Generic placeholder image

Current Drug Metabolism

Editor-in-Chief

ISSN (Print): 1389-2002
ISSN (Online): 1875-5453

Research Article

A Combination of Magnoflorine and Spinosin Improves the Antidepressant effects on CUMS Mouse Model

Author(s): Fenghe Bi, Zhihui Wang, Yijing Guo, Menglin Xia, Xuehui Zhu and Wei Qiao*

Volume 25, Issue 1, 2024

Published on: 23 February, 2024

Page: [71 - 80] Pages: 10

DOI: 10.2174/0113892002284230240213064248

Price: $65

Abstract

Background: Depression is a common neuropsychiatric disease. As a famous traditional Chinese medicine with significant anti-depressive and sleep-promoting effects, Ziziphi Spinosae Semen (ZSS) has attracted the attention of many researchers. Although it is well known that Magnoflorine (MAG) and Spinosin (SPI) were the main active components isolated from ZSS, there is a lack of research on the combined treatment of depression with these two ingredients.

Methods: The shaking bottle method was used to simulate the human environment for detecting the changes in oil-water partition coefficient before and after the drug combination. Cell viability was evaluated by the MTT assay. To establish a mouse model of depression and insomnia by CUMS method, and then to explore the effect of combined administration of MAG and SPI on depression in CUMS model by observing behavior and analyzing pharmacokinetics.

Results: The change in LogP values affected the lipid solubility of MAG and increased the water solubility of SPI, allowing them to penetrate more easily through the blood-brain barrier into the brain. Compared with the model group, MAG-SPI with a concentration of 60 μM significantly increased cell survival rate. In both the TST and FST experiments, the mice showed a decrease in immobilization time. Pharmacokinetic results showed that the pharmacokinetic parameters, Cmax and AUC of MAG and SPI, were increased in the case of combination, which resulted in enhancement of their relative bioavailability and improvement of in vivo effects.

Conclusions: The present study demonstrated that a combination of MAG and SPI had a synergistic antidepressant effect in CUMS mouse model.

Keywords: Depression, blood-brain barrier, drug combinations, pharmacokinetics, quinoline alkaloid, oil and water distribution coefficient.

Graphical Abstract
[1]
Anthes, E. Depression: A change of mind. Nature, 2014, 515(7526), 185-187.
[http://dx.doi.org/10.1038/515185a] [PMID: 25391944]
[2]
Rhead, J.C. How to change your mind: What the new science of psychedelics teaches us about consciousness, dying, addiction, depression, and transcendence. J. Psychoactive Drugs, 2018, 50(5), 460.
[http://dx.doi.org/10.1080/02791072.2018.1535149] [PMID: 30376643]
[3]
Huang, Y.; Wang, Y.; Wang, H.; Liu, Z.; Yu, X.; Yan, J.; Yu, Y.; Kou, C.; Xu, X.; Lu, J.; Wang, Z.; He, S.; Xu, Y.; He, Y.; Li, T.; Guo, W.; Tian, H.; Xu, G.; Xu, X.; Ma, Y.; Wang, L.; Wang, L.; Yan, Y.; Wang, B.; Xiao, S.; Zhou, L.; Li, L.; Tan, L.; Zhang, T.; Ma, C.; Li, Q.; Ding, H.; Geng, H.; Jia, F.; Shi, J.; Wang, S.; Zhang, N.; Du, X.; Du, X.; Wu, Y. Prevalence of mental disorders in China: A cross-sectional epidemiological study. Lancet Psychiatry, 2019, 6(3), 211-224.
[http://dx.doi.org/10.1016/S2215-0366(18)30511-X] [PMID: 30792114]
[4]
Hidalgo-Mazzei, D.; Berk, M.; Cipriani, A.; Cleare, A.J.; Di Florio, A.; Dietch, D.; Geddes, J.R.; Goodwin, G.M.; Grunze, H.; Hayes, J.F.; Jones, I.; Kasper, S.; Macritchie, K.; McAllister-Williams, H.R.; Morriss, R.; Nayrouz, S.; Pappa, S.; Soares, J.C.; Smith, D.J.; Suppes, T.; Talbot, P.; Vieta, E.; Watson, S.; Yatham, L.N.; Young, A.H.; Stokes, P.R.A. Treatment-resistant and Multi-therapy resistant criteria for bipolar depression: A consensus definition – CORRIGENDUM. Br. J. Psychiatry, 2019, 214(5), 309.
[http://dx.doi.org/10.1192/bjp.2019.36] [PMID: 30816078]
[5]
Ma, K.; Zhang, H.; Baloch, Z. Pathogenetic and therapeutic applications of tumor necrosis factor-α (TNF-α) in major depressive disorder: A systematic review. Int. J. Mol. Sci., 2016, 17(5), 733.
[http://dx.doi.org/10.3390/ijms17050733] [PMID: 27187381]
[6]
Poivre, M.; Duez, P. Biological activity and toxicity of the Chinese herb Magnolia officinalis Rehder & E. Wilson (Houpo) and its constituents. J. Zhejiang Univ. Sci. B, 2017, 18(3), 194-214.
[http://dx.doi.org/10.1631/jzus.B1600299] [PMID: 28271656]
[7]
Xu, C.; Luo, L.; Tan, R.X. Antidepressant effect of three traditional Chinese medicines in the learned helplessness model. J. Ethnopharmacol., 2004, 91(2-3), 345-349.
[http://dx.doi.org/10.1016/j.jep.2004.01.012] [PMID: 15120459]
[8]
Zhang, J.; Xin, H.; Xu, Y.; Shen, Y.; He, Y.Q.; Hsien-Yeh; Lin, B.; Song, H.; Juan-Liu; Yang, H.; Qin, L.; Zhang, Q.; Du, J. Morinda officinalis How. – A comprehensive review of traditional uses, phytochemistry and pharmacology. J. Ethnopharmacol., 2018, 213, 230-255.
[http://dx.doi.org/10.1016/j.jep.2017.10.028] [PMID: 29126988]
[9]
Zhu, H.; Geng, T.; Zhang, L.; Shan, M.; Ding, A. Determination of equilibrium solubility and apparent oil/water partition coefficient of schizonepetin. Zhongguo Zhongyao Zazhi, 2010, 35(23), 3144-3146.
[PMID: 21355235]
[10]
Shang, B.; Zhang, H.; Lu, Y.; Zhou, X.; Wang, Y.; Ma, M.; Ma, K. Insights from the perspective of traditional chinese medicine to elucidate association of lily disease and yin deficiency and internal heat of depression. Evid. Based Complement. Alternat. Med., 2020, 2020, 8899079.
[http://dx.doi.org/10.1155/2020/8899079]
[11]
Schulz, V. Safety of St. John’s Wort extract compared to synthetic antidepressants. Phytomedicine, 2006, 13(3), 199-204.
[http://dx.doi.org/10.1016/j.phymed.2005.07.005] [PMID: 16428030]
[12]
Chinese Pharmacopoeia Commission. The Pharmacopoeia of the People’s Republic of China; China Medical Science Press: Beijing, China., 2020.
[13]
Gu, C.; Zhao, Z.; Zhu, X.; Wu, T.; Lee, B.H.; Jiao, Y.; Lee, C.W.; Jung, D.H.; Yang, C.H.; Zhao, R.; Kim, S.C. Aqueous extract of semen ziziphi spinosae exerts anxiolytic effects during nicotine withdrawal via improvement of amygdaloid CRF/CRF1R signaling. Evid. Based Complement. Alternat. Med., 2018, 2018, 2419183.
[http://dx.doi.org/10.1155/2018/2419183]
[14]
Wang, Y.; Huang, M.; Lu, X.; Wei, R.; Xu, J. Ziziphi spinosae lily powder suspension in the treatment of depression-like behaviors in rats. BMC Complement. Altern. Med., 2017, 17(1), 238.
[http://dx.doi.org/10.1186/s12906-017-1749-5] [PMID: 28454575]
[15]
Zhang, F.Y.; Li, J.J.; Zhou, Y.; Xu, X.Y. Review for sedative and hypnotic mechanism of sedative traditional Chinese medicine and relative active components on neurotransmitters. Zhongguo Zhongyao Zazhi, 2016, 41(23), 4320-4327.
[http://dx.doi.org/10.4268/cjcmm20162305] [PMID: 28933106]
[16]
Wu, B.A.; Yan, F.; Shen, C.X.; Ma, M.; Zhang, F.S.; Du, C.H.; Yan, Y. Study on multi-index components of ziziphi spinosae semen and ziziphi mauritianae semen according to UPLC-MS/MS coupled with chemometrics. Chin. Herb. Med., 2021, 52(8), 7.
[http://dx.doi.org/10.7501/j.issn.0253-2670.2021.08.024]
[17]
Li, B.J.; Song, W.; Song, F.Q.; Zhou, H.; Qiao, W. Simultaneous determination of alkaloids and flavonoids in the extract of Ziziphus jujuba extract by HPLC-DAD. Zhong Yao Cai, 2017, 40(10), 4.
[http://dx.doi.org/10.13863/J.ISSN1001-4454.2017.10.031]
[18]
Ren, T.; Li, Z.; Lian, J.; Su, G.; Cheng, S.; Nie, Z.; Liu, P. Determination of components of 12 species of Ziziphi spinosi Semen before and after processing by UPLC-MS WCJ. PS, 2023, 38(3), 5.
[http://dx.doi.org/10.13375/j.cnki.wcjps.2023.03.014]
[19]
Kim, W.I.; Zhao, B.T.; Zhang, H.Y.; Lee, J.H.; Son, J.K.; Woo, M.H. Quantitative and pattern recognition analyses of magnoflorine, spinosin, 6′′′-feruloyl spinosin and jujuboside A by HPLC in Zizyphi Semen. Arch. Pharm. Res., 2014, 37(9), 1139-1147.
[http://dx.doi.org/10.1007/s12272-013-0295-z] [PMID: 24310099]
[20]
He, S.R.; Zhao, C.B.; Zhang, J.X.; Wang, J.; Wu, B.; Wu, C.J. Botanical and traditional uses and phytochemical, pharmacological, pharmacokinetic, and toxicological characteristics of ziziphi spinosae semen: A review. Evid. Based Complement. Alternat. Med., 2020, 2020, 5861821.
[http://dx.doi.org/10.1155/2020/5861821]
[21]
Xu, T.; Kuang, T.; Du, H.; Li, Q.; Feng, T.; Zhang, Y.; Fan, G. Magnoflorine: A review of its pharmacology, pharmacokinetics and toxicity. Pharmacol. Res., 2020, 152, 104632.
[http://dx.doi.org/10.1016/j.phrs.2020.104632] [PMID: 31911246]
[22]
Ahmad, W.; Jantan, I.; Kumolosasi, E.; Haque, M.A.; Bukhari, S.N.A. Immunomodulatory effects of Tinospora crispa extract and its major compounds on the immune functions of RAW 264.7 macrophages. Int. Immunopharmacol., 2018, 60, 141-151.
[http://dx.doi.org/10.1016/j.intimp.2018.04.046] [PMID: 29730557]
[23]
Kim, J.; Ha Quang Bao, T.; Shin, Y.K.; Kim, K.Y. Antifungal activity of magnoflorine against Candida strains. World J. Microbiol. Biotechnol., 2018, 34(11), 167.
[http://dx.doi.org/10.1007/s11274-018-2549-x] [PMID: 30382403]
[24]
Jung, H.A.; Min, B.S.; Yokozawa, T.; Lee, J.H.; Kim, Y.S.; Choi, J.S. Anti-Alzheimer and antioxidant activities of Coptidis Rhizoma alkaloids. Biol. Pharm. Bull., 2009, 32(8), 1433-1438.
[http://dx.doi.org/10.1248/bpb.32.1433] [PMID: 19652386]
[25]
de la Peña, J.B.I.; Lee, H.L.; Yoon, S.Y.; Kim, G.H.; Lee, Y.S.; Cheong, J.H. The involvement of magnoflorine in the sedative and anxiolytic effects of Sinomeni Caulis et Rhizoma in mice. J. Nat. Med., 2013, 67(4), 814-821.
[http://dx.doi.org/10.1007/s11418-013-0754-3] [PMID: 23456265]
[26]
Szalak, R.; Matysek, M.; Koval, M.; Dziedzic, M.; Kowalczuk-Vasilev, E.; Kruk-Slomka, M.; Koch, W.; Arciszewski, M.B.; Kukula-Koch, W. Magnoflorine from berberis vulgaris roots—impact on hippocampal neurons in mice after short-term exposure. Int. J. Mol. Sci., 2023, 24(8), 7166.
[http://dx.doi.org/10.3390/ijms24087166] [PMID: 37108329]
[27]
Jung, I.H.; Lee, H.E.; Park, S.J.; Ahn, Y.J.; Kwon, G.; Woo, H.; Lee, S.Y.; Kim, J.S.; Jo, Y.W.; Jang, D.S.; Kang, S.S.; Ryu, J.H. Ameliorating effect of spinosin, a C-glycoside flavonoid, on scopolamine-induced memory impairment in mice. Pharmacol. Biochem. Behav., 2014, 120, 88-94.
[http://dx.doi.org/10.1016/j.pbb.2014.02.015] [PMID: 24582850]
[28]
Zhang, J.P.; Liao, D.Q.; Li, L.; Chu, L. Reduced c-Fos expression in orexin neurons of the lateral hypothalamic area and the locus coeruleus following injection of spinosin into mice. Folia Morphol., 2020, 79(3), 429-437.
[http://dx.doi.org/10.5603/FM.a2019.0118] [PMID: 31724150]
[29]
Li, Y.J.; Bi, K.S. Study on the therapeutic material basis of traditional chinese medicinal preparation Suanzaoren decoction. Chem. Pharm. Bull., 2006, 54(6), 847-851.
[http://dx.doi.org/10.1248/cpb.54.847] [PMID: 16755056]
[30]
Zhou, J.; Sun, J.B.; Zheng, P.; Liu, J.; Cheng, Z.H.; Zeng, P.; Wang, F.Q. Orthogonal array design for optimization of hollow-fiber-based liquid-phase microextraction combined with high-performance liquid chromatography for study of the pharmacokinetics of magnoflorine in rat plasma. Anal. Bioanal. Chem., 2012, 403(7), 1951-1960.
[http://dx.doi.org/10.1007/s00216-012-6013-8] [PMID: 22562541]
[31]
Tian, X.; Li, Z.; Lin, Y.; Chen, M.; Pan, G.; Huang, C. Study on the PK profiles of magnoflorine and its potential interaction in Cortex phellodendri decoction by LC-MS/MS. Anal. Bioanal. Chem., 2014, 406(3), 841-849.
[http://dx.doi.org/10.1007/s00216-013-7530-9] [PMID: 24337185]
[32]
Xue, B.; Zhao, Y.; Miao, Q.; Miao, P.; Yang, X.; Sun, G.; Su, J.; Ye, J.; Wei, B.; Zhang, Y.; Zhang, Y. In vitro and in vivo identification of metabolites of magnoflorine by LC LTQ-Orbitrap MS and its potential pharmacokinetic interaction in Coptidis Rhizoma decoction in rat. Biomed. Chromatogr., 2015, 29(8), 1235-1248.
[http://dx.doi.org/10.1002/bmc.3413] [PMID: 25611590]
[33]
Du, C.; Yan, Y.; Shen, C.; Cui, X.; Pei, X.; Qin, X. Comparative pharmacokinetics of six major compounds in normal and insomnia rats after oral administration of Ziziphi Spinosae Semen aqueous extract. J. Pharm. Anal., 2020, 10(4), 385-395.
[http://dx.doi.org/10.1016/j.jpha.2020.03.003] [PMID: 32923013]
[34]
Chen, Z.; Weber, S.G. High-throughput method for lipophilicity measurement. Anal. Chem., 2007, 79(3), 1043-1049.
[http://dx.doi.org/10.1021/ac061649a] [PMID: 17263333]
[35]
Zeiadeh, I.; Najjar, A.; Karaman, R. Strategies for enhancing the permeation of cns-active drugs through the blood-brain barrier: A review. Molecules, 2018, 23(6), 1289.
[http://dx.doi.org/10.3390/molecules23061289] [PMID: 29843371]
[36]
Pothin, E.; Lesuisse, D.; Lafaye, P. Brain delivery of single-domain antibodies: A focus on VHH and VNAR. Pharmaceutics, 2020, 12(10), 937.
[http://dx.doi.org/10.3390/pharmaceutics12100937] [PMID: 33007904]
[37]
Cavaco, M.; Gaspar, D.; ARB Castanho, M.; Neves, V. Antibodies for the treatment of brain metastases, a dream or a reality? Pharmaceutics, 2020, 12(1), 62.
[http://dx.doi.org/10.3390/pharmaceutics12010062] [PMID: 31940974]
[38]
Gao, X.; Yu, Y.; Wang, Y.J.; Pi, J.X.; Zheng, W.L.; Xuan, X.Y. Determination of equilibrium solubility and apparent oil /water partition coefficient of bakuchiol. Huaxi Yaoxue Zazhi, 2013, (3), 2.
[39]
Liu, Y.F.; Zhu, L.J.; Sun, S.S.; Hu, Y.X.; Ma, H.Y. Research progress on metabolism and pharmacokinetics of forsythoside A. PLoS Med., 2019, 11, 51-59.
[http://dx.doi.org/10.16197/j.cnki.lnunse.2019.01.008]
[40]
Li, Y.; Yao, M.; Cheng, S. Quantitative determination of spinosin in rat plasma by liquid chromatography-tandem mass spectrometry method. J. Pharm. Biomed. Anal., 2008, 48(4), 1169-1173.
[http://dx.doi.org/10.1016/j.jpba.2008.08.025] [PMID: 18834689]
[41]
Ge, S.; Zhang, L.; Li, S.; Guo, C.J.; Gao, H.Q. Effects of gentiopicrin and magnolia on ankle histopathology and serum PGE2 and Bcl-2 levels in RA model rats. J. Tradit. Chin. Vet. Med., 2022, 41(6), 19-24.
[http://dx.doi.org/10.13823/j.cnki.jtcvm.2022.06.004]
[42]
Gao, R.; Li, S.; Chen, X.J.; Wang, X.F.; Wang, S.X.; Fang, M.F. Pharmacokinetic effect of combined administration on spinosin and ferulic acid in monarch drug Ziziphi Spinosae Semen kernel. Zhongguo Zhongyao Zazhi, 2015, 40(16), 3293-3297.
[PMID: 26790310]
[43]
Schiff, P.L., Jr Chapter One The thalictrum alkaloids: Chemistry and Pharmacology (1985-1995). Alkaloids Chem Biol Perspect., 1996, 11, 1-236.
[http://dx.doi.org/10.1016/S0735-8210(96)80005-7]
[44]
Wang, L.E.; Cui, X.Y.; Cui, S.Y.; Cao, J.X.; Zhang, J.; Zhang, Y.H.; Zhang, Q.Y.; Bai, Y.J.; Zhao, Y.Y. Potentiating effect of spinosin, a C-glycoside flavonoid of Semen Ziziphi spinosae, on pentobarbital-induced sleep may be related to postsynaptic 5-HT1A receptors. Phytomedicine, 2010, 17(6), 404-409.
[http://dx.doi.org/10.1016/j.phymed.2010.01.014] [PMID: 20171860]
[45]
Wang, L.E.; Zhang, X.Q.; Yin, Y.Q.; Zhang, Y.H. Augmentative effect of spinosin on pentobarbital-induced loss of righting reflex in mice associated with presynaptic 5-HT1A receptor. J. Pharm. Pharmacol., 2012, 64(2), 277-282.
[http://dx.doi.org/10.1111/j.2042-7158.2011.01400.x] [PMID: 22221104]
[46]
Ko, S.Y.; Lee, H.E.; Park, S.J.; Jeon, S.J.; Kim, B.; Gao, Q.; Jang, D.S.; Ryu, J.H. Spinosin, a C-glucosylflavone, from zizyphus jujuba var. spinosa ameliorates Aβ1–42 oligomer-induced memory impairment in mice. Biomol. Ther., 2015, 23(2), 156-164.
[http://dx.doi.org/10.4062/biomolther.2014.110] [PMID: 25767684]
[47]
Xu, F.; Zhang, X.; Wang, J.; Li, X.; He, B.; Xiao, F.; Yan, T.; Wu, B.; Jia, Y.; Wang, Z. Spinosin protects N2a cells from H2O2-induced neurotoxicity through inactivation of p38MAPK. J. Pharm. Pharmacol., 2020, 72(11), 1607-1614.
[http://dx.doi.org/10.1111/jphp.13334] [PMID: 32667705]
[48]
Wang, L.E.; Bai, Y.J.; Shi, X.R.; Cui, X.Y.; Cui, S.Y.; Zhang, F.; Zhang, Q.Y.; Zhao, Y.Y.; Zhang, Y.H. Spinosin, a C-glycoside flavonoid from semen Zizhiphi Spinozae, potentiated pentobarbital-induced sleep via the serotonergic system. Pharmacol. Biochem. Behav., 2008, 90(3), 399-403.
[http://dx.doi.org/10.1016/j.pbb.2008.03.022] [PMID: 18466960]
[49]
Cao, B.Y.; Liu, Y.J.; Wu, L.B.; Fei, Q.M.; Yang, B.; Zhang, L.; Qiao, W. The effects of magnoflorine on depression-like behavior in chronic unpredictable mild stress mice and its effect on LSD1 modification in brain. Tianjin Yi Yao, 2019, 391(4)
[http://dx.doi.org/10.11958/20181474]
[50]
Gao, T.; Wang, T.; Wu, L.; Tong, Y.; Tian, J.; Zhao, K.; Wang, H. Saikosaponin-d alleviates depression by promoting NLRP3 ubiquitination and inhibiting inflammasome activation. Int. Immunopharmacol., 2024, 127, 111324.
[http://dx.doi.org/10.1016/j.intimp.2023.111324] [PMID: 38070467]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy