Generic placeholder image

Current Cancer Drug Targets

Editor-in-Chief

ISSN (Print): 1568-0096
ISSN (Online): 1873-5576

Meta-Analysis

The Prognostic Value and Clinical Significance of lncRNA SNHG5 Expression in Patients with Multiple Malignancies: A Bioinformatic and Meta-analysis

Author(s): Mehran Pashirzad and Amirhossein Sahebkar*

Volume 24, Issue 12, 2024

Published on: 23 February, 2024

Page: [1286 - 1297] Pages: 12

DOI: 10.2174/0115680096282865240111055640

Price: $65

Open Access Journals Promotions 2
Abstract

Background: Long non-coding RNA small nucleolar RNA host gene 5 (lncRNA SNHG5) has been identified as both a promising target for treatment and a predictor of prognosis in diverse types of cancer. The objective of this study was to assess whether lncRNA SNHG5 expression can be utilized as a prognostic biomarker for human cancer.

Methods: To ensure a thorough search of the literature for relevant English studies published before July 2023, several databases were searched, including PubMed, Web of Science, ProQuest, Cochrane Library, and Google Scholar. The study evaluated the impact of lncRNA SNHG5 on the overall survival (OS) of cancer by calculating the pooled hazard ratio (HR) and odds ratio (OR) with 95% confidence intervals (CIs). To further confirm the accuracy of the findings, the study investigated the expression profile and prognostic significance of lncRNA SNHG5 through the use of GenomicScape, OncoLnc, Kaplan-Meier plotter, and GEPIA databases.

Results: In this study, 995 patients were examined across a total of fourteen original studies. The findings indicated that there was a significant relationship between heightened lncRNA SNHG5 expression and reduced OS, as evidenced by both univariate and multivariate analyses (HR = 1.89; 95% CI, 1.44-2.49; p < 0.001; HR = 3.97; 95% CI, 1.80-8.73; p < 0.001, respectively). Pooled OR analysis showed a significant association between over-expression of lncRNA SNHG5 with advanced histological grade (OR = 0.28; 95% CI, 0.11-0.71; p = 0.007), present lymph node metastasis (LNM; OR = 4.28; 95% CI, 2.47-7.43; p < 0.001), and smoking history (OR = 0.27; 95% CI, 0.15-0.49; p < 0.001). Bioinformatic databases confirmed that elevated SNHG5 expression was significantly linked to poor prognosis in cancer patients, including colorectal cancer (CRC), acute myeloid leukemia (AML), and esophageal adenocarcinoma (ESAD), and a longer OS in patients with uterine corpus endometrial carcinoma (UCEC).

Conclusion: These results suggest that lncRNA SNHG5 may serve as an adverse prognostic biomarker in several human cancers. Further investigations are needed to better understand the underlying mechanisms that link lncRNA SNHG5 to multiple malignancies.

Keywords: lncRNA SNHG5, gene, overall survival, human cancer, GenomicScape, prognostic biomarker.

Graphical Abstract
[1]
Hassanpour, SH; Dehghani, M Review of cancer from perspective of molecular. J. Cancer Res. Pract., 2017, 4(4), 127-139.
[http://dx.doi.org/10.1016/j.jcrpr.2017.07.001]
[2]
Siegel, R; Ma, J; Zou, Z.; Jemal, A. Cancer statistics. CA Cancer J Clin., 2014, 64(1), 9-29.
[3]
Ponting, C.P.; Belgard, T.G. Transcribed dark matter: Meaning or myth? Hum. Mol. Genet., 2010, 19(R2), R162-R168.
[http://dx.doi.org/10.1093/hmg/ddq362] [PMID: 20798109]
[4]
Ghorbanzadeh, Z.; Hamid, R.; Jacob, F.; Asadi, S.; Salekdeh, G.H.; Ghaffari, M.R. Non-coding RNA: Chief architects of drought-resilient roots. Rhizosphere, 2022, 23100572
[http://dx.doi.org/10.1016/j.rhisph.2022.100572]
[5]
Fathullahzadeh, S; Mirzaei, H; Honardoost, MA; Sahebkar, A; Salehi, M Circulating microRNA-192 as a diagnostic biomarker in human chronic lymphocytic leukemia. Cancer Gene Ther. , 2016, 23(10), 327-332.
[http://dx.doi.org/10.1038/cgt.2016.34]
[6]
Mirzaei, HR; Sahebkar, A; Mohammadi, M; Yari, R; Salehi, H; Jafari, MH Circulating micrornas in hepatocellular carcinoma: Potential diagnostic and prognostic biomarkers. Curr Pharm Des., 2016, 22(34), 5257-5269.
[7]
Liu, S.J.; Dang, H.X.; Lim, D.A.; Feng, F.Y.; Maher, C.A. Long noncoding RNAs in cancer metastasis. Nat. Rev. Cancer, 2021, 21(7), 446-460.
[http://dx.doi.org/10.1038/s41568-021-00353-1] [PMID: 33953369]
[8]
Borkowska, E.M.; Kutwin, P.; Rolecka, D.; Konecki, T.; Borowiec, M.; Jabłonowski, Z. Clinical value of microRNA-19a-3p and microRNA-99a-5p in bladder cancer. Arch. Med. Sci., 2023, 19(3), 694-702.
[PMID: 37313204]
[9]
Guo, X.; Liu, N.; Liu, M. Long non-coding RNA LINC00336 as an independent prognostic indicator and an oncogenic lncRNA in bladder cancer. Arch. Med. Sci., 2023, 19(2), 478-487.
[http://dx.doi.org/10.5114/aoms.2019.89661] [PMID: 37034517]
[10]
Han, C.; Yang, Y.; Guo, L.; Guan, Q.; Ruan, S. The expression of long non-coding RNA HOTAIR in advanced hepatocellular carcinoma and its prognostic correlation with sunitinib therapy. Arch. Med. Sci., 2022, 18(1), 71-78.
[PMID: 35154527]
[11]
Li, H.; Lin, X.; Li, C.; Li, J.; Xu, X.; Meng, D.; Zheng, S. MiR-1286 inhibits lung cancer growth through aerobic glycolysis by targeting PKM2. Arch. Med. Sci., 2023, 19(1), 151-159.
[http://dx.doi.org/10.5114/aoms.2019.87812] [PMID: 36817669]
[12]
Lou, C.; Li, T. Long non-coding RNA SENCR alleviates endothelial-to-mesenchymal transition via targeting miR-126a. Arch. Med. Sci., 2023, 19(1), 180-188.
[http://dx.doi.org/10.5114/aoms.2020.97991] [PMID: 36817675]
[13]
Song, Z.; Xing, F.; Jiang, H.; He, Y.; Lv, J. Long non-coding RNA TP73-AS1 predicts poor prognosis and regulates cell proliferation and migration in cervical cancer. Arch. Med. Sci., 2022, 18(2), 523-534.
[http://dx.doi.org/10.5114/aoms.2019.87686] [PMID: 35316908]
[14]
Zhang, S.; Wang, X.; Wang, D. Long non-coding RNA LINC01296 promotes progression of oral squamous cell carcinoma through activating the MAPK/ERK signaling pathway via the miR-485-5p/PAK4 axis. Arch. Med. Sci., 2022, 18(3), 786-799.
[http://dx.doi.org/10.5114/aoms.2019.86805] [PMID: 35591837]
[15]
Salarinia, R.; Sahebkar, A.; Peyvandi, M.; Mirzaei, H.R.; Jaafari, M.R.; Riahi, M.M.; Ebrahimnejad, H. Nahand, J. S., Hadjati, J., Asrami, M. O., Fadaei, S., Salehi, R., Mirzaei, H. Epi-drugs and Epi-miRs: Moving beyond current cancer therapies. Curr. Cancer Drug Targets, 2016, 16(9), 773-788.
[http://dx.doi.org/10.2174/1568009616666151207110143]
[16]
Xue, M.; Zhuo, Y.; Shan, B. MicroRNAs, long noncoding RNAs, and their functions in human disease; Bioinformatics in MicroRNA Research, 2017, pp. 1-25.
[http://dx.doi.org/10.1007/978-1-4939-7046-9_1]
[17]
Pinkney, H.R.; Wright, B.M.; Diermeier, S.D. The lncRNA toolkit: Databases and in silico tools for lncRNA analysis. Noncoding RNA, 2020, 6(4), 49.
[http://dx.doi.org/10.3390/ncrna6040049] [PMID: 33339309]
[18]
Ahn, Y.H.; Kim, J.S. Long non-coding RNAs as regulators of interactions between cancer-associated fibroblasts and cancer cells in the tumor microenvironment. Int. J. Mol. Sci., 2020, 21(20), 7484.
[http://dx.doi.org/10.3390/ijms21207484] [PMID: 33050576]
[19]
Tu, C.; Yang, K.; Wan, L.; He, J.; Qi, L.; Wang, W.; Lu, Q.; Li, Z. The crosstalk between lncRNAs and the Hippo signalling pathway in cancer progression. Cell Prolif., 2020, 53(9)e12887
[http://dx.doi.org/10.1111/cpr.12887] [PMID: 32779318]
[20]
Schmitt, A.M.; Chang, H.Y. Long noncoding RNAs in cancer pathways. Cancer Cell, 2016, 29(4), 452-463.
[http://dx.doi.org/10.1016/j.ccell.2016.03.010] [PMID: 27070700]
[21]
Li, Y.; Guo, D.; Zhao, Y.; Ren, M.; Lu, G.; Wang, Y.; Zhang, J.; Mi, C.; He, S.; Lu, X. Long non-coding RNA SNHG5 promotes human hepatocellular carcinoma progression by regulating miR-26a-5p/GSK3β signal pathway. Cell Death Dis., 2018, 9(9), 888.
[http://dx.doi.org/10.1038/s41419-018-0882-5] [PMID: 30166525]
[22]
Li, J.; Sun, C.K. Long noncoding RNA SNHG5 is up-regulated and serves as a potential prognostic biomarker in acute myeloid leukemia. Eur. Rev. Med. Pharmacol. Sci., 2018, 22(11), 3342-3347.
[PMID: 29917184]
[23]
Li, X.; Du, Y.; Wang, Y. The value of LncRNA SNHG5 as a marker for the diagnosis and prognosis of gastric cancer. Am. J. Transl. Res., 2021, 13(5), 5420-5427.
[PMID: 34150139]
[24]
Ichigozaki, Y.; Fukushima, S.; Jinnin, M.; Miyashita, A.; Nakahara, S.; Tokuzumi, A.; Yamashita, J.; Kajihara, I.; Aoi, J.; Masuguchi, S.; Zhongzhi, W.; Ihn, H. Serum long non-coding RNA, snoRNA host gene 5 level as a new tumor marker of malignant melanoma. Exp. Dermatol., 2016, 25(1), 67-69.
[http://dx.doi.org/10.1111/exd.12868] [PMID: 26440365]
[25]
Damas, N.D.; Marcatti, M.; Côme, C.; Christensen, L.L.; Nielsen, M.M.; Baumgartner, R.; Gylling, H.M.; Maglieri, G.; Rundsten, C.F.; Seemann, S.E.; Rapin, N.; Thézenas, S.; Vang, S.; Ørntoft, T.; Andersen, C.L.; Pedersen, J.S.; Lund, A.H. SNHG5 promotes colorectal cancer cell survival by counteracting STAU1-mediated mRNA destabilization. Nat. Commun., 2016, 7(1), 13875.
[http://dx.doi.org/10.1038/ncomms13875] [PMID: 28004750]
[26]
Qin, Y.; Sun, W.; Wang, Z.; Dong, W.; He, L.; Zhang, T.; Lv, C.; Zhang, H. RBM47/SNHG5/FOXO3 axis activates autophagy and inhibits cell proliferation in papillary thyroid carcinoma. Cell Death Dis., 2022, 13(3), 270.
[http://dx.doi.org/10.1038/s41419-022-04728-6] [PMID: 35338124]
[27]
Li, Z; Wu, Y; Zhang, C; Dai, S; Wei, S; Zhao, R LncRNA SNHG5 suppresses cell migration and Invasion of human lung adenocarcinoma via regulation of epithelial-mesenchymal transition. J. Oncol., 2023, 2023
[http://dx.doi.org/10.1155/2023/3335959]
[28]
Ju, C.; Zhou, R.; Sun, J.; Zhang, F.; Tang, X.; Chen, K.K.; Zhao, J.; Lan, X.; Lin, S.; Zhang, Z.; Lv, X.B. LncRNA SNHG5 promotes the progression of osteosarcoma by sponging the miR-212-3p/SGK3 axis. Cancer Cell Int., 2018, 18(1), 141.
[http://dx.doi.org/10.1186/s12935-018-0641-9] [PMID: 30250399]
[29]
Gao, J.; Zeng, K.; Liu, Y.; Gao, L.; Liu, L. LncRNA SNHG5 promotes growth and invasion in melanoma by regulating the miR-26a-5p/TRPC3 pathway. OncoTargets Ther., 2018, 12, 169-179.
[http://dx.doi.org/10.2147/OTT.S184078] [PMID: 30636880]
[30]
Zhang, M.; Li, Y.; Wang, H.; Yu, W.; Lin, S.; Guo, J. LncRNA SNHG5 affects cell proliferation, metastasis and migration of colorectal cancer through regulating miR-132-3p/CREB5. Cancer Biol. Ther., 2019, 20(4), 524-536.
[http://dx.doi.org/10.1080/15384047.2018.1537579] [PMID: 30395767]
[31]
Zhao, L.; Han, T.; Li, Y.; Sun, J.; Zhang, S.; Liu, Y.; Shan, B.; Zheng, D.; Shi, J. The IncRNA SNHG5/miR-32 axis regulates gastric cancer cell proliferation and migration by targeting KLF4. FASEB J., 2017, 31(3), 893-903.
[http://dx.doi.org/10.1096/fj.201600994R] [PMID: 27871067]
[32]
He, B.; Bai, Y.; Kang, W.; Zhang, X.; Jiang, X. LncRNA SNHG5 regulates imatinib resistance in chronic myeloid leukemia via acting as a CeRNA against MiR-205-5p. Am. J. Cancer Res., 2017, 7(8), 1704-1713.
[PMID: 28861326]
[33]
Han, W.; Shi, J.; Cao, J.; Dong, B.; Guan, W. Latest advances of long non-coding RNA SNHG5 in human cancers. OncoTargets Ther., 2020, 13, 6393-6403.
[http://dx.doi.org/10.2147/OTT.S252750] [PMID: 32753882]
[34]
Li, Y.H.; Hu, Y.Q.; Wang, S.C.; Li, Y.; Chen, D.M. LncRNA SNHG5: A new budding star in human cancers. Gene, 2020, 749144724
[http://dx.doi.org/10.1016/j.gene.2020.144724] [PMID: 32360843]
[35]
Xing, X.; Xu, T.; Liu, B.; Guo, Q. LncRNA SNHG5 can regulate the proliferation and migration of diffuse large B cell lymphoma progression via targeting miR-181-5p/XIAP. J. Cancer, 2022, 13(3), 784-792.
[http://dx.doi.org/10.7150/jca.60521] [PMID: 35154447]
[36]
Xiao, X; Xu, J; Sheng, X; Wang, C; Dong, J; Shi, X. Tobacco nicotine promote TRAIL resistance in lung cancer by SNHG5. Exp Ther Med., 2022, 25(3), 131.
[http://dx.doi.org/10.21203/rs.3.rs-1651202/v1]
[37]
Zhang, L.; Wu, X.; Li, Y.; Teng, X.; Zou, L.; Yu, B. LncRNA SNHG5 promotes cervical cancer progression by regulating the miR-132/SOX4 pathway. Autoimmunity, 2021, 54(2), 88-96.
[http://dx.doi.org/10.1080/08916934.2020.1864731] [PMID: 33622094]
[38]
Ying, X.; Zhang, W.; Fang, M.; Wang, C.; Han, L.; Yang, C. LncRNA SNHG5 regulates SOX4 expression through competitive binding to miR-489-3p in acute myeloid leukemia. Inflamm. Res., 2020, 69(6), 607-618.
[http://dx.doi.org/10.1007/s00011-020-01345-x] [PMID: 32266420]
[39]
Ma, Z.; Xue, S.; Zeng, B.; Qiu, D. lncRNA SNHG5 is associated with poor prognosis of bladder cancer and promotes bladder cancer cell proliferation through targeting p27. Oncol. Lett., 2018, 15(2), 1924-1930.
[PMID: 29434891]
[40]
Wang, Z.; Wang, Z.; Liu, J.; Yang, H. Long non-coding RNA SNHG5 sponges miR-26a to promote the tumorigenesis of osteosarcoma by targeting ROCK1. Biomed. Pharmacother., 2018, 107, 598-605.
[http://dx.doi.org/10.1016/j.biopha.2018.08.025] [PMID: 30114643]
[41]
Wei, S.; Sun, S.; Zhou, X.; Zhang, C.; Li, X.; Dai, S.; Wang, Y.; Zhao, L.; Shan, B. SNHG5 inhibits the progression of EMT through the ubiquitin-degradation of MTA2 in oesophageal cancer. Carcinogenesis, 2021, 42(2), 315-326.
[http://dx.doi.org/10.1093/carcin/bgaa110] [PMID: 33095847]
[42]
Liu, D.; Wang, Y.; Zhao, Y.; Gu, X. LncRNA SNHG5 promotes nasopharyngeal carcinoma progression by regulating miR-1179/HMGB3 axis. BMC Cancer, 2020, 20(1), 178.
[http://dx.doi.org/10.1186/s12885-020-6662-5] [PMID: 32131767]
[43]
Kassambara, A.; Rème, T.; Jourdan, M.; Fest, T.; Hose, D.; Tarte, K.; Klein, B. GenomicScape: An easy-to-use web tool for gene expression data analysis. Application to investigate the molecular events in the differentiation of B cells into plasma cells. PLOS Comput. Biol., 2015, 11(1)e1004077
[http://dx.doi.org/10.1371/journal.pcbi.1004077] [PMID: 25633866]
[44]
Anaya, J. OncoLnc: Linking TCGA survival data to mRNAs, miRNAs, and lncRNAs. PeerJ Comput. Sci., 2016, 2e67
[http://dx.doi.org/10.7717/peerj-cs.67]
[45]
Tang, Z.; Li, C.; Kang, B.; Gao, G.; Li, C.; Zhang, Z. GEPIA: A web server for cancer and normal gene expression profiling and interactive analyses. Nucleic Acids Res., 2017, 45(W1), W98-W102.
[http://dx.doi.org/10.1093/nar/gkx247] [PMID: 28407145]
[46]
Lánczky, A.; Győrffy, B. Web-based survival analysis tool tailored for medical research (KMplot): Development and implementation. J. Med. Internet Res., 2021, 23(7)e27633
[http://dx.doi.org/10.2196/27633] [PMID: 34309564]
[47]
Zhao, L.; Guo, H.; Zhou, B.; Feng, J.; Li, Y.; Han, T.; Liu, L.; Li, L.; Zhang, S.; Liu, Y.; Shi, J.; Zheng, D. Long non-coding RNA SNHG5 suppresses gastric cancer progression by trapping MTA2 in the cytosol. Oncogene, 2016, 35(44), 5770-5780.
[http://dx.doi.org/10.1038/onc.2016.110] [PMID: 27065326]
[48]
Elsayed, M.; Abdelrahim, M. The latest advancement in pancreatic ductal adenocarcinoma therapy: A review article for the latest guidelines and novel therapies. Biomedicines, 2021, 9(4), 389.
[http://dx.doi.org/10.3390/biomedicines9040389] [PMID: 33917380]
[49]
Bhan, A.; Soleimani, M.; Mandal, S.S. Long noncoding RNA and cancer: A new paradigm. Cancer Res., 2017, 77(15), 3965-3981.
[http://dx.doi.org/10.1158/0008-5472.CAN-16-2634] [PMID: 28701486]
[50]
Wang, X.; Tong, Y.; Xun, T.; Feng, H.; Lei, Y.; Li, Y. Functions, mechanisms, and therapeutic implications of noncoding RNA in acute myeloid leukemia; Fundamental Research, 2023.
[http://dx.doi.org/10.1016/j.fmre.2023.04.012]
[51]
Akshaya, R.L.; Rohini, M.; Selvamurugan, N. Regulation of breast cancer progression by noncoding RNAs. Curr. Cancer Drug Targets, 2020, 20(10), 757-767.
[http://dx.doi.org/10.2174/1568009620666200712144103] [PMID: 32652909]
[52]
Kushlinskii, N.E.; Fridman, M.V.; Braga, E.A. Long non-coding RNAs as competitive endogenous RNAs in osteosarcoma. Mol. Biol., 2020, 54(5), 776-801.
[PMID: 33009789]
[53]
Popławski, P.; Bogusławska, J.; Hanusek, K.; Piekiełko-Witkowska, A. Nucleolar proteins and non-coding RNAs: Roles in renal cancer. Int. J. Mol. Sci., 2021, 22(23), 13126.
[http://dx.doi.org/10.3390/ijms222313126] [PMID: 34884928]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy