TC, Waldum HL. Adverse effects of proton pump inhibitors—evidence and plausibility. Int J Mol Sci 2019; 20(20): 5203.
[http://dx.doi.org/10.3390/ijms20205203] [PMID: 31640115]
[55]
Van Oudenhove L, Coen SJ, Aziz Q. Functional brain imaging of gastrointestinal sensation in health and disease. World J Gastroenterol 2007; 13(25): 3438-45.
[http://dx.doi.org/10.3748/wjg.v13.i25.3438] [PMID: 17659690]
[56]
Jansson C, Nordenstedt H, Johansson S, et al. Relation between gastroesophageal reflux symptoms and socioeconomic factors: A population-based study (the HUNT Study). Clin Gastroenterol Hepatol 2007; 5(9): 1029-34.
[http://dx.doi.org/10.1016/j.cgh.2007.04.009] [PMID: 17686659]
[57]
Oh JH, Kim TS, Choi MG, et al. Relationship between psychological factors and quality of life in subtypes of gastroesophageal reflux disease. Gut Liver 2009; 3(4): 259-65.
[http://dx.doi.org/10.5009/gnl.2009.3.4.259] [PMID: 20431758]
[58]
Kessing BF, Bredenoord AJ, Saleh CMG, Smout AJPM. Effects of anxiety and depression in patients with gastroesophageal reflux disease. Clin Gastroenterol Hepatol 2015; 13(6): 1089-1095.e1.
[http://dx.doi.org/10.1016/j.cgh.2014.11.034] [PMID: 25496817]
[59]
Javadi HSSA, Shafikhani AA. Anxiety and depression in patients with gastroesophageal reflux disorder. Electron Physician 2017; 9(8): 5107-12.
[http://dx.doi.org/10.19082/5107] [PMID: 28979749]
[60]
Yang XJ, Jiang HM, Hou XH, Song J. Anxiety and depression in patients with gastroesophageal reflux disease and their effect on quality of life. World J Gastroenterol 2015; 21(14): 4302-9.
[http://dx.doi.org/10.3748/wjg.v21.i14.4302] [PMID: 25892882]
[61]
Bai P, Bano S, Kumar S, et al. Gastroesophageal reflux disease in the young population and its correlation with anxiety and depression. Cureus 2021; 13(5): e15289.
[http://dx.doi.org/10.7759/cureus.15289] [PMID: 34194886]
[62]
Wang R, Wang J, Hu S. Study on the relationship of depression, anxiety, lifestyle and eating habits with the severity of reflux esophagitis. BMC Gastroenterol 2021; 21(1): 127.
[http://dx.doi.org/10.1186/s12876-021-01717-5] [PMID: 33743601]
[63]
Chou PH, Lin CC, Lin CH, et al. Prevalence of gastroesophageal reflux disease in major depressive disorder: A population-based study. Psychosomatics 2014; 55(2): 155-62.
[http://dx.doi.org/10.1016/j.psym.2013.06.003] [PMID: 23953172]
[64]
You ZH, Perng CL, Hu LY, et al. Risk of psychiatric disorders following gastroesophageal reflux disease: A nationwide population-based cohort study. Eur J Intern Med 2015; 26(7): 534-9.
[http://dx.doi.org/10.1016/j.ejim.2015.05.005] [PMID: 26021838]
[65]
Yamasaki T, Fass R. Reflux hypersensitivity: A new functional esophageal disorder. J Neurogastroenterol Motil 2017; 23(4): 495-503.
[http://dx.doi.org/10.5056/jnm17097] [PMID: 28992673]
[66]
Losa M, Manz SM, Schindler V, Savarino E, Pohl D. Increased visceral sensitivity, elevated anxiety, and depression levels in patients with functional esophageal disorders and non‐erosive reflux disease. Neurogastroenterol Motil 2021; 33(9): e14177.
[http://dx.doi.org/10.1111/nmo.14177] [PMID: 34128293]
[67]
Huang F, Liao Q, Gan X, Wen W. Correlation between refractory laryngopharyngeal reflux disease and symptoms of anxiety and depression. Neuropsychiatr Dis Treat 2022; 18: 925-32.
[http://dx.doi.org/10.2147/NDT.S349933] [PMID: 35502360]
[68]
Cheng LH, Liu YW, Wu CC, Wang S, Tsai YC. Psychobiotics in mental health, neurodegenerative and neurodevelopmental disorders. Yao Wu Shi Pin Fen Xi 2019; 27(3): 632-48.
[PMID: 31324280]
[69]
Schneider S, Wright CM, Heuckeroth RO. Unexpected roles for the second brain: Enteric nervous system as master regulator of bowel function. Annu Rev Physiol 2019; 81(1): 235-59.
[http://dx.doi.org/10.1146/annurev-physiol-021317-121515] [PMID: 30379617]
[70]
Fried S, Wemelle E, Cani PD, Knauf C. Interactions between the microbiota and enteric nervous system during gut-brain disorders. Neuropharmacology 2021; 197: 108721.
[http://dx.doi.org/10.1016/j.neuropharm.2021.108721] [PMID: 34274348]
[71]
Isooka N, Miyazaki I, Asanuma M. Glial cells as possible targets of neuroprotection through neurotrophic and antioxidative molecules in the central and enteric nervous systems in parkinson’s disease. Acta Med Okayama 2021; 75(5): 549-56.
[PMID: 34703037]
[72]
Souza KC, Bertolini SMMG. Impactos morfofuncionais da imobilidade prolongada na terceira idade. Revista Uningá 2019; 56(S4): 77-92.
[http://dx.doi.org/10.46311/2318-0579.56.eUJ2777]
[73]
Peterson CT. Dysfunction of the microbiota-gut-brain axis in neurodegenerative disease: The promise of therapeutic modulation with prebiotics, medicinal herbs, probiotics, and synbiotics. J Evid Based Integr Med 2020; 25: 2515690X20957225.
[http://dx.doi.org/10.1177/2515690X20957225]
[74]
Niesler B, Kuerten S, Demir IE, Schäfer KH. Disorders of the enteric nervous system — a holistic view. Nat Rev Gastroenterol Hepatol 2021; 18(6): 393-410.
[http://dx.doi.org/10.1038/s41575-020-00385-2] [PMID: 33514916]
[75]
Leroy K, Duyckaerts C, Bovekamp L, Müller O, Anderton B, Brion J. Increase of adenomatous polyposis coli immunoreactivity is a marker of reactive astrocytes in Alzheimer’s disease and in other pathological conditions. Acta Neuropathol 2001; 102(1): 1-10.
[http://dx.doi.org/10.1007/s004010000340] [PMID: 11547943]
[76]
Puig KL, Lutz BM, Urquhart SA, et al. Overexpression of mutant amyloidbeta protein precursor and presenilin 1 modulates enteric nervous system. J Alzheimers Dis 2015; 44: 1263-78.
[http://dx.doi.org/10.3233/JAD-142259] [PMID: 25408221]
[77]
Cerovic M, Forloni G, Balducci C. Neuroinflammation and the gut microbiota: Possible alternative therapeutic targets to counteract alzheimer’s disease? Front Aging Neurosci 2019; 11: 284.
[http://dx.doi.org/10.3389/fnagi.2019.00284] [PMID: 31680937]
[78]
a) Arora K, Green M, Prakash S. The microbiome and alzheimer’s disease: Potential and limitations of prebiotic, synbiotic, and probiotic formulations. Front Bioeng Biotechnol 2020; 8: 537847.
[http://dx.doi.org/10.3389/fbioe.2020.537847] [PMID: 33384986];
b) Kincaid HJ, Nagpal R, Yadav H. Diet-microbiota-brain axis in alzheimer’s disease. Ann Nutr Metab 2021; 77(S2): 21-7.
[http://dx.doi.org/10.1159/000515700] [PMID: 33906194]
[79]
Vogt NM, Kerby RL, Dill-McFarland KA, et al. Gut microbiome alterations in Alzheimer’s disease. Sci Rep 2017; 7(1): 13537.
[http://dx.doi.org/10.1038/s41598-017-13601-y] [PMID: 29051531]
[80]
Ho L, Ono K, Tsuji M, Mazzola P, Singh R, Pasinetti GM. Protective roles of intestinal microbiota derived short chain fatty acids in Alzheimer’s disease-type beta-amyloid neuropathological mechanisms. Expert Rev Neurother 2018; 18(1): 83-90.
[http://dx.doi.org/10.1080/14737175.2018.1400909] [PMID: 29095058]
[81]
Kowalski K, Mulak A. Brain-gut-microbiota axis in Alzheimer’s disease. J Neurogastroenterol Motil 2019; 25(1): 48-60.
[http://dx.doi.org/10.5056/jnm18087] [PMID: 30646475]
[82]
Liu P, Wu L, Peng G, et al. Altered microbiomes distinguish Alzheimer’s disease from amnestic mild cognitive impairment and health in a Chinese cohort. Brain Behav Immun 2019; 80: 633-43.
[http://dx.doi.org/10.1016/j.bbi.2019.05.008] [PMID: 31063846]
[83]
Nagpal R, Neth BJ, Wang S, Craft S, Yadav H. Modified Mediterranean-ketogenic diet modulates gut microbiome and short-chain fatty acids in association with Alzheimer’s disease markers in subjects with mild cognitive impairment. EBioMedicine 2019; 47: 529-42.
[http://dx.doi.org/10.1016/j.ebiom.2019.08.032] [PMID: 31477562]
[84]
Thevaranjan N, Puchta A, Schulz C, et al. Age-associated microbial dysbiosis promotes intestinal permeability, systemic inflammation, and macrophage dysfunction. Cell Host Microbe 2017; 21(4): 455-466.e4.
[http://dx.doi.org/10.1016/j.chom.2017.03.002] [PMID: 28407483]
[85]
Doifode T, Giridharan VV, Generoso JS, et al. The impact of the microbiota-gut-brain axis on Alzheimer’s disease pathophysiology. Pharmacol Res 2021; 164: 105314.
[http://dx.doi.org/10.1016/j.phrs.2020.105314] [PMID: 33246175]
[86]
Van Ginneken C, Schäfer KH, Van Dam D, Huygelen V, De Deyn PP. Morphological changes in the enteric nervous system of aging and APP23 transgenic mice. Brain Res 2011; 1378: 43-53.
[http://dx.doi.org/10.1016/j.brainres.2011.01.030] [PMID: 21241669]
[87]
Brandscheid C, Schuck F, Reinhardt S, et al. Altered gut microbiome composition and tryptic activity of the 5xFAD alzheimer’s mouse model. J Alzheimers Dis 2017; 56(2): 775-88.
[http://dx.doi.org/10.3233/JAD-160926] [PMID: 28035935]
[88]
Kim JE, Roh YJ, Choi YJ, et al. Dysbiosis of fecal microbiota in Tg2576 mice for alzheimer’s disease during pathological constipation. Int J Mol Sci 2022; 23(23): 14928.
[http://dx.doi.org/10.3390/ijms232314928] [PMID: 36499254]
[89]
Han X, Tang S, Dong L, et al. Loss of nitrergic and cholinergic neurons in the enteric nervous system of APP/PS1 transgenic mouse model. Neurosci Lett 2017; 642: 59-65.
[http://dx.doi.org/10.1016/j.neulet.2017.01.061] [PMID: 28137646]
[90]
Semar S, Klotz M, Letiembre M, et al. Changes of the enteric nervous system in amyloid-β protein precursor transgenic mice correlate with disease progression. J Alzheimers Dis 2013; 36(1): 7-20.
[http://dx.doi.org/10.3233/JAD-120511]
[91]
Sun J, Xu J, Ling Y, et al. Fecal microbiota transplantation alleviated Alzheimer’s disease-like pathogenesis in APP/PS1 transgenic mice. Transl Psychiatry 2019; 9(1): 189.
[http://dx.doi.org/10.1038/s41398-019-0525-3] [PMID: 31383855]
[92]
Sochocka M, Łysoniewska DK, Diniz BS, Kurpas D, Brzozowska E, Leszek J. The gut microbiome alterations and inflammation-driven pathogenesis of alzheimer’s disease—A critical review. Mol Neurobiol 2019; 56(3): 1841-51.
[http://dx.doi.org/10.1007/s12035-018-1188-4] [PMID: 29936690]
[93]
Novoa C, Salazar P, Cisternas P, et al. Inflammation context in Alzheimer’s disease, a relationship intricate to define. Biol Res 2022; 55(1): 39.
[http://dx.doi.org/10.1186/s40659-022-00404-3] [PMID: 36550479]
[94]
Camilleri M. Gastrointestinal motility disorders in neurologic disease. J Clin Invest 2021; 131(4): e143771.
[http://dx.doi.org/10.1172/JCI143771] [PMID: 33586685]
[95]
McCarty EB, Chao TN. Dysphagia and swallowing disorders. Med Clin North Am 2021; 105(5): 939-54.
[http://dx.doi.org/10.1016/j.mcna.2021.05.013] [PMID: 34391544]
[96]
Panebianco M, Ragona MR, Masiero S, Restivo DA. Dysphagia in neurological diseases: A literature review. Neurol Sci 2020; 41(11): 3067-73.
[http://dx.doi.org/10.1007/s10072-020-04495-2] [PMID: 32506360]
[97]
Mira A, Gonçalves R, Rodrigues IT. Dysphagia in alzheimer’s disease: A systematic review. Dement Neuropsychol 2022; 16(3): 261-9.
[http://dx.doi.org/10.1590/1980-5764-dn-2021-0073] [PMID: 36619845]
[98]
Sura L, Madhavan A, Carnaby G, Crary MA. Dysphagia in the elderly: Management and nutritional considerations. Clin Interv Aging 2012; 7: 287-98.
[http://dx.doi.org/10.2147/CIA.S23404] [PMID: 22956864]
[99]
Kyle G. Managing dysphagia in older people with dementia. Br J Community Nurs 2011; 16(1): 6-10.
[http://dx.doi.org/10.12968/bjcn.2011.16.1.6] [PMID: 21278642]
[100]
Correia SM, Morillo LS, Filho JW, Mansur LL. Swallowing in moderate and severe phases of Alzheimer’s disease. Arq Neuropsiquiatr 2010; 68(6): 855-61.
[http://dx.doi.org/10.1590/S0004-282X2010000600005] [PMID: 21243241]
[101]
Grover M, Farrugia G, Stanghellini V. Gastroparesis: A turning point in understanding and treatment. Gut 2019; 68(12): 2238-50.
[http://dx.doi.org/10.1136/gutjnl-2019-318712] [PMID: 31563877]
[102]
Bautmans I, Demarteau J, Cruts B, Geriatrics J, Mets T. Dysphagia in elderly nursing home residents with severe cognitive impairment can be attenuated by cervical spine mobilization. J Rehabil Med 2008; 40(9): 755-60.
[http://dx.doi.org/10.2340/16501977-0243] [PMID: 18843429]
[103]
Ye J, Wu C, Chen J, et al. Effectiveness of nurse-delivered stepwise swallowing training on dysphagia in patients with Alzheimer’s disease: A multi-center randomized controlled trial. Int J Nurs Stud 2024; 150: 104649.
[http://dx.doi.org/10.1016/j.ijnurstu.2023.104649] [PMID: 38070229]
[104]
Soliman H, Coffin B, Gourcerol G. Gastroparesis in parkinson disease: Pathophysiology, and clinical management. Brain Sci 2021; 11(7): 831.
[http://dx.doi.org/10.3390/brainsci11070831] [PMID: 34201699]
[105]
Cangemi DJ, Lacy BE. Gastroparesis. Curr Opin Gastroenterol 2021; 37(6): 596-601.
[http://dx.doi.org/10.1097/MOG.0000000000000782] [PMID: 34560721]
[106]
Durcan R, Donaghy PC, Barnett NA, et al. Prevalence and severity of symptoms suggestive of gastroparesis in prodromal dementia with Lewy bodies. Int J Geriatr Psychiatry 2019; 34(7): 990-8.
[http://dx.doi.org/10.1002/gps.5100] [PMID: 30901488]
[107]
Zenzeri L, Tambucci R, Quitadamo P, Giorgio V, De Giorgio R, Nardo DG. Update on chronic intestinal pseudo-obstruction. Curr Opin Gastroenterol 2020; 36(3): 230-7.
[http://dx.doi.org/10.1097/MOG.0000000000000630] [PMID: 32073506]
[108]
Santos JPR, Celestino ITP, Dantas AGL, et al. Global analysis of Ogilvie syndrome: A literature review. Electron J Collect Health 2021; 12: e4755.
[109]
Zhang M, Yang S, Li XC, et al. Study on the characteristics of intestinal motility of constipation in patients with Parkinson’s disease. World J Gastroenterol 2021; 27(11): 1055-63.
[http://dx.doi.org/10.3748/wjg.v27.i11.1055] [PMID: 33776372]
[110]
Brown GC. The endotoxin hypothesis of neurodegeneration. J Neuroinflammation 2019; 16(1): 180.
[http://dx.doi.org/10.1186/s12974-019-1564-7] [PMID: 31519175]
[111]
Leblhuber F, Geisler S, Steiner K, Fuchs D, Schütz B. Elevated fecal calprotectin in patients with Alzheimer’s dementia indicates leaky gut. J Neural Transm 2015; 122(9): 1319-22.
[http://dx.doi.org/10.1007/s00702-015-1381-9] [PMID: 25680441]
[112]
Klingelhoefer L, Reichmann H. Pathogenesis of Parkinson disease—the gut–brain axis and environmental factors. Nat Rev Neurol 2015; 11(11): 625-36.
[http://dx.doi.org/10.1038/nrneurol.2015.197] [PMID: 26503923]
[113]
Schapira AHV, Chaudhuri KR, Jenner P. Non-motor features of Parkinson disease. Nat Rev Neurosci 2017; 18(7): 435-50.
[http://dx.doi.org/10.1038/nrn.2017.62] [PMID: 28592904]
[114]
Travagli RA, Browning KN, Camilleri M. Parkinson disease and the gut: New insights into pathogenesis and clinical relevance. Nat Rev Gastroenterol Hepatol 2020; 17(11): 673-85.
[http://dx.doi.org/10.1038/s41575-020-0339-z] [PMID: 32737460]
[115]
Fasano A, Visanji NP, Liu LWC, Lang AE, Pfeiffer RF. Gastrointestinal dysfunction in Parkinson’s disease. Lancet Neurol 2015; 14(6): 625-39.
[http://dx.doi.org/10.1016/S1474-4422(15)00007-1] [PMID: 25987282]
[116]
Braak H, Tredici KD, Rüb U, de Vos RAI, Steur JENH, Braak E. Staging of brain pathology related to sporadic Parkinson’s disease. Neurobiol Aging 2003; 24(2): 197-211.
[http://dx.doi.org/10.1016/S0197-4580(02)00065-9] [PMID: 12498954]
[117]
Sveinbjornsdottir S. The clinical symptoms of Parkinson’s disease. J Neurochem 2016; 139(S1): 318-24.
[http://dx.doi.org/10.1111/jnc.13691] [PMID: 27401947]
[118]
Kim S, Kwon SH, Kam TI, et al. Transneuronal propagation of pathologic α-synuclein from the gut to the brain models Parkinson’s disease. Neuron 2019; 103: 627-641.e7.
[http://dx.doi.org/10.1016/j.neuron.2019.05.035]
[119]
Stokholm MG, Danielsen EH, Dutoit HSJ, Borghammer P. Pathological α‐synuclein in gastrointestinal tissues from prodromal P arkinson disease patients. Ann Neurol 2016; 79(6): 940-9.
[http://dx.doi.org/10.1002/ana.24648] [PMID: 27015771]
[120]
Beach TG, Adler CH, Sue LI, et al. Multi-organ distribution of phosphorylated α-synuclein histopathology in subjects with Lewy body disorders. Acta Neuropathol 2010; 119(6): 689-702.
[http://dx.doi.org/10.1007/s00401-010-0664-3] [PMID: 20306269]
[121]
Svensson E, Puhó HE, Thomsen RW, et al. Vagotomy and subsequent risk of P arkinson’s disease. Ann Neurol 2015; 78(4): 522-9.
[http://dx.doi.org/10.1002/ana.24448] [PMID: 26031848]
[122]
Liu B, Fang F, Pedersen NL, et al. Vagotomy and parkinson disease. Neurology 2017; 88(21): 1996-2002.
[http://dx.doi.org/10.1212/WNL.0000000000003961] [PMID: 28446653]
[123]
Anselmi L, Toti L, Bove C, Hampton J, Travagli RA. A nigro− vagal pathway controls gastric motility and is affected in a rat model of parkinsonism. Gastroenterology 2017; 153(6): 1581-93.
[http://dx.doi.org/10.1053/j.gastro.2017.08.069] [PMID: 28912019]
[124]
Horsager J, Andersen KB, Knudsen K, et al. Brain-first versus body-first Parkinson’s disease: A multimodal imaging case-control study. Brain 2020; 143(10): 3077-88.
[http://dx.doi.org/10.1093/brain/awaa238] [PMID: 32830221]
[125]
Fülling C, Dinan TG, Cryan JF. Gut microbe to brain signaling: What happens in vagus…. Neuron 2019; 101(6): 998-1002.
[http://dx.doi.org/10.1016/j.neuron.2019.02.008] [PMID: 30897366]
[126]
Thursby E, Juge N. Introduction to the human gut microbiota. Biochem J 2017; 474(11): 1823-36.
[http://dx.doi.org/10.1042/BCJ20160510] [PMID: 28512250]
[127]
Vuong HE, Yano JM, Fung TC, Hsiao EY. The microbiome and host behavior. Annu Rev Neurosci 2017; 40(1): 21-49.
[http://dx.doi.org/10.1146/annurev-neuro-072116-031347] [PMID: 28301775]
[128]
Cryan JF, O’Riordan KJ, Cowan CSM, et al. The microbiota-gut-brain axis. Physiol Rev 2019; 99(4): 1877-2013.
[http://dx.doi.org/10.1152/physrev.00018.2018] [PMID: 31460832]
[129]
Unger MM, Spiegel J, Dillmann KU, et al. Short chain fatty acids and gut microbiota differ between patients with Parkinson’s disease and age-matched controls. Parkinsonism Relat Disord 2016; 32: 66-72.
[http://dx.doi.org/10.1016/j.parkreldis.2016.08.019] [PMID: 27591074]
[130]
Scheperjans F, Aho V, Pereira PAB, et al. Gut microbiota are related to Parkinson’s disease and clinical phenotype. Mov Disord 2015; 30(3): 350-8.
[http://dx.doi.org/10.1002/mds.26069] [PMID: 25476529]
[131]
Hirayama M, Ohno K. Parkinson’s disease and gut microbiota. Ann Nutr Metab 2021; 77(S2): 28-35.
[http://dx.doi.org/10.1159/000518147] [PMID: 34500451]
[132]
Avagliano C, Coretti L, Lama A, et al. Dual-hit model of parkinson’s disease: Impact of dysbiosis on 6-hydroxydopamine-insulted mice—neuroprotective and anti-inflammatory effects of butyrate. Int J Mol Sci 2022; 23(12): 6367.
[http://dx.doi.org/10.3390/ijms23126367] [PMID: 35742813]
[133]
Chen SG, Stribinskis V, Rane MJ, et al. Exposure to the functional bacterial amyloid protein curli enhances alpha-synuclein aggregation in aged fischer 344 rats and caenorhabditis elegans. Sci Rep 2016; 6(1): 34477.
[http://dx.doi.org/10.1038/srep34477] [PMID: 27708338]
[134]
Sampson TR, Debelius JW, Thron T, et al. Gut microbiota regulate motor deficits and neuroinflammation in a model of parkinson’s disease. Cell 2016; 167(6): 1469-1480.e12.
[http://dx.doi.org/10.1016/j.cell.2016.11.018] [PMID: 27912057]
[135]
Snigdha S, Ha K, Tsai P, Dinan TG, Bartos JD, Shahid M. Probiotics: Potential novel therapeutics for microbiota-gut-brain axis dysfunction across gender and lifespan. Pharmacol Ther 2022; 231: 107978.
[http://dx.doi.org/10.1016/j.pharmthera.2021.107978] [PMID: 34492236]
[136]
van Kessel SP, Frye AK, El-Gendy AO, et al. Gut bacterial tyrosine decarboxylases restrict levels of levodopa in the treatment of Parkinson’s disease. Nat Commun 2019; 10(1): 310.
[http://dx.doi.org/10.1038/s41467-019-08294-y] [PMID: 30659181]
[137]
Hardoff R, Sula M, Tamir A, et al. Gastric emptying time and gastric motility in patients with Parkinson’s disease. Mov Disord 2001; 16(6): 1041-7.
[http://dx.doi.org/10.1002/mds.1203] [PMID: 11748735]
[138]
De Pablo-Fernández E, Passananti V, Zárate-López N, Emmanuel A, Warner T. Colonic transit, high-resolution anorectal manometry and MRI defecography study of constipation in Parkinson’s disease. Parkinsonism Relat Disord 2019; 66: 195-201.
[http://dx.doi.org/10.1016/j.parkreldis.2019.08.016] [PMID: 31473084]
[139]
Legge J, Fleming N, Cloud LJ. Gastrointestinal care of the parkinson patient. Clin Geriatr Med 2020; 36(1): 81-92.
[http://dx.doi.org/10.1016/j.cger.2019.09.003] [PMID: 31733704]
[140]
Konings B, Villatoro L, Van den Eynde J, et al. Gastrointestinal syndromes preceding a diagnosis of Parkinson’s disease: Testing Braak’s hypothesis using a nationwide database for comparison with Alzheimer’s disease and cerebrovascular diseases. Gut 2023; 72(11): 2103-11.
[http://dx.doi.org/10.1136/gutjnl-2023-329685] [PMID: 37620120]
[141]
Anderson G, Noorian A, Taylor G, et al. Loss of enteric dopaminergic neurons and associated changes in colon motility in an MPTP mouse model of Parkinson’s disease. Exp Neurol 2007; 207(1): 4-12.
[http://dx.doi.org/10.1016/j.expneurol.2007.05.010] [PMID: 17586496]
[142]
Colucci M, Cervio M, Faniglione M, et al. Intestinal dysmotility and enteric neurochemical changes in a Parkinson’s disease rat model. Auton Neurosci 2012; 169(2): 77-86.
[http://dx.doi.org/10.1016/j.autneu.2012.04.005] [PMID: 22608184]
[143]
Fornai M, Pellegrini C, Antonioli L, et al. Enteric dysfunctions in experimental parkinsons disease: Alterations of excitatory cholinergic neurotransmission regulating colonic motility in rats. J Pharmacol Exp Ther 2016; 356(2): 233-43.
[http://dx.doi.org/10.1124/jpet.115.228510] [PMID: 26582732]
[144]
Coletto E, Dolan JS, Pritchard S, et al. Contractile dysfunction and nitrergic dysregulation in small intestine of a primate model of Parkinson’s disease. NPJ Parkinsons Dis 2019; 5(1): 10.
[http://dx.doi.org/10.1038/s41531-019-0081-9] [PMID: 31231674]
[145]
Krogh K, Ostergaard K, Sabroe S, Laurberg S. Clinical aspects of bowel symptoms in Parkinson’s disease. Acta Neurol Scand 2008; 117(1): 60-4.
[http://dx.doi.org/10.1111/j.1600-0404.2007.00900.x] [PMID: 18095955]
[146]
Sauerbier A, Cova I, Grilo RM, Taddei RN, Mischley LK, Chaudhuri KR. Treatment of nonmotor symptoms in parkinson’s disease. Int Rev Neurobiol 2017; 132: 361-79.
[http://dx.doi.org/10.1016/bs.irn.2017.03.002] [PMID: 28554415]
[147]
Armstrong MJ, Okun MS. Diagnosis and treatment of parkinson disease. JAMA 2020; 323(6): 548-60.
[http://dx.doi.org/10.1001/jama.2019.22360] [PMID: 32044947]
[148]
Barichella M, Pacchetti C, Bolliri C, et al. Probiotics and prebiotic fiber for constipation associated with Parkinson disease. Neurology 2016; 87(12): 1274-80.
[http://dx.doi.org/10.1212/WNL.0000000000003127] [PMID: 27543643]
[149]
Pflug C, Bihler M, Emich K, et al. Critical dysphagia is common in parkinson disease and occurs even in early stages: A prospective cohort study. Dysphagia 2018; 33(1): 41-50.
[http://dx.doi.org/10.1007/s00455-017-9831-1] [PMID: 28828545]
[150]
Kalf JG, de Swart BJM, Bloem BR, Munneke M. Prevalence of oropharyngeal dysphagia in Parkinson’s disease: A meta-analysis. Parkinsonism Relat Disord 2012; 18(4): 311-5.
[http://dx.doi.org/10.1016/j.parkreldis.2011.11.006] [PMID: 22137459]
[151]
Nienstedt JC, Bihler M, Niessen A, et al. Predictive clinical factors for penetration and aspiration in Parkinson’s disease. Neurogastroenterol Motil 2019; 31(3): e13524.
[http://dx.doi.org/10.1111/nmo.13524] [PMID: 30548367]
[152]
Umemoto G, Furuya H. Management of dysphagia in patients with Parkinson’s disease and related disorders. Intern Med 2020; 59(1): 7-14.
[http://dx.doi.org/10.2169/internalmedicine.2373-18] [PMID: 30996170]
[153]
Schindler A, Pizzorni N, Cereda E, et al. Consensus on the treatment of dysphagia in Parkinson’s disease. J Neurol Sci 2021; 430: 120008.
[http://dx.doi.org/10.1016/j.jns.2021.120008] [PMID: 34624796]
[154]
Goetze O, Nikodem AB, Wiezcorek J, et al. Predictors of gastric emptying in Parkinson’s disease. Neurogastroenterol Motil 2006; 18(5): 369-75.
[http://dx.doi.org/10.1111/j.1365-2982.2006.00780.x] [PMID: 16629864]
[155]
Heetun ZS, Quigley EMM. Gastroparesis and Parkinson’s disease: A systematic review. Parkinsonism Relat Disord 2012; 18(5): 433-40.
[http://dx.doi.org/10.1016/j.parkreldis.2011.12.004] [PMID: 22209346]
[156]
Zheng LF, Song J, Fan RF, et al. The role of the vagal pathway and gastric dopamine in the gastroparesis of rats after a 6‐hydroxydopamine microinjection in the substantia nigra. Acta Physiol 2014; 211(2): 434-46.
[http://dx.doi.org/10.1111/apha.12229] [PMID: 24410908]
[157]
Fasano A, Bove F, Gabrielli M, et al. The role of small intestinal bacterial overgrowth in Parkinson’s disease. Mov Disord 2013; 28(9): 1241-9.
[http://dx.doi.org/10.1002/mds.25522] [PMID: 23712625]
[158]
Pfeiffer RF. Gastrointestinal dysfunction in Parkinson’s disease. Lancet Neurol 2003; 2(2): 107-16.
[http://dx.doi.org/10.1016/S1474-4422(03)00307-7] [PMID: 12849267]
[159]
Barboza JL, Okun MS, Moshiree B. The treatment of gastroparesis, constipation and small intestinal bacterial overgrowth syndrome in patients with Parkinson’s disease. Expert Opin Pharmacother 2015; 16(16): 2449-64.
[http://dx.doi.org/10.1517/14656566.2015.1086747] [PMID: 26374094]
[160]
Losurdo G, D’Abramo FS, Indellicati G, Lillo C, Ierardi E, Di Leo A. The influence of small intestinal bacterial overgrowth in digestive and extra-intestinal disorders. Int J Mol Sci 2020; 21(10): 3531.
[http://dx.doi.org/10.3390/ijms21103531] [PMID: 32429454]
[161]
Dobbs R, Charlett A, Dobbs SM, et al. Leukocyte-subset counts in idiopathic parkinsonism provide clues to a pathogenic pathway involving small intestinal bacterial overgrowth. A surveillance study. Gut Pathog 2012; 4(1): 12.
[http://dx.doi.org/10.1186/1757-4749-4-12] [PMID: 23083400]
[162]
Tan AH, Mahadeva S, Thalha AM, et al. Small intestinal bacterial overgrowth in Parkinson’s disease. Parkinsonism Relat Disord 2014; 20(5): 535-40.
[http://dx.doi.org/10.1016/j.parkreldis.2014.02.019] [PMID: 24637123]
[163]
Wang Q, Luo Y, Chaudhuri RK, Reynolds R, Tan EK, Pettersson S. The role of gut dysbiosis in Parkinson’s disease: Mechanistic insights and therapeutic options. Brain 2021; 144(9): 2571-93.
[http://dx.doi.org/10.1093/brain/awab156] [PMID: 33856024]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy