Generic placeholder image

Current Diabetes Reviews

Editor-in-Chief

ISSN (Print): 1573-3998
ISSN (Online): 1875-6417

Mini-Review Article

Diabetes and its Complications: Role of Luteolin, A Wonder Chemical from the Natural Source

Author(s): Gandhar Pradhan and Yogesh A. Kulkarni*

Volume 21, Issue 1, 2025

Published on: 29 February, 2024

Article ID: e290224227537 Pages: 11

DOI: 10.2174/0115733998285798240217084632

Price: $65

Open Access Journals Promotions 2
Abstract

Flavonoids have been reported to be vital in treating various chronic disorders. Luteolin (3′,4′,5,7-tetrahydroxyflavone) is a flavonoid present in a variety of plant sources such as celery, green pepper, olive oil, peppermint, thyme, rosemary, oregano, etc. It has been reported to have various pharmacological activities such as antioxidant, anti-inflammatory, anticancer, antidiabetic, anti-Alzheimer, antimicrobial, etc. Many scientific studies have been carried out on luteolin for its possible effects on diabetes and its associated complications. The present review focuses on the role of luteolin in diabetes mellitus and the associated complications. The antidiabetic impact of luteolin is linked with the increased expression of PPARγ and GLUT. Various in vitro and in vivo studies have been performed to explore the effects of luteolin on diabetic complications, and it has shown a significant impact in the management of the same.

Keywords: Luteolin, flavonoids, diabetes, diabetic cardiomyopathy, diabetic nephropathy, diabetic neuropathy, diabetic retinopathy, diabetic encephalopathy.

[1]
DiMeglio LA, Evans-Molina C, Oram RA. Type 1 diabetes. Lancet 2018; 391(10138): 2449-62.
[http://dx.doi.org/10.1016/S0140-6736(18)31320-5] [PMID: 29916386]
[2]
Tan SY, Mei Wong JL, Sim YJ, et al. Type 1 and 2 diabetes mellitus: A review on current treatment approach and gene therapy as potential intervention. Diabetes Metab Syndr 2019; 13(1): 364-72.
[http://dx.doi.org/10.1016/j.dsx.2018.10.008] [PMID: 30641727]
[3]
Artasensi A, Pedretti A, Vistoli G, Fumagalli L. Type 2 diabetes mellitus: A review of multi-target drugs. Molecules 2020; 25(8): 1987.
[http://dx.doi.org/10.3390/molecules25081987] [PMID: 32340373]
[4]
Facts & figures. International Diabetes Federation. Available from: https://idf.org/about-diabetes/facts-figures/ (accessed 2023-06-16).
[5]
Nally LM, Sherr JL, Van Name MA, Patel AD, Tamborlane WV. Pharmacologic treatment options for type 1 diabetes: What’s new? Expert Rev Clin Pharmacol 2019; 12(5): 471-9.
[http://dx.doi.org/10.1080/17512433.2019.1597705] [PMID: 30892094]
[6]
Haahr H, Heise T. Fast-acting insulin aspart: A review of its pharmacokinetic and pharmacodynamic properties and the clinical consequences. Clin Pharmacokinet 2020; 59(2): 155-72.
[http://dx.doi.org/10.1007/s40262-019-00834-5] [PMID: 31667789]
[7]
Hoy SM. MYL1501D insulin glargine: A review in diabetes mellitus. BioDrugs 2020; 34(2): 245-51.
[http://dx.doi.org/10.1007/s40259-020-00418-x] [PMID: 32215829]
[8]
Picón-César MJ, Molina-Vega M, Suárez-Arana M, et al. Metformin for gestational diabetes study: metformin vs insulin in gestational diabetes: Flycemic control and obstetrical and perinatal outcomes: randomized prospective trial. Am J Obstet Gynecol 2021; 225(5): 517.e1-517.e17.
[http://dx.doi.org/10.1016/j.ajog.2021.04.229] [PMID: 33887240]
[9]
Priya G, Kalra S. A review of insulin resistance in type 1 diabetes: Is there a place for adjunctive metformin? Diabetes Ther 2018; 9(1): 349-61.
[http://dx.doi.org/10.1007/s13300-017-0333-9] [PMID: 29139080]
[10]
Apostolova N, Iannantuoni F, Gruevska A, Muntane J, Rocha M, Victor VM. Mechanisms of action of metformin in type 2 diabetes: Effects on mitochondria and leukocyte-endothelium interactions. Redox Biol 2020; 34: 101517.
[http://dx.doi.org/10.1016/j.redox.2020.101517] [PMID: 32535544]
[11]
Lee CB, Chae SU, Jo SJ, Jerng UM, Bae SK. The relationship between the gut microbiome and metformin as a key for treating type 2 diabetes mellitus. Int J Mol Sci 2021; 22(7): 3566.
[http://dx.doi.org/10.3390/ijms22073566] [PMID: 33808194]
[12]
Lv W, Wang X, Xu Q, Lu W. Mechanisms and characteristics of sulfonylureas and glinides. Curr Top Med Chem 2020; 20(1): 37-56.
[http://dx.doi.org/10.2174/1568026620666191224141617] [PMID: 31884929]
[13]
Tao Y, e M, Shi J, Zhang Z. Sulfonylureas use and fractures risk in elderly patients with type 2 diabetes mellitus: A meta-analysis study. Aging Clin Exp Res 2021; 33(8): 2133-9.
[http://dx.doi.org/10.1007/s40520-020-01736-4] [PMID: 33104983]
[14]
Philip J, Fernandez CJ. Efficacy and cardiovascular safety of meglitinides. Curr Drug Saf 2021; 16(2): 207-16.
[http://dx.doi.org/10.2174/1574886315666201026125848] [PMID: 33106149]
[15]
Rosenstock J, Allison D, Birkenfeld AL, et al. Effect of additional oral semaglutide vs sitagliptin on glycated hemoglobin in adults with type 2 diabetes uncontrolled with metformin alone or with sulfonylurea. JAMA 2019; 321(15): 1466-80.
[http://dx.doi.org/10.1001/jama.2019.2942] [PMID: 30903796]
[16]
Zhou D, Chen L, Mou X. Acarbose ameliorates spontaneous type 2 diabetes in db/db mice by inhibiting PDX 1 methylation. Mol Med Rep 2020; 23(1): 72.
[http://dx.doi.org/10.3892/mmr.2020.11710] [PMID: 33236139]
[17]
Lee SH, Park SY, Choi CS. Insulin resistance: From mechanisms to therapeutic strategies. Diabetes Metab J 2022; 46(1): 15-37.
[http://dx.doi.org/10.4093/dmj.2021.0280] [PMID: 34965646]
[18]
Yaribeygi H, Farrokhi FR, Butler AE, Sahebkar A. Insulin resistance: Review of the underlying molecular mechanisms. J Cell Physiol 2019; 234(6): 8152-61.
[http://dx.doi.org/10.1002/jcp.27603] [PMID: 30317615]
[19]
Hill MA, Yang Y, Zhang L, et al. Insulin resistance, cardiovascular stiffening and cardiovascular disease. Metabolism 2021; 119: 154766.
[http://dx.doi.org/10.1016/j.metabol.2021.154766] [PMID: 33766485]
[20]
Esin RG, Khairullin IK, Esin OR. Diabetic encephalopathy: Current insights and potential therapeutic strategies. Zh Nevrol Psikhiatr Im S S Korsakova 2021; 121(7): 49-54.
[http://dx.doi.org/10.17116/jnevro202112107149] [PMID: 34460157]
[21]
Wang W, Lo A. Diabetic retinopathy: Pathophysiology and treatments. Int J Mol Sci 2018; 19(6): 1816.
[http://dx.doi.org/10.3390/ijms19061816] [PMID: 29925789]
[22]
Neuropathy D. Diabetic neuropathy. Nat Rev Dis Primers 2019; 5(1): 42.
[http://dx.doi.org/10.1038/s41572-019-0097-9] [PMID: 31197183]
[23]
Khoury J, Zohar Y, Shehadeh N, Saadi T. Glycogenic hepatopathy. Hepatobiliary Pancreat Dis Int 2018; 17(2): 113-8.
[http://dx.doi.org/10.1016/j.hbpd.2018.02.006] [PMID: 29709217]
[24]
Yuan Z, Tang Z, He C, Tang W. Diabetic cystopathy: A review: Diabetic cystopathy. J Diabetes 2015; 7(4): 442-7.
[http://dx.doi.org/10.1111/1753-0407.12272] [PMID: 25619174]
[25]
Liu W, Feng Y, Yu S, et al. The flavonoid biosynthesis network in plants. Int J Mol Sci 2021; 22(23): 12824.
[http://dx.doi.org/10.3390/ijms222312824] [PMID: 34884627]
[26]
Laddha AP, Kulkarni YA. Pharmacokinetics, pharmacodynamics, toxicity, and formulations of daidzein: An important isoflavone. Phytother Res 2023; 37(6): 2578-604.
[http://dx.doi.org/10.1002/ptr.7852] [PMID: 37118928]
[27]
Panche AN, Diwan AD, Chandra SR. Flavonoids: An overview. J Nutr Sci 2016; 5: e47.
[http://dx.doi.org/10.1017/jns.2016.41] [PMID: 28620474]
[28]
Joshi R, Kulkarni YA, Wairkar S. Pharmacokinetic, pharmacodynamic and formulations aspects of Naringenin: An update. Life Sci 2018; 215: 43-56.
[http://dx.doi.org/10.1016/j.lfs.2018.10.066]
[29]
Ullah A, Munir S, Badshah SL, et al. Important flavonoids and their role as a therapeutic agent. Molecules 2020; 25(22): 5243.
[http://dx.doi.org/10.3390/molecules25225243] [PMID: 33187049]
[30]
Salatin S, Bazmani A, Shahi S, Naghili B, Memar MY, Dizaj SM. Antimicrobial benefits of flavonoids and their nanoformulations. Curr Pharm Des 2022; 28(17): 1419-32.
[http://dx.doi.org/10.2174/1381612828666220509151407] [PMID: 35579158]
[31]
Zhao K, Yuan Y, Lin B, et al. LW-215, a newly synthesized flavonoid, exhibits potent anti-angiogenic activity in vitro and in vivo. Gene 2018; 642: 533-41.
[http://dx.doi.org/10.1016/j.gene.2017.11.065] [PMID: 29196258]
[32]
Diao HM, Hao Y, Li J, et al. Flavonoids from Scutellaria likiangensis Diels and their antimalarial activities. Fitoterapia 2023; 164: 105357.
[http://dx.doi.org/10.1016/j.fitote.2022.105357] [PMID: 36460204]
[33]
Wang Y, Liu XJ, Chen JB, Cao JP, Li X, Sun CD. Citrus flavonoids and their antioxidant evaluation. Crit Rev Food Sci Nutr 2022; 62(14): 3833-54.
[http://dx.doi.org/10.1080/10408398.2020.1870035] [PMID: 33435726]
[34]
Dajas F, Rivera-Megret F, Blasina F, et al. Neuroprotection by flavonoids. Braz J Med Biol Res 2003; 36(12): 1613-20.
[http://dx.doi.org/10.1590/S0100-879X2003001200002] [PMID: 14666245]
[35]
Ożarowski M, Karpiński TM. Extracts and flavonoids of passiflora species as promising anti-inflammatory and antioxidant substances. Curr Pharm Des 2021; 27(22): 2582-604.
[http://dx.doi.org/10.2174/18734286MTA2yOTM80] [PMID: 32452323]
[36]
Aziz N, Kim MY, Cho JY. Anti-inflammatory effects of luteolin: A review of in vitro, in vivo, and in silico studies. J Ethnopharmacol 2018; 225: 342-58.
[http://dx.doi.org/10.1016/j.jep.2018.05.019] [PMID: 29801717]
[37]
Kulkarni YA, Garud MS, Oza MJ, Barve KH, Gaikwad AB. Chapter 5 - Diabetes, diabetic complications, and flavonoids. In: Watson RR, Preedy VR, Eds. Fruits, Vegetables, and Herbs Academic Press. 2016; pp. 77-104.
[http://dx.doi.org/10.1016/B978-0-12-802972-5.00005-6]
[38]
Agarawal K, Anant Kulkarni Y, Wairkar S. Nanoformulations of flavonoids for diabetes and microvascular diabetic complications. Drug Deliv Transl Res 2023; 13(1): 18-36.
[http://dx.doi.org/10.1007/s13346-022-01174-x] [PMID: 35637334]
[39]
Lin Y, Shi R, Wang X, Shen HM. Luteolin, a flavonoid with potential for cancer prevention and therapy. Curr Cancer Drug Targets 2008; 8(7): 634-46.
[http://dx.doi.org/10.2174/156800908786241050] [PMID: 18991571]
[40]
Miean KH, Mohamed S. Flavonoid (myricetin, quercetin, kaempferol, luteolin, and apigenin) content of edible tropical plants. J Agric Food Chem 2001; 49(6): 3106-12.
[http://dx.doi.org/10.1021/jf000892m] [PMID: 11410016]
[41]
Sm A. R F, A S, M R. Structure-antioxidant activity relationships of luteolin and catechin. J Food Sci 2020; 85(2)
[http://dx.doi.org/10.1111/1750-3841.14994]
[42]
Leopoldini M, Marino T, Russo N, Toscano M. Antioxidant properties of phenolic compounds: H-atom versus electron transfer mechanism. J Phys Chem A 2004; 108(22): 4916-22.
[http://dx.doi.org/10.1021/jp037247d]
[43]
Leopoldini M, Pitarch IP, Russo N, Toscano M. Structure, conformation, and electronic properties of apigenin, luteolin, and taxifolin antioxidants. A first principle theoretical study. J Phys Chem A 2004; 108(1): 92-6.
[http://dx.doi.org/10.1021/jp035901j]
[44]
Joseph A. Experimental determination of octanol−water partition coefficients of quercetin and related flavonoids. J Agric Food Chem 2005; 53(11): 4355-60.
[http://dx.doi.org/10.1021/jf0483669]
[45]
PubChem Luteolin. Available from: https://pubchem.ncbi.nlm.nih.gov/compound/5280445 (accessed 2023-06-16).
[46]
Shimoi K, Okada H, Furugori M, et al. Intestinal absorption of luteolin and luteolin 7‐ O ‐β‐glucoside in rats and humans. FEBS Lett 1998; 438(3): 220-4.
[http://dx.doi.org/10.1016/S0014-5793(98)01304-0]
[47]
Boersma MG, van der Woude H, Bogaards J, et al. Regioselectivity of phase II metabolism of luteolin and quercetin by UDP-glucuronosyl transferases. Chem Res Toxicol 2002; 15(5): 662-70.
[http://dx.doi.org/10.1021/tx0101705] [PMID: 12018987]
[48]
Kure A, Nakagawa K, Kondo M, et al. Metabolic fate of luteolin in rats: Its relationship to anti-inflammatory effect. J Agric Food Chem 2016; 64(21): 4246-54.
[http://dx.doi.org/10.1021/acs.jafc.6b00964] [PMID: 27170112]
[49]
Wu L, Liu J, Han W, et al. Time-dependent metabolism of luteolin by human UDP-glucuronosyltransferases and its intestinal first-pass glucuronidation in mice. J Agric Food Chem 2015; 63(39): 8722-33.
[http://dx.doi.org/10.1021/acs.jafc.5b02827] [PMID: 26377048]
[50]
Chen Z, Chen M, Pan H, et al. Role of catechol-O-methyltransferase in the disposition of luteolin in rats. Drug Metab Dispos 2011; 39(4): 667-74.
[http://dx.doi.org/10.1124/dmd.110.037333] [PMID: 21209248]
[51]
Deng C, Gao C, Tian X, et al. Pharmacokinetics, tissue distribution and excretion of luteolin and its major metabolites in rats: Metabolites predominate in blood, tissues and are mainly excreted via bile. J Funct Foods 2017; 35: 332-40.
[http://dx.doi.org/10.1016/j.jff.2017.05.056]
[52]
Min YS, Bai KL, Yim SH, et al. The effect of luteolin-7-O-β-d-glucuronopyranoside on gastritis and esophagitis in rats. Arch Pharm Res 2006; 29(6): 484-9.
[http://dx.doi.org/10.1007/BF02969421] [PMID: 16833016]
[53]
Iwaki M, Matsuda M, Maeda N, et al. Induction of adiponectin, a fat-derived antidiabetic and antiatherogenic factor, by nuclear receptors. Diabetes 2003; 52(7): 1655-63.
[http://dx.doi.org/10.2337/diabetes.52.7.1655]
[54]
Hollenberg AN, Susulic VS, Madura JP, et al. Functional antagonism between CCAAT/Enhancer binding protein-alpha and peroxisome proliferator-activated receptor-gamma on the leptin promoter. J Biol Chem 1997; 272(8): 5283-90.
[http://dx.doi.org/10.1074/jbc.272.8.5283] [PMID: 9030601]
[55]
Ding L, Jin D, Chen X. Luteolin enhances insulin sensitivity via activation of PPARγ transcriptional activity in adipocytes. J Nutr Biochem 2010; 21(10): 941-7.
[http://dx.doi.org/10.1016/j.jnutbio.2009.07.009] [PMID: 19954946]
[56]
Wang J, Gao T, Wang F, Xue J, Ye H, Xie M. Luteolin improves myocardial cell glucolipid metabolism by inhibiting hypoxia inducible factor-1α expression in angiotensin II/hypoxia-induced hypertrophic H9c2 cells. Nutr Res 2019; 65: 63-70.
[http://dx.doi.org/10.1016/j.nutres.2019.02.004] [PMID: 30954346]
[57]
Shehnaz SI, Roy A, Vijayaraghavan R, Sivanesan S, Pazhanivel N. Modulation of PPAR-γ, SREBP-1c and inflammatory mediators by luteolin ameliorates β-cell dysfunction and renal damage in a rat model of type-2 diabetes mellitus. Mol Biol Rep 2023; 50(11): 9129-42.
[http://dx.doi.org/10.1007/s11033-023-08804-8] [PMID: 37749346]
[58]
Dillmann WH. Diabetic cardiomyopathy. Circ Res 2019; 124(8): 1160-2.
[http://dx.doi.org/10.1161/CIRCRESAHA.118.314665] [PMID: 30973809]
[59]
Rubler S, Dlugash J, Yuceoglu YZ, Kumral T, Branwood AW, Grishman A. New type of cardiomyopathy associated with diabetic glomerulosclerosis. Am J Cardiol 1972; 30(6): 595-602.
[http://dx.doi.org/10.1016/0002-9149(72)90595-4]
[60]
Jia G, Hill MA, Sowers JR. Diabetic cardiomyopathy: An update of mechanisms contributing to this clinical entity. Circ Res 2018; 122(4): 624-38.
[http://dx.doi.org/10.1161/CIRCRESAHA.117.311586] [PMID: 29449364]
[61]
Suryavanshi SV, Kulkarni YA. NF-κβ: A potential target in the management of vascular complications of diabetes. Front Pharmacol 2017; 8: 798.
[http://dx.doi.org/10.3389/fphar.2017.00798] [PMID: 29163178]
[62]
Swynghedauw B. Molecular mechanisms of myocardial remodeling. Physiol Rev 1999; 79(1): 215-62.
[http://dx.doi.org/10.1152/physrev.1999.79.1.215] [PMID: 9922372]
[63]
Home; Resources; diabetes, L. with; Acknowledgement; FAQs; Contact; Policy, P. IDF Diabetes Atlas 2021 | IDF Diabetes Atlas 2021. Available from: https://diabetesatlas.org/atlas/tenth-edition/ (accessed 2024-01-22).
[64]
Werner CM, Böhm M. Review: The therapeutic role of RAS blockade in chronic heart failure. Ther Adv Cardiovasc Dis 2008; 2(3): 167-77.
[http://dx.doi.org/10.1177/1753944708091777] [PMID: 19124420]
[65]
M Sano , K Fukuda , T Sato , et al. ERK and P38 MAPK, but Not NF-kappaB, Are Critically Involved in Reactive Oxygen Species-Mediated Induction of IL-6 by Angiotensin II in Cardiac Fibroblasts. Circ Res 2001; 89(8)
[http://dx.doi.org/10.1161/hh2001.098873]
[66]
Cheng TH, Cheng PY, Shih NL, Chen IB, Wang DL, Chen JJ. Involvement of reactive oxygen species in angiotensin II-induced endothelin-1 gene expression in rat cardiac fibroblasts. J Am Coll Cardiol 2003; 42(10): 1845-54.
[http://dx.doi.org/10.1016/j.jacc.2003.06.010] [PMID: 14642698]
[67]
Manabe I, Shindo T, Nagai R. Gene expression in fibroblasts and fibrosis: Involvement in cardiac hypertrophy. Circ Res 2002; 91(12): 1103-13.
[http://dx.doi.org/10.1161/01.RES.0000046452.67724.B8] [PMID: 12480810]
[68]
Rosenkranz S. TGF-?1 and angiotensin networking in cardiac remodeling. Cardiovasc Res 2004; 63(3): 423-32.
[http://dx.doi.org/10.1016/j.cardiores.2004.04.030] [PMID: 15276467]
[69]
Yu CM, Tipoe GL, Wing-Hon Lai K, Lau CP. Effects of combination of angiotensin-converting enzyme inhibitor and angiotensin receptor antagonist on inflammatory cellular infiltration and myocardial interstitial fibrosis after acute myocardial infarction. J Am Coll Cardiol 2001; 38(4): 1207-15.
[http://dx.doi.org/10.1016/S0735-1097(01)01518-2] [PMID: 11583905]
[70]
Lim DS, Lutucuta S, Bachireddy P, et al. Angiotensin II blockade reverses myocardial fibrosis in a transgenic mouse model of human hypertrophic cardiomyopathy. Circulation 2001; 103(6): 789-91.
[http://dx.doi.org/10.1161/01.CIR.103.6.789] [PMID: 11171784]
[71]
Leask A, Abraham DJ. TGF‐β signaling and the fibrotic response. FASEB J 2004; 18(7): 816-27.
[http://dx.doi.org/10.1096/fj.03-1273rev] [PMID: 15117886]
[72]
Ando C, Takahashi N, Hirai S, et al. Luteolin, a food‐derived flavonoid, suppresses adipocyte‐dependent activation of macrophages by inhibiting JNK activation. FEBS Lett 2009; 583(22): 3649-54.
[http://dx.doi.org/10.1016/j.febslet.2009.10.045] [PMID: 19854181]
[73]
Ph L, Lm H, Yh C, et al. Cardioprotective effects of luteolin during ischemia-reperfusion injury in rats. Circ J 2011; 75(2): 443-50.
[http://dx.doi.org/10.1253/circj.CJ-10-0381]
[74]
Li X, Rekep M, Tian J, et al. Luteolin attenuates diabetic myocardial hypertrophy by inhibiting proteasome activity. Pharmacology 2023; 108(1): 47-60.
[http://dx.doi.org/10.1159/000527201] [PMID: 36423586]
[75]
Zhang W, Li D, Shan Y, et al. Luteolin intake is negatively associated with all-cause and cardiac mortality among patients with type 2 diabetes mellitus. Diabetol Metab Syndr 2023; 15(1): 59.
[http://dx.doi.org/10.1186/s13098-023-01026-9] [PMID: 36966325]
[76]
Mogensen CE. Microalbuminuria and hypertension with focus on type 1 and type 2 diabetes. J Intern Med 2003; 254(1): 45-66.
[http://dx.doi.org/10.1046/j.1365-2796.2003.01157.x] [PMID: 12823642]
[77]
Najafian B, Alpers CE, Fogo AB. Pathology of human diabetic nephropathy. Contrib Nephrol 2011; 170: 36-47.
[http://dx.doi.org/10.1159/000324942]
[78]
Mora C, Navarro JF. Inflammation and diabetic nephropathy. Curr Diab Rep 2006; 6(6): 463-8.
[http://dx.doi.org/10.1007/s11892-006-0080-1] [PMID: 17118230]
[79]
Qiu Y, Tang L. Roles of the NLRP3 inflammasome in the pathogenesis of diabetic nephropathy. Pharmacol Res 2016; 114: 251-64.
[http://dx.doi.org/10.1016/j.phrs.2016.11.004] [PMID: 27826011]
[80]
Garud M, Kulkarni Y. Hyperglycemia to nephropathy via transforming growth factor beta. Curr Diabetes Rev 2014; 10(3): 182-9.
[http://dx.doi.org/10.2174/1573399810666140606103645] [PMID: 24919657]
[81]
Wen H, Miao EA, Ting JP-Y. Mechanisms of NOD-like receptor-associated inflammasome activation. Immunity 2013; 39(3): 432-41.
[http://dx.doi.org/10.1016/j.immuni.2013.08.037]
[82]
Elliott EI, Sutterwala FS. Initiation and perpetuation of NLRP 3 inflammasome activation and assembly. Immunol Rev 2015; 265(1): 35-52.
[http://dx.doi.org/10.1111/imr.12286] [PMID: 25879282]
[83]
Home; Resources; diabetes, L. with; Acknowledgement; FAQs; Contact; Policy, P. Diabetes and kidney disease | IDF Diabetes Atlas Available from: https://diabetesatlas.org/atlas/diabetes-and-kidney-disease/ (accessed 2024-01-22).
[84]
Yu Q, Zhang M, Qian L, Wen D, Wu G. Luteolin attenuates high glucose-induced podocyte injury via suppressing NLRP3 inflammasome pathway. Life Sci 2019; 225: 1-7.
[http://dx.doi.org/10.1016/j.lfs.2019.03.073] [PMID: 30935950]
[85]
Xiong C, Wu Q, Fang M, Li H, Chen B, Chi T. Protective effects of luteolin on nephrotoxicity induced by long-term hyperglycaemia in rats. J Int Med Res 2020; 48(4)
[http://dx.doi.org/10.1177/0300060520903642] [PMID: 32242458]
[86]
Zhang M, He L, Liu J, Zhou L. Luteolin attenuates diabetic nephropathy through suppressing inflammatory response and oxidative stress by inhibiting stat3 pathway. Exp Clin Endocrinol Diabetes 2021; 129(10): 729-39.
[http://dx.doi.org/10.1055/a-0998-7985] [PMID: 31896157]
[87]
Mizisin AP, Shelton GD, Wagner S, Rusbridge C, Powell HC. Myelin splitting, Schwann cell injury and demyelination in feline diabetic neuropathy. Acta Neuropathol 1998; 95(2): 171-4.
[http://dx.doi.org/10.1007/s004010050783] [PMID: 9498053]
[88]
Gumy LF, Bampton ETW, Tolkovsky AM. Hyperglycaemia inhibits Schwann cell proliferation and migration and restricts regeneration of axons and Schwann cells from adult murine DRG. Mol Cell Neurosci 2008; 37(2): 298-311.
[http://dx.doi.org/10.1016/j.mcn.2007.10.004] [PMID: 18024075]
[89]
Pan S, Chan JR. Regulation and dysregulation of axon infrastructure by myelinating glia. J Cell Biol 2017; 216(12): 3903-16.
[http://dx.doi.org/10.1083/jcb.201702150] [PMID: 29114067]
[90]
Adki KM, Kulkarni YA. Biomarkers in diabetic neuropathy. Arch Physiol Biochem 2023; 129(2): 460-75.
[http://dx.doi.org/10.1080/13813455.2020.1837183] [PMID: 33186087]
[91]
Va C CCC. The role of glutamate in diabetic and in chemotherapy induced peripheral neuropathies and its regulation by glutamate carboxypeptidase II. Curr Med Chem 2012; 19(9)
[http://dx.doi.org/10.2174/092986712799462694]
[92]
Lin TY, Lu CW, Wang SJ. Luteolin protects the hippocampus against neuron impairments induced by kainic acid in rats. Neurotoxicology 2016; 55: 48-57.
[http://dx.doi.org/10.1016/j.neuro.2016.05.008] [PMID: 27185356]
[93]
Moustafa EM, Moawed FSM, Elmaghraby DF. Luteolin/ZnO nanoparticles attenuate neuroinflammation associated with diabetes via regulating MicroRNA ‐124 by targeting C/EBPA. Environ Toxicol 2023; 38(11): 2691-704.
[http://dx.doi.org/10.1002/tox.23903] [PMID: 37483155]
[94]
Adki KM, Kulkarni YA. Potential biomarkers in diabetic retinopathy. Curr Diabetes Rev 2020; 16(9): 971-83.
[http://dx.doi.org/10.2174/18756417MTA0uNTMf5] [PMID: 32065092]
[95]
Lechner J, O’Leary OE, Stitt AW. The pathology associated with diabetic retinopathy. Vision Res 2017; 139: 7-14.
[http://dx.doi.org/10.1016/j.visres.2017.04.003] [PMID: 28412095]
[96]
Eye Disease. IDF europe site Available from: https://idf.org/europe/life-with-diabetes/diabetes-related-complications/eye-disease/ (accessed 2024-01-22).
[97]
Yang Y, Zhou M, Liu H. Luteolin, an aryl hydrocarbon receptor antagonist, alleviates diabetic retinopathy by regulating the NLRP/NOX4 signalling pathway: Experimental and molecular docking study. Physiol Int 2021; 108(2): 172-84.
[http://dx.doi.org/10.1556/2060.2021.00148] [PMID: 34143751]
[98]
Cheng L, Li W, Chen Y, Lin Y, Miao Y. Autophagy and diabetic encephalopathy: Mechanistic insights and potential therapeutic implications. Aging Dis 2022; 13(2): 447-57.
[http://dx.doi.org/10.14336/AD.2021.0823] [PMID: 35371595]
[99]
Xu T, Liu J, Li X, et al. The mTOR/NF-κB pathway mediates neuroinflammation and synaptic plasticity in diabetic encephalopathy. Mol Neurobiol 2021; 58(8): 3848-62.
[http://dx.doi.org/10.1007/s12035-021-02390-1] [PMID: 33860440]
[100]
Mijnhout GS, Scheltens P, Diamant M, et al. Diabetic encephalopathy: A concept in need of a definition. Diabetologia 2006; 49(6): 1447-8.
[http://dx.doi.org/10.1007/s00125-006-0221-8] [PMID: 16598451]
[101]
Liu Y, Tian X, Gou L, Sun L, Ling X, Yin X. Luteolin attenuates diabetes-associated cognitive decline in rats. Brain Res Bull 2013; 94: 23-9.
[http://dx.doi.org/10.1016/j.brainresbull.2013.02.001] [PMID: 23415807]
[102]
Ren G, Kong J, Jia N, Shang X. Luteolin attenuates neuronal apoptosis in the hippocampi of diabetic encephalopathy rats. Neural Regen Res 2013; 8(12): 1071-80.
[http://dx.doi.org/10.3969/j.issn.1673-5374.2013.12.002] [PMID: 25206401]
[103]
Hotamisligil GS, Peraldi P, Budavari A, Ellis R, White MF, Spiegelman BM. IRS-1-mediated inhibition of insulin receptor tyrosine kinase activity in TNF-alpha- and obesity-induced insulin resistance. Science 1996; 271(5249): 665-70.
[http://dx.doi.org/10.1126/science.271.5249.665] [PMID: 8571133]
[104]
Engelman JA, Berg AH, Lewis RY, Lisanti MP, Scherer PE. Tumor necrosis factor alpha-mediated insulin resistance, but not dedifferentiation, is abrogated by MEK1/2 inhibitors in 3T3-L1 adipocytes. Mol Endocrinol 2000; 14(10): 1557-69.
[http://dx.doi.org/10.1210/mend.14.10.0542] [PMID: 11043572]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy