Generic placeholder image

Reviews on Recent Clinical Trials

Editor-in-Chief

ISSN (Print): 1574-8871
ISSN (Online): 1876-1038

Review Article

The Power of the Underutilized and Neglected Medicinal Plants and Herbs of the Middle East

Author(s): Mohamad Hesam Shahrajabian and Wenli Sun*

Volume 19, Issue 3, 2024

Published on: 21 February, 2024

Page: [159 - 175] Pages: 17

DOI: 10.2174/0115748871276544240212105612

Price: $65

Abstract

The Middle east and North Africa harbour many native species with pharmaceutical and nutraceutical potential. Since the beginning of history, food and herbal medicinal plants have been an essential part of human lives and the traditional Middle Eastern healthcare system. The notable medicinal plants that have been mentioned in the Bible, which are common in West Asia and some regions of North Africa, are Aloe vera, anise, balm, cassia, cinnamon, cumin, flax, and fig. Chemical components of Aloe vera are aloin, sinapinic acid, catechin, chromone, myricetin, quercitrin and syringic acid. Anethole, safrole, and estragole are the main chemical components of anise. The chemical components of cassia are coumarin, emodin, cinnamyl alcohol, and cinnamaldehyde. The major chemical ingredients of cumin are terpinene, cuminaldehyde, sabinene, thujene, and thymoquinone. The goal of this article is to review the considerable health benefits and pharmaceutical benefits of medicinal herbs and plants that have been neglected and underutilized in the Middle East and North Africa, as well as to promote their utilization. On the basis of the results, the experimented neglected medicinal plant can offer various advantages when used together with conventional medicinal treatments for various health conditions, such as palliative care in managing the side effects of conventional treatments, access to a wider range of treatments, increased patient satisfaction, and improved emotional and mental well-being. Moreover, consuming medicinal plants may help to manage and prevent diabetes, cancer, and heart disease with notable anti-tumor, and anti-inflammatory properties.

Keywords: Acute myocardial injury, heart attack, medicinal plants, natural products, traditional medicine, herbs.

Next »
Graphical Abstract
[1]
Shahrajabian MH, Sun W, Soleymani A, Cheng Q. Traditional herbal medicines to overcome stress, anxiety and improve mental health in outbreaks of human coronaviruses. Phytother Res 2020; 2020(1): 1-11.
[http://dx.doi.org/10.1002/ptr.6888]
[2]
Shahrajabian MH, Sun W, Cheng Q. Exploring Artemisia annua L., artemisinin and its derivatives, from traditional Chinese wonder medicinal science. Not Bot Horti Agrobot Cluj-Napoca 2020; 48(4): 1719-41.
[http://dx.doi.org/10.15835/nbha48412002]
[3]
Shahrajabian MH, Sun W, Cheng Q. Chemical components and pharmacological benefits of Basil ( Ocimum basilicum ): A review. Int J Food Prop 2020; 23(1): 1961-70.
[http://dx.doi.org/10.1080/10942912.2020.1828456]
[4]
Shahrajabian MH, Sun W, Cheng Q. Traditional herbal medicine for the prevention and treatment of cold and flu in the Autumn of 2020, overlapped with COVID-19. Nat Prod Commun 2020; 15(8): 1934578X2095143.
[http://dx.doi.org/10.1177/1934578X20951431]
[5]
Shahrajabian MH, Sun W, Cheng Q. Product of natural evolution (SARS, MERS, and SARS-CoV-2); deadly diseases, from SARS to SARS-CoV-2. Hum Vaccin Immunother 2021; 17(1): 62-83.
[http://dx.doi.org/10.1080/21645515.2020.1797369]
[6]
Sun W, Shahrajabian MH, Cheng Q. Anise ( Pimpinella anisum L. ), a dominant spice and traditional medicinal herb for both food and medicinal purposes. Cogent Biol 2019; 5(1): 1673688.
[http://dx.doi.org/10.1080/23312025.2019.1673688]
[7]
Wenli S, Mohamad HS, Qi C. The insight and survey on medicinal properties and nutritive components of Shallot. J Med Plants Res 2019; 13(18): 452-7.
[http://dx.doi.org/10.5897/JMPR2019.6836]
[8]
Shahrajabian MH, Sun W, Cheng Q. A review of astragalus species as foodstuffs, dietary supplements, a traditional Chinese medicine and a part of modern pharmaceutical science. Appl Ecol Environ Res 2019; 17(6): 13371-82.
[http://dx.doi.org/10.15666/aeer/1706_1337113382]
[9]
Shahrajabian MH, Sun W, Cheng Q. Clinical aspects and health benefits of ginger ( Zingiber officinale ) in both traditional Chinese medicine and modern industry. Acta Agric Scand B Soil Plant Sci 2019; 69(6): 546-56.
[http://dx.doi.org/10.1080/09064710.2019.1606930]
[10]
Dafni A, Böck B. Medicinal plants of the Bible—revisited. J Ethnobiol Ethnomed 2019; 15(1): 57.
[http://dx.doi.org/10.1186/s13002-019-0338-8]
[11]
Gao Y, Kuok KL, Jin Y, Wang R. Biomedical applications of Aloe vera. Crit Rev Food Sci Nutr 2019; 59(1): 244-56.
[http://dx.doi.org/10.1080/10408398.2018.1496320]
[12]
Esmaeili A, Ebrahimzadeh M. Polymer-based of extract-loaded nanocapsules Aloe vera L. delivery. Synth React Inorg Met-Org Nano-Met Chem 2015; 45(1): 40-7.
[http://dx.doi.org/10.1080/15533174.2013.818027]
[13]
Baruah A, Bordoloi M, Deka Baruah HP. Aloe vera: A multipurpose industrial crop. Ind Crops Prod 2016; 94: 951-63.
[http://dx.doi.org/10.1016/j.indcrop.2016.08.034]
[14]
Alluri NR, Maria Joseph Raj NP, Khandelwal G, Vivekananthan V, Kim SJ. Aloe vera: A tropical desert plant to harness the mechanical energy by triboelectric and piezoelectric approaches. Nano Energy 2020; 73: 104767.
[http://dx.doi.org/10.1016/j.nanoen.2020.104767]
[15]
Souguir D, Abd-Alla HI, El Ferjani E, Larbi Khouja M, Hachicha M. Aloe vera long-term saline irrigation increases contents of hydrogen peroxide, lipid peroxidation and phenolic compounds. Acta Agric Scand B Soil Plant Sci 2015; 65(8): 688-96.
[http://dx.doi.org/10.1080/09064710.2015.1049653]
[16]
Guo X, Mei N. Aloe vera : A review of toxicity and adverse clinical effects. J Environ Sci Health Part C Environ Carcinog Ecotoxicol Rev 2016; 34(2): 77-96.
[http://dx.doi.org/10.1080/10590501.2016.1166826]
[17]
Romagnoli C, Andreotti E, Maietti S, Mahendra R, Mares D. Antifungal activity of essential oil from fruits of Indian Cuminum cyminum. Pharm Biol 2010; 48(7): 834-8.
[http://dx.doi.org/10.3109/13880200903283715]
[18]
Oketch-Rabah HAT. Leaf compounds in potential plantation species of Aloe in Kenya. J Herbs Spices Med Plants 1997; 4(3): 25-33.
[http://dx.doi.org/10.1300/J044v04n03_04]
[19]
Swami Hulle NR, Rao PS. Effect of high pressure pretreatments on structural and dehydration characteristics of Aloe vera (Aloe barbadensis Miller) cubes. Dry Technol 2016; 34(1): 105-18.
[http://dx.doi.org/10.1080/07373937.2015.1037887]
[20]
López A, de Tangil M, Vega-Orellana O, Ramírez A, Rico M. Phenolic constituents, antioxidant and preliminary antimycoplasmic activities of leaf skin and flowers of Aloe vera (L.) Burm. F. (syn. A. barbadensis Mill.) from the Canary Islands (Spain). Molecules 2013; 18(5): 4942-54.
[http://dx.doi.org/10.3390/molecules18054942]
[21]
Tanaka M, Misawa E, Ito Y, et al. Identification of five phytosterols from aloe vera gel as anti-diabetic compounds. Biol Pharm Bull 2006; 29(7): 1418-22.
[http://dx.doi.org/10.1248/bpb.29.1418]
[22]
Hajian M, Mahmoodi M, Imani R. In vitro assessment of poly (Vinyl alcohol) film incorporating Aloe vera for potential application as a wound dressing. J Macromol Sci Part B Phys 2017; 56(7): 435-50.
[http://dx.doi.org/10.1080/00222348.2017.1330183]
[23]
Pereira R, Tojeira A, Vaz DC, Mendes A, Bártolo P. Preparation and characterization of films based on alginate and Aloe vera. IJPAC Int J Polym Anal Charact 2011; 16(7): 449-64.
[http://dx.doi.org/10.1080/1023666X.2011.599923]
[24]
Boudreau MD, Beland FA. An evaluation of the biological and toxicological properties of Aloe Barbadensis (Miller), Aloe Vera. J Environ Sci Health Part C Environ Carcinog Ecotoxicol Rev 2006; 24(1): 103-54.
[http://dx.doi.org/10.1080/10590500600614303]
[25]
Bialik-Wąs K, Pielichowski K. Bio-hybrid acrylic hydrogels containing metronidazole – loaded poly(acrylic acid- co -methyl methacrylate) nanoparticles and Aloe vera as natural healing agent. Int J Polym Mater 2019; 68(15): 915-23.
[http://dx.doi.org/10.1080/00914037.2018.1525535]
[26]
Arora MK, Sarup Y, Tomar R, Singh M, Kumar P. Amelioration of diabetes-induced diabetic nephropathy by Aloe vera: implication of oxidative stress and hyperlipidemia. J Diet Suppl 2019; 16(2): 227-44.
[http://dx.doi.org/10.1080/19390211.2018.1449159]
[27]
Mirshafiey A, Aghily B, Namaki S, et al. Therapeutic approach by Aloe vera in experimental model of multiple sclerosis. Immunopharmacol Immunotoxicol 2010; 32(3): 410-5.
[http://dx.doi.org/10.3109/08923970903440184]
[28]
Vardy D, Cohen A, Tchetov T, Medvedovsky E, Biton A. A double-blind, placebo-controlled trial of an Aloe vera (A. barbadensis) emulsion in the treatment of seborrheic dermatitis. J Dermatolog Treat 1999; 10(1): 7-11.
[http://dx.doi.org/10.3109/09546639909055904]
[29]
Halder S, Mehta AK, Mediratta PK. Aloe vera improves memory and reduces depression in mice. Nutr Neurosci 2013; 16(6): 250-4.
[http://dx.doi.org/10.1179/1476830512Y.0000000050]
[30]
Yuksel Y, Guven M, Kaymaz B, et al. Effects of Aloe vera on spinal cord Ischemia-reperfusion injury of rats. J Invest Surg 2016; 29(6): 389-98.
[http://dx.doi.org/10.1080/08941939.2016.1178358]
[31]
Syed T, Afzal M, Ahmad SA, Holt A, Ahmad SA, Ahmad S. Management of genital herpes in men with 0.5% Aloe vera extract in a hydrophilic cream: A placebo-controlled double-blind study. J Dermatolog Treat 1997; 8(2): 99-102.
[http://dx.doi.org/10.3109/09546639709160279]
[32]
Alkhouli M, Laflouf M, Alhaddad M. Efficacy of Aloe vera use for prevention of chemotherapy-induced oral mucositis in children with acute lymphoblastic leukemia: A randomized controlled clinical trial. Compr Child Adolesc Nurs 2021; 44(1): 49-62.
[http://dx.doi.org/10.1080/24694193.2020.1727065]
[33]
Garcia-Orue I, Gainza G, Garcia-Garcia P, et al. Composite nanofibrous membranes of PLGA/Aloe vera containing lipid nanoparticles for wound dressing applications. Int J Pharm 2019; 556: 320-9.
[http://dx.doi.org/10.1016/j.ijpharm.2018.12.010]
[34]
Aghamohamadi N, Sanjani NS, Majidi RF, Nasrollahi SA. Preparation and characterization of Aloe vera acetate and electrospinning fibers as promising antibacterial properties materials. Mater Sci Eng C 2019; 94: 445-52.
[http://dx.doi.org/10.1016/j.msec.2018.09.058]
[35]
Fallahi HR, Hamadzade H, Nezhad AM, Zandian D, Taghizadeh M. Effect of Aloe vera mouthwash on postoperative complications after impacted third molar surgery: A randomized, double-blind clinical trial. J Oral Maxillofac Surg Med Pathol 2016; 28(5): 392-6.
[http://dx.doi.org/10.1016/j.ajoms.2016.05.011]
[36]
Woźniak A, Paduch R. Aloe vera extract activity on human corneal cells. Pharm Biol 2012; 50(2): 147-54.
[http://dx.doi.org/10.3109/13880209.2011.579980]
[37]
Tamura N, Yoshida T, Miyaji K, Sugita-Konishi Y, Hattori M. Inhibition of infectious diseases by components from Aloe Vera. Biosci Biotechnol Biochem 2009; 73(4): 950-3.
[http://dx.doi.org/10.1271/bbb.80765]
[38]
Peng C, Zhang W, Shen X, et al. Post-transcriptional regulation activity through alternative splicing involved in the effects of Aloe vera on the Wnt/β-catenin and Notch pathways in colorectal cancer cells. J Pharmacol Sci 2020; 143(3): 148-55.
[http://dx.doi.org/10.1016/j.jphs.2020.03.006]
[39]
Tomasin R, Pascoal ACRF, Salvador MJ, Gomes-Marcondes MCC. Aloe vera and honey solution and their ethanolic extraction solution could act on metastasis-regulating processes in walker 256 tumor tissues in vivo? Nutr Cancer 2021; 73(7): 1244-52.
[http://dx.doi.org/10.1080/01635581.2020.1784443]
[40]
Salawu KM, Ajaiyeoba EO, Ogbole OO, Adeniji JA, Faleye TC, Agunu A. Antioxidant, brine shrimp lethality, and antiproliferative properties of gel and leaf extract of Aloe schweinfurthii and Aloe vera. J Herbs Spices Med Plants 2017; 23(4): 263-71.
[http://dx.doi.org/10.1080/10496475.2017.1318328]
[41]
Nadiger VG, Shukla SR. Antibacterial properties of silk fabric treated with Aloe Vera and silver nanoparticles. J Textil Inst 2017; 108(3): 385-96.
[http://dx.doi.org/10.1080/00405000.2016.1167391]
[42]
Goudarzi M, Fazeli M, Azad M, Seyedjavadi SS, Mousavi R. Aloe vera gel: Effective therapeutic agent against multidrug-resistant Pseudomonas aeruginosa isolates recovered from burn wound infections. Chemother Res Pract 2015; 2015: 1-5.
[http://dx.doi.org/10.1155/2015/639806]
[43]
Salah F, Ghoul YE, Mahdhi A, Majdoub H, Jarroux N, Sakli F. Effect of the deacetylation degree on the antibacterial and antibiofilm activity of acemannan from Aloe vera. Ind Crops Prod 2017; 103: 13-8.
[http://dx.doi.org/10.1016/j.indcrop.2017.03.031]
[44]
Carter P, Rahman SM, Bhattarai N. Facile fabrication of aloe vera containing PCL nanofibers for barrier membrane application. J Biomater Sci Polym Ed 2016; 27(7): 692-708.
[http://dx.doi.org/10.1080/09205063.2016.1152857]
[45]
Cui Y, Cheng Y, Guo Y, et al. Evaluating the hepatoprotective efficacy of Aloe vera polysaccharides against subchronic exposure of aflatoxins B1. J Taiwan Inst Chem Eng 2017; 76: 10-7.
[http://dx.doi.org/10.1016/j.jtice.2017.03.040]
[46]
Singh B, Sharma V, Dhiman A, Devi M. Design of Aloe vera- alginate gastroretentive drug delivery system to improve the pharmacotherapy. Polym Plast Technol Eng 2012; 51(13): 1303-14.
[http://dx.doi.org/10.1080/03602559.2012.698684]
[47]
Benzidia B, Barbouchi M, Hammouch H, et al. Chemical composition and antioxidant activity of tannins extract from green rind of Aloe vera. J King Saud Univ 2019; 31: 1175-81.
[http://dx.doi.org/10.1016/j.jksus.2018.05.022]
[48]
López-Cervantes J, Sánchez-Machado DI, Cruz-Flores P, Mariscal-Domínguez MF, Servín de la Mora-López G, Campas-Baypoli ON. Antioxidant capacity, proximate composition, and lipid constituents of Aloe vera flowers. J Appl Res Med Aromat Plants 2018; 10: 93-8.
[http://dx.doi.org/10.1016/j.jarmap.2018.02.004]
[49]
Reza Nazifi SM, Asgharshamsi MH, Dehkordi MM, Zborowski KK. Antioxidant properties of Aloe vera components: A DFT theoretical evaluation. Free Radic Res 2019; 53(8): 922-31.
[http://dx.doi.org/10.1080/10715762.2019.1648798]
[50]
Tabatabaei SRF, Ghaderi S, Bahrami-Tapehebur M, Farbood Y, Rashno M. Aloe vera gel improves behavioral deficits and oxidative status in streptozotocin-induced diabetic rats. Biomed Pharmacother 2017; 96: 279-90.
[http://dx.doi.org/10.1016/j.biopha.2017.09.146]
[51]
Prasannaraja C, Kamalanathan AS, Vijayalakshmi MA, Venkataraman K. A dipyrrole derivative from Aloe vera inhibits an anti-diabetic drug target Dipeptidyl Peptidase (DPP)-IV in vitro. Prep Biochem Biotechnol 2020; 50(5): 511-20.
[http://dx.doi.org/10.1080/10826068.2019.1710712]
[52]
Kim JH, Yoon JY, Yang SY, et al. Tyrosinase inhibitory components from Aloe vera and their antiviral activity. J Enzyme Inhib Med Chem 2017; 32(1): 78-83.
[http://dx.doi.org/10.1080/14756366.2016.1235568]
[53]
Saito M, Tanaka M, Misawa E, et al. Oral administration of Aloe vera gel powder prevents UVB-induced decrease in skin elasticity via suppression of overexpression of MMPs in hairless mice. Biosci Biotechnol Biochem 2016; 80(7): 1416-24.
[http://dx.doi.org/10.1080/09168451.2016.1156480]
[54]
Al-Omari MM, Qaqish AM, Al-Qaoud KM. Immunomodulatory effect of anise (<i>Pimpinella anisum</i>) in BALB/c mice. Trop J Pharm Res 2018; 17(8): 1515-21.
[http://dx.doi.org/10.4314/tjpr.v17i8.8]
[55]
Samojlik I, Mijatović V, Petković S, Škrbić B, Božin B. The influence of essential oil of aniseed (Pimpinella anisum, L.) on drug effects on the central nervous system. Fitoterapia 2012; 83(8): 1466-73.
[http://dx.doi.org/10.1016/j.fitote.2012.08.012]
[56]
Acimovic MG, Korac J, Jacimovic G, Oljaca S, Djukanovic L, Vuga-Janjatov V. Influence of ecological conditions on seeds traits and essential oil contents in Anise (Pimpinella anisum L.). Not Bot Horti Agrobot Cluj-Napoca 2014; 42(1): 232-8.
[http://dx.doi.org/10.15835/nbha4219492]
[57]
Kucukkurt I, Avci G, Eryavuz A, et al. Effects of supplementation of aniseed (Pimpinella anisum L.) at various amounts to diets on lipid peroxidation, antioxidant activity and some biochemical parameters in laying quails (Coturnix coturnixjaponica). Kocatepe Vet J 2009; 2(1): 1-5.
[http://dx.doi.org/10.18805/ijar.7094]
[58]
Orav A, Raal A, Arak ELMA. Essential oil composition of Pimpinella anisum L. fruits from various European countries. Nat Prod Res 2008; 22(3): 227-32.
[http://dx.doi.org/10.1080/14786410701424667]
[59]
Saibi S, Belhadj M, Benyoussef EH. Essential oil composition of Pimpinella anisum from Algeria. Anal Chem Lett 2012; 2(6): 401-4.
[http://dx.doi.org/10.1080/22297928.2012.10662624]
[60]
Dawidar AM, Mogib MA, El-Ghorab AH, Mahfouz M, Elsaid FG, Hussien K. Chemical composition and effect of photo-oxygenation on biological activities of Egyptian commercial anise and fennel essential oils. J Essent Oil-Bear Plants 2008; 11(2): 124-36.
[http://dx.doi.org/10.1080/0972060X.2008.10643608]
[61]
Tuncturk M, Yildirim B. Effect of seed rates on yield and yield components of anise (Pimpinella anisum). Indian J Agric Sci 2006; 76(11): 679-81.
[62]
Shirzadi D, Abbasi-Maleki S, Zanbouri A. Ethanolic extract of anise (Pimpinella anisum L.) attenuates morphine physical dependence in mice. J Herbmed Pharmacol 2010; 6(2): 69-73.
[63]
Amin GR. Popular medicinal plants of Iran, vice chancellorship of research. Tehran, Iran: Tehran University of Medical Science Press 2005.
[64]
Mirheydar H. Herbal information: Usage of plants in prevention and treatment of diseases. Tehran, Iran: Islamic Culture Press Center 2001.
[65]
Pourgholami MH, Majzoob S, Javadi M, Kamalinejad M, Fanaee GHR, Sayyah M. The fruit essential oil of Pimpinella anisum exerts anticonvulsant effects in mice. J Ethnopharmacol 1999; 66(2): 211-5.
[http://dx.doi.org/10.1016/S0378-8741(98)00161-5]
[66]
Koriem KMM, Arbid MS, El-Gendy NF. The protective role of anise oil in oxidative stress and genotoxicity produced in favism. J Diet Suppl 2016; 13(5): 505-21.
[http://dx.doi.org/10.3109/19390211.2015.1119775]
[67]
Abdul-Hamid M, Gallaly SR. Ameliorative effect of Pimpinella anisum oil on immunohistochemical and ultrastructural changes of cerebellum of albino rats induced by aspartame. Ultrastruct Pathol 2014; 38(3): 224-36.
[http://dx.doi.org/10.3109/01913123.2014.889259]
[68]
Tirapelli CR, de Andrade CR, Cassano AO, et al. Antispasmodic and relaxant effects of the hidroalcoholic extract of Pimpinella anisum (Apiaceae) on rat anococcygeus smooth muscle. J Ethnopharmacol 2007; 110(1): 23-9.
[http://dx.doi.org/10.1016/j.jep.2006.08.031]
[69]
Hosseinzadeh H, Tafaghodi M, Abedzadeh S, Taghiabadi E. Effect of aqueous and ethanolic extract of Pimpinella anisum L. seeds on milk production in rats. J Acupunct Meridian Stud 2014; 7(4): 211-6.
[http://dx.doi.org/10.1016/j.jams.2013.10.004]
[70]
Koch C, Reichling J, Schneele J, Schnitzler P. Inhibitory effect of essential oils against herpes simplex virus type 2. Phytomedicine 2008; 15(1-2): 71-8.
[http://dx.doi.org/10.1016/j.phymed.2007.09.003]
[71]
Lee JB, Yamagishi C, Hayashi K, Hayashi T. Antiviral and immunostimulating effects of lignin-carbohydrate-protein complexes from Pimpinellaanisum. Biosci Biotechnol Biochem 2011; 75(3): 459-65.
[http://dx.doi.org/10.1271/bbb.100645]
[72]
Iannarelli R, Marinelli O, Morelli MB, et al. Aniseed ( Pimpinella anisum L.) essential oil reduces pro-inflammatory cytokines and stimulates mucus secretion in primary airway bronchial and tracheal epithelial cell lines. Ind Crops Prod 2018; 114: 81-6.
[http://dx.doi.org/10.1016/j.indcrop.2018.01.076]
[73]
Ghlissi Z, Kallel R, Krichen F, et al. Polysaccharide from Pimpinella anisum seeds: Structural characterization, anti-inflammatory and laser burn wound healing in mice. Int J Biol Macromol 2020; 156: 1530-8.
[http://dx.doi.org/10.1016/j.ijbiomac.2019.11.201]
[74]
Bettaieb Rebey I, Bourgou S, Aidi Wannes W, et al. Comparative assessment of phytochemical profiles and antioxidant properties of Tunisian and Egyptian anise ( Pimpinella anisum L.) seeds. Plant Biosyst 2018; 152(5): 971-8.
[http://dx.doi.org/10.1080/11263504.2017.1403394]
[75]
Gende LB, Maggi MD, Fritz R, Eguaras MJ, Bailac PN, Ponzi MI. Antimicrobial activity of Pimpinella anisum and Foeniculum vulgare essential oils against Paenibacillus larvae. J Essent Oil Res 2009; 21(1): 91-3.
[http://dx.doi.org/10.1080/10412905.2009.9700120]
[76]
Topuz OK, Özvural EB, Zhao Q, Huang Q, Chikindas M, Gölükçü M. Physical and antimicrobial properties of anise oil loaded nanoemulsions on the survival of foodborne pathogens. Food Chem 2016; 203: 117-23.
[http://dx.doi.org/10.1016/j.foodchem.2016.02.051]
[77]
Aminifard MH, Bayat H. Antifungal activity of black caraway and anise essential oils against Penicillium digitatum on blood orange fruits. Int J Fruit Sci 2018; 18(3): 307-19.
[http://dx.doi.org/10.1080/15538362.2017.1409682]
[78]
Hu F, Tu XF, Thakur K, et al. Comparison of antifungal activity of essential oils from different plants against three fungi. Food Chem Toxicol 2019; 134: 110821.
[http://dx.doi.org/10.1016/j.fct.2019.110821]
[79]
Yazdi FF, Ghalamkari G, Toghiani M, Modaresi M, Landy N. Anise seed (Pimpinella anisum L.) as an alternative to antibiotic growth promoters on performance, carcass traits and immune responses in broiler chicks. Asian Pac J Trop Dis 2014; 4(6): 447-51.
[http://dx.doi.org/10.1016/S2222-1808(14)60604-6]
[80]
Park IIK, Choi KS, Kim DH, et al. Fumigant activity of plant essential oils and components from horseradish ( Armoracia rusticana ), anise ( Pimpinella anisum ) and garlic ( Allium sativum ) oils against Lycoriella ingenua (Diptera: Sciaridae). Pest Manag Sci 2006; 62(8): 723-8.
[http://dx.doi.org/10.1002/ps.1228]
[81]
Benelli G, Pavela R, Petrelli R, et al. Not just popular spices! Essential oils from Cuminum cyminum and Pimpinella anisum are toxic to insect pests and vectors without affecting non-target invertebrates. Ind Crops Prod 2018; 124: 236-43.
[http://dx.doi.org/10.1016/j.indcrop.2018.07.048]
[82]
Al Mofleh IA, Alhaider AA, Mossa JS, Al-Sohaibani MO, Rafatullah S. Aqueous suspension of anise “ Pimpinella anisum ” protects rats against chemically induced gastric ulcers. World J Gastroenterol 2007; 13(7): 1112-8.
[http://dx.doi.org/10.3748/wjg.v13.i7.1112]
[83]
Shahamat Z, Abbasi-Maleki S, Mohammadi Motamed S. Evaluation of antidepressant-like effects of aqueous and ethanolic extracts of Pimpinella anisum L. fruit in mice. Avicenna J Phytomed 2015; 6(3): 322-8.
[84]
Abdulbasit AI. The antibacterial activity of traditionally used Salvadora Persica L. (miswak) and Commiphora Gileadensis (palsam) in Saudi Arabia. Afr J Tradit Complement Altern Med 2014; 2(11): 23-7.
[85]
Almulaiky YQ, Al-Harbi SA. A novel peroxidase from Arabian balsam (Commiphora gileadensis) stems: Its purification, characterization and immobilization on a carboxymethylcellulose/Fe3O4 magnetic hybrid material. Int J Biol Macromol 2019; 133(15): 767-74.
[http://dx.doi.org/10.1016/j.ijbiomac.2019.04.119]
[86]
Feliks Y. The incense of the tabemacle. In: Wright DP, Freedman DN, Hurvitz A, Eds. Pomegranates and Golden Bells. Eisenbrauns Winona Lake, Indiana 1995; pp. 125-49.
[87]
Heber D. PDR for herbal medicine. (3rd ed.). Thomson Company 2004; pp. 495-6.
[88]
Khan A, Asaf S, Khan AL, et al. First complete chloroplast genomics and comparative phylogenetic analysis of Commiphora gileadensis and C. foliacea: Myrrh producing trees. PLoS One 2019; 14(1): e0208511.
[http://dx.doi.org/10.1371/journal.pone.0208511]
[89]
Alsherif EA. Ecological studies of Commiphora genus (myrrha) in Makkah region, Saudi Arabia. Heliyon 2019; 5(5): e01615.
[http://dx.doi.org/10.1016/j.heliyon.2019.e01615]
[90]
Amiel E, Ofir R, Dudai N, Soloway E, Rabinsky T, Rachmilevitch S. β-Caryophyllene, a compound isolated from the biblical balm of gilead (Commiphora gileadensis), is a selective apoptosis inducer for tumor cell lines. Evid-Based Complement Altern Med 2012; 1-8.
[http://dx.doi.org/10.1155/2012/872394]
[91]
Aldhebiani AY, Aly MM. Antibacterial activity of Commiphora gileadensis and Abutilon bidentatum, collected from Al-Abwa region, Saudi Arabia. Clin Exp Pharmacol 2018; 8
[http://dx.doi.org/10.4172/2161-1459-C1-029]
[92]
Al-sieni AII. The antibacterial activity of traditionally used Salvadora Persica L. (miswak) and Commiphora Gileadensis (palsam) in Saudi Arabia. Afr J Tradit Complement Altern Med 2013; 11(1): 23-7.
[http://dx.doi.org/10.4314/ajtcam.v11i1.3]
[93]
El Rabey HA, Al-Sieni AI, Al-Seeni MN, Alsieni MA, Alalawy AI, Almutairi FM. The antioxidant and antidiabetic activity of the Arabian balsam tree “ Commiphora gileadensis ” in hyperlipidaemic male rats. J Taibah Univ Sci 2020; 14(1): 831-41.
[http://dx.doi.org/10.1080/16583655.2020.1780020]
[94]
Wineman E, Douglas I, Wineman V, et al. Commiphora gileadensis sap extract induces cell cycle-dependent death in immortalized keratinocytes and human dermoid carcinoma cells. J Herb Med 2015; 5(4): 199-206.
[http://dx.doi.org/10.1016/j.hermed.2015.08.001]
[95]
Iluz D, Hoffman M, Gilboa-Garber N, Amar Z. Medicinal properties of Commiphora gileadensis. Afr J Pharm Pharmacol 2010; 4(8): 516-20.
[96]
Pliny G. Naturalis Historia. London: LCL 1989.
[http://dx.doi.org/10.5962/bhl.title.145955]
[97]
Gunther RT. The Greek Herbal of Dioscorides Hafner Publishing. New York: Translator 1959.
[http://dx.doi.org/10.1086/349430]
[98]
Temkin O. Soranus Gynecology. Baltimore, London: The Johns Hopkins University Press 1991.
[99]
Al Mahbashi HM, El-Shaibany A, Saad FA. Evaluation of acute toxicity and antimicrobial effects of the bark extract of Bisham (Commiphora gileadensis L.). J Chem Pharm Res 2015; 7(6): 810-4.
[100]
Kaur N, Chugh H, Tomar V, Sakharkar MK, Dass SK, Chandra R. Cinnamon attenuates adiposity and affects the expression of metabolic genes in Diet-Induced obesity model of zebrafish. Artif Cells Nanomed Biotechnol 2019; 47(1): 2930-9.
[http://dx.doi.org/10.1080/21691401.2019.1641509]
[101]
Rao PV, Gan SH. Cinnamon: A multifaceted medicinal plant. Evid-Based Complement Altern Med 2014; pp. 1-12.
[http://dx.doi.org/10.1155/2014/642942]
[102]
Prasanth DSNBK, Murahari M, Chandramohan V, Panda SP, Atmakuri LR, Guntupalli C. In silico identification of potential inhibitors from Cinnamon against main protease and spike glycoprotein of SARS CoV-2. J Biomol Struct Dyn 2021; 39(13): 4618-32.
[http://dx.doi.org/10.1080/07391102.2020.1779129]
[103]
Liu X, Yang J, Fu J, et al. Phytochemical and chemotaxonomic studies on the twigs of Cinnamomum cassia (Lauraceae). Biochem Syst Ecol 2018; 81: 45-8.
[http://dx.doi.org/10.1016/j.bse.2018.09.004]
[104]
Le VD, Tran VT, Dang VS, Nguyen DT, Dang CH, Nguyen TD. Physicochemical characterizations, antimicrobial activity and non-isothermal decomposition kinetics of Cinnamomum cassia essential oils. J Essent Oil Res 2020; 32(2): 158-68.
[http://dx.doi.org/10.1080/10412905.2019.1700834]
[105]
He S, Jiang Y, Tu PF. Three new compounds from Cinnamomum cassia. J Asian Nat Prod Res 2016; 18(2): 134-40.
[http://dx.doi.org/10.1080/10286020.2015.1057577]
[106]
Zeng JF, Zhu HC, Lu JW, Hu LZ, Song JC, Zhang YH. Two new geranylphenylacetate glycosides from the barks of Cinnamomum cassia. Nat Prod Res 2017; 31(15): 1812-8.
[http://dx.doi.org/10.1080/14786419.2017.1294175]
[107]
Mendis Abeysekera WPK, Arachchige SPG, Abeysekera WKSM, Ratnasooriya WD, Indeewari Medawatta HMU. Antioxidant and glycemic regulatory properties potential of different maturity stages of leaf of Ceylon cinnamon (Cinnamomum zeylanicum Blume) in vitro. Evid Based Complement Alternat Med 2019; 2019: 1-10.
[http://dx.doi.org/10.1155/2019/2693795]
[108]
Wang J, Su B, Jiang H, et al. Traditional uses, phytochemistry and pharmacological activities of the genus Cinnamomum (Lauraceae): A review. Fitoterapia 2020; 146: 104675.
[http://dx.doi.org/10.1016/j.fitote.2020.104675]
[109]
Ngoc TM, Lee I, Ha DT, Kim H, Min B, Bae K. Tyrosinase-inhibitory constituents from the twigs of Cinnamomum cassia. J Nat Prod 2009; 72(6): 1205-8.
[http://dx.doi.org/10.1021/np900031q]
[110]
Liao SG, Yuan T, Zhang C, Yang SP, Wu Y, Yue JM. Cinnacassides A–E, five geranylphenylacetate glycosides from Cinnamomum cassia. Tetrahedron 2009; 65(4): 883-7.
[http://dx.doi.org/10.1016/j.tet.2008.11.041]
[111]
Zhou HF, Guo RL, Yin DZ, et al. Cassiabudanols A and B, immunostimulative diterpenoids with a cassiabudane carbon skeleton featuring a 3-oxatetracyclo (6.6.1.02,6. 010,14) pentadecane scaffold from cassia buds. Org Lett 2019; 21: 549-53.
[http://dx.doi.org/10.1021/acs.orglett.8b03883]
[112]
Vijayan V, Mazumder A. In vitro inhibition of food borne mutagens induced mutagenicity by cinnamon ( Cinnamomum cassia ) bark extract. Drug Chem Toxicol 2018; 41(4): 385-93.
[http://dx.doi.org/10.1080/01480545.2018.1439056]
[113]
Sun L, Liu LN, Li JC, et al. The essential oil from the twigs of Cinnamomum cassia Presl inhibits oxytocin-induced uterine contraction in vitro and in vivo. J Ethnopharmacol 2017; 206: 107-14.
[http://dx.doi.org/10.1016/j.jep.2017.05.023]
[114]
Lim CS, Kim EY, Lee HS, et al. Protective effects of Cinnamomum cassia Blume in the fibrogensis of activated HSC-T6 cells and dimethylnitrosamine-induced acute liver injury in SD rats. Biosci Biotechnol Biochem 2010; 74(3): 477-83.
[http://dx.doi.org/10.1271/bbb.90435]
[115]
Kim EC, Kim HJ, Kim TJ. Water extract of Cinnamomum cassia suppresses angiogenesis through inhibition of VEGF receptor 2 phosphorylation. Biosci Biotechnol Biochem 2015; 79(4): 617-24.
[http://dx.doi.org/10.1080/09168451.2014.993917]
[116]
Weng S-J, Yan D-Y, Tang J-H, et al. Combined treatment with cinnamaldehyde and β-TCP has an additive effect on bone formation and angiogenesis in critical size calvarial defect in ovariectomized rats. Biomed Pharmacother 2019; 109: 573-81.
[http://dx.doi.org/10.1016/j.biopha.2018.10.085]
[117]
Murbach Teles Andrade BF, Nunes Barbosa L, da Silva Probst I, Fernandes Júnior A. Antimicrobial activity of essential oils. J Essent Oil Res 2014; 26(1): 34-40.
[http://dx.doi.org/10.1080/10412905.2013.860409]
[118]
Sheng L, Zhu MJ. Inhibitory effect of Cinnamomum cassia oil on non-O157 Shiga toxin-producing Escherichia coli. Food Control 2014; 46: 374-81.
[http://dx.doi.org/10.1016/j.foodcont.2014.05.050]
[119]
Pekmezovic M, Rajkovic K, Barac A, Senerović L, Arsic Arsenijevic V. Development of kinetic model for testing antifungal effect of Thymus vulgaris L. and Cinnamomum cassia L. essential oils on Aspergillus flavus spores and application for optimization of synergistic effect. Biochem Eng J 2015; 99: 131-7.
[http://dx.doi.org/10.1016/j.bej.2015.03.024]
[120]
Lu K, Wang QR, Huo X, Gao YQ, Feng FJ. Composition analysis of acetone extract of Cinnamomum cassia and its inhibition on 5 plant pathogens. Xi Nan Nong Ye Xue Bao 2019; 32: 798-302.
[121]
El Atki Y, Aouam I, El Kamari F, et al. Antibacterial activity of cinnamon essential oils and their synergistic potential with antibiotics. J Adv Pharm Technol Res 2019; 10(2): 63.
[http://dx.doi.org/10.4103/japtr.JAPTR_366_18]
[122]
Song X, Sun Y, Zhang Q, et al. Failure of Staphylococcus aureus to acquire direct and cross tolerance after habituation to cinnamon essential oil. Microorganisms 2019; 7(1): 18.
[http://dx.doi.org/10.3390/microorganisms7010018]
[123]
Borzoei A, Rafraf M, Niromanesh S, Farzadi L, Narimani F, Doostan F. Effects of cinnamon supplementation on antioxidant status and serum lipids in women with polycystic ovary syndrome. J Tradit Complement Med 2018; 8(1): 128-33.
[http://dx.doi.org/10.1016/j.jtcme.2017.04.008]
[124]
Shin WY, Shim DW, Kim MK, et al. Protective effects of Cinnamomum cassia (Lamaceae) against gout and septic responses via attenuation of inflammasome activation in experimental models. J Ethnopharmacol 2017; 205: 173-7.
[http://dx.doi.org/10.1016/j.jep.2017.03.043]
[125]
Xu F, Sang W, Li L, et al. Protective effects of ethyl acetate extracts of Rimulus Cinnamon on systemic inflammation and lung injury in endotoxin-poisoned mice. Drug Chem Toxicol 2019; 42(3): 309-16.
[http://dx.doi.org/10.1080/01480545.2018.1509987]
[126]
Yeh CF, Chang JS, Wang KC, Shieh DE, Chiang LC. Water extract of Cinnamomum cassia Blume inhibited human respiratory syncytial virus by preventing viral attachment, internalization, and syncytium formation. J Ethnopharmacol 2013; 147(2): 321-6.
[http://dx.doi.org/10.1016/j.jep.2013.03.010]
[127]
Yan YM, Fang P, Yang MT, Li N, Lu Q, Cheng YX. Anti-diabetic nephropathy compounds from Cinnamomum cassia. J Ethnopharmacol 2015; 165: 141-7.
[http://dx.doi.org/10.1016/j.jep.2015.01.049]
[128]
Kaur G, Invally M, Khan MK, Jadhav P. A nutraceutical combination of Cinnamomum cassia & Nigella sativa for Type 1 diabetes mellitus. J Ayurveda Integr Med 2018; 9(1): 27-37.
[http://dx.doi.org/10.1016/j.jaim.2017.02.005]
[129]
Anju R, Sunitha MC, Nevin KG. Cinnamon extract enhances the mitochondrial reactive oxygen species production and arrests the proliferation of human colon cancer cell line, HCT-116. J Herbs Spices Med Plants 2018; 24(3): 293-301.
[http://dx.doi.org/10.1080/10496475.2018.1471766]
[130]
Park GH, Song HM, Park SB, et al. Cytotoxic activity of the twigs of Cinnamomum cassia through the suppression of cell proliferation and the induction of apoptosis in human colorectal cancer cells. BMC Complement Altern Med 2018; 18(1): 28.
[http://dx.doi.org/10.1186/s12906-018-2096-x]
[131]
Chang CT, Chang WL, Hsu JC, Shih Y, Chou ST. Chemical composition and tyrosinase inhibitory activity of Cinnamomum cassia essential oil. Bot Stud 2013; 54(1): 10.
[http://dx.doi.org/10.1186/1999-3110-54-10]
[132]
Chou ST, Chang WL, Chang CT, Hsu SL, Lin YC, Shih Y. Cinnamomum cassia essential oil inhibits α-MSH-induced melanin production and oxidative stress in murine B16 melanoma cells. Int J Mol Sci 2013; 14(9): 19186-201.
[http://dx.doi.org/10.3390/ijms140919186]
[133]
Kim KY, Bang S, Han S, et al. TRP-independent inhibition of the phospholipase C pathway by natural sensory ligands. Biochem Biophys Res Commun 2008; 370(2): 295-300.
[http://dx.doi.org/10.1016/j.bbrc.2008.03.077]
[134]
Jung YH, Kwon SH, Hong SI, et al. 5-HT 1A receptor binding in the dorsal raphe nucleus is implicated in the anxiolytic-like effects of Cinnamomum cassia. Pharmacol Biochem Behav 2012; 103(2): 367-72.
[http://dx.doi.org/10.1016/j.pbb.2012.09.004]
[135]
Zada W, Zeeshan S, Bhatti HA, Mahmood W, Rauf K, Abbas G. Cinnamomum cassia : An implication of serotonin reuptake inhibition in animal models of depression. Nat Prod Res 2016; 30(10): 1212-4.
[http://dx.doi.org/10.1080/14786419.2015.1047776]
[136]
Kholif SM, Morsy TA, Abdo MM, Matloup OH, El-Ella AAA. Effect of supplementing goats rations with garlic, cinnamon or ginger oils on milk yield, milk composition and milk fatty acids profile. J Life Sci 2012; 4(1): 27-34.
[http://dx.doi.org/10.1080/09751270.2012.11885191]
[137]
Kwon H, Lee JJ, Lee JH, et al. Cinnamon and its components suppress vascular smooth muscle cell proliferation by up-regulating cyclin-dependent kinase inhibitors. Am J Chin Med 2015; 43(4): 621-36.
[http://dx.doi.org/10.1142/S0192415X1550038X]
[138]
Sharma H, Chauhan P, Singh S. Evaluation of the anti-arthritic activity of Cinnamomum cassia bark extract in experimental models. Integr Med Res 2018; 7(4): 366-73.
[http://dx.doi.org/10.1016/j.imr.2018.08.002]
[139]
ElKady AI, Ramadan WS. The aqueous extract of cinnamon bark ameliorated cisplatin-induced cytotoxicity in vero cells without compromising the anticancer efficiency of cisplatin. Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub 2016; 160(3): 363-71.
[http://dx.doi.org/10.5507/bp.2016.034]
[140]
Kong JO, Lee SM, Moon YS, Lee SG, Ahn YJ. Nematicidal activity of cassia and cinnamon oil compounds and related rompounds toward bursaphelenchus xylophilus (Nematoda: Parasitaphelenchidae). J Nematol 2007; 39(1): 31-6.
[http://dx.doi.org/10.1016/S1226-8615(08)60289-7]
[141]
Gruenwald J, Freder J, Armbruester N. Cinnamon and Health. Crit Rev Food Sci Nutr 2010; 50(9): 822-34.
[http://dx.doi.org/10.1080/10408390902773052]
[142]
Ribeiro-Santos R, Andrade M, Madella D, et al. Revisiting an ancient spice with medicinal purposes: Cinnamon. Trends Food Sci Technol 2017; 62: 154-69.
[http://dx.doi.org/10.1016/j.tifs.2017.02.011]
[143]
Avula B, Smillie TJ, Wang YH, Zweigenbaum J, Khan IA. Authentication of true cinnamon ( Cinnamon verum ) utilising direct analysis in real time (DART)-QToF-MS. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2015; 32(1): 1-8.
[http://dx.doi.org/10.1080/19440049.2014.981763]
[144]
Lungarini S, Aureli F, Coni E. Coumarin and cinnamaldehyde in cinnamon marketed in Italy: A natural chemical hazard? Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2008; 25(11): 1297-305.
[http://dx.doi.org/10.1080/02652030802105274]
[145]
Kamaliroosta L , Gharachorloo M, Kamaliroosta Z, Alimohammad Zadeh KH. Extraction of cinnamon essential oil and identification of its chemical compounds. J Med Plants Res 2012; 6(4): 609-14.
[http://dx.doi.org/10.5897/JMPR11.1215]
[146]
Ranasinghe P, Pigera S, Premakumara GAS, Galappaththy P, Constantine GR, Katulanda P. Medicinal properties of ‘true’ cinnamon (Cinnamomum zeylanicum): a systematic review. BMC Complement Altern Med 2013; 13(1): 275.
[http://dx.doi.org/10.1186/1472-6882-13-275]
[147]
Dugoua JJ, Seely D, Perri D, et al. From type 2 diabetes to antioxidant activity: A systematic review of the safety and efficacy of common and cassia cinnamon barkThis article is one of a selection of papers published in this special issue (part 1 of 2) on the Safety and Efficacy of Natural Health Products. Can J Physiol Pharmacol 2007; 85(9): 837-47.
[http://dx.doi.org/10.1139/Y07-080]
[148]
Dehghan G, Shaghaghi M, Jafari A, Mohammadi M, Badalzadeh R. Effect of endurance training and cinnamon supplementation on post-exercise oxidative responses in rats. Mol Biol Res Commun 2014; 3: 269-81.
[149]
Khaki A, Khaki AA, Hajhosseini L, Golzar FS, Ainehchi N. The anti-oxidant effects of ginger and cinnamon on spermatogenesis dys-function of diabetes rats. Afr J Tradit Complement Altern Med 2014; 11(4): 1-8.
[http://dx.doi.org/10.4314/ajtcam.v11i4.1]
[150]
Jain S, Sangma T, Shukla SK, Mediratta PK. Effect of Cinnamomum zeylanicum extract on scopolamine-induced cognitive impairment and oxidative stress in rats. Nutr Neurosci 2015; 18(5): 210-6.
[http://dx.doi.org/10.1179/1476830514Y.0000000113]
[151]
Hossein N, Zahra Z, Abolfazl M, Mahdi S, Ali K. Effect of Cinnamon zeylanicum essence and distillate on the clotting time. J Med Plants Res 2013; 7(19): 1339-43.
[152]
Minich St, Msom L. Chinese Herbal Medicine in Women,s Health. Women,s. Health 2008.
[153]
Adegunwa MO, Bamidele BO, Alamu EO, Adebanjo LA. Production and quality evaluation of cookies from composite flour of unripe lantain (Musa paradisiaca), groundnut (Arachis hypogaea L.), and cinnamon (Cinnamomum Vernum). J Culin Sci Technol 2020; 18(5): 413-27.
[http://dx.doi.org/10.1080/15428052.2019.1655824]
[154]
Tajodini M, Saeedi HR, Moghbeli P. Use of black pepper, cinnamon and turmeric as feed additives in the poultry industry. Worlds Poult Sci J 2015; 71(1): 175-83.
[http://dx.doi.org/10.1017/S0043933915000148]
[155]
Almeida LFD, Paula JF, Almeida RVD, Williams DW, Hebling J, Cavalcanti YW. Efficacy of citronella and cinnamon essential oils on Candida albicans biofilms. Acta Odontol Scand 2016; 74(5): 393-8.
[http://dx.doi.org/10.3109/00016357.2016.1166261]
[156]
Simionato I, Domingues FC, Nerín C, Silva F. Encapsulation of cinnamon oil in cyclodextrin nanosponges and their potential use for antimicrobial food packaging. Food Chem Toxicol 2019; 132: 110647.
[http://dx.doi.org/10.1016/j.fct.2019.110647]
[157]
Lee JE, Seo SM, Huh MJ, Lee SC, Park IK. Reactive oxygen species mediated-antifungal activity of cinnamon bark (Cinnamomum verum) and lemongrass (Cymbopogon citratus) essential oils and their constituents against two phytopathogenic fungi. Pestic Biochem Physiol 2020; 168: 104644.
[http://dx.doi.org/10.1016/j.pestbp.2020.104644]
[158]
Nazari M, Majdi H, Milani M, Abbaspour-Ravasjani S, Hamishehkar H, Lim LT. Cinnamon nanophytosomes embedded electrospun nanofiber: Its effects on microbial quality and shelf-life of shrimp as a novel packaging. Food Packag Shelf Life 2019; 21: 100349.
[http://dx.doi.org/10.1016/j.fpsl.2019.100349]
[159]
Arezoo E, Mohammadreza E, Maryam M, Abdorreza MN. The synergistic effects of cinnamon essential oil and nano TiO2 on antimicrobial and functional properties of sago starch films. Int J Biol Macromol 2020; 157: 743-51.
[http://dx.doi.org/10.1016/j.ijbiomac.2019.11.244]
[160]
Deyno S, Eneyew K, Seyfe S, et al. Efficacy and safety of cinnamon in type 2 diabetes mellitus and pre-diabetes patients: A meta-analysis and meta-regression. Diabetes Res Clin Pract 2019; 156: 107815.
[http://dx.doi.org/10.1016/j.diabres.2019.107815]
[161]
Zare R, Nadjarzadeh A, Zarshenas MM, Shams M, Heydari M. Efficacy of cinnamon in patients with type II diabetes mellitus: A randomized controlled clinical trial. Clin Nutr 2019; 38(2): 549-56.
[http://dx.doi.org/10.1016/j.clnu.2018.03.003]
[162]
Lavaee F, Moshaverinia M, Rastegarfar M, Moattari A. Evaluation of the effect of hydro alcoholic extract of cinnamon on herpes simplex virus-1. Dent Res J 2020; 17(2): 114-9.
[http://dx.doi.org/10.4103/1735-3327.280889]
[163]
Fayaz E, Damirchi A, Zebardast N, Babaei P. Cinnamon extract combined with high-intensity endurance training alleviates metabolic syndrome via non-canonical WNT signaling. Nutrition 2019; 65: 173-8.
[http://dx.doi.org/10.1016/j.nut.2019.03.009]
[164]
Salamatian M, Mohammadi V, Abtahi Froushani SM. Ameliorative effects of aqueous cinnamon extract on ulcerative colitis in rats. Physiol Pharmacol 2019; 23: 140-9.
[165]
Shahid MZ, Saima H, Yasmin A, Nadeem MT, Imran M, Afzaal M. Antioxidant capacity of cinnamon extract for palm oil stability. Lipids Health Dis 2018; 17(1): 116.
[http://dx.doi.org/10.1186/s12944-018-0756-y]
[166]
Gulcin I, Kaya R, Goren AC, et al. Anticholinergic, antidiabetic and antioxidant activities of cinnamon ( cinnamomum verum ) bark extracts: polyphenol contents analysis by LC-MS/MS. Int J Food Prop 2019; 22(1): 1511-26.
[http://dx.doi.org/10.1080/10942912.2019.1656232]
[167]
Thompson M, Schmelz EM, Bickford L. Anti-cancer properties of cinnamon oil and its active component, trans-cinnamaldehyde. J Nutr Food Sci 2019; 9(1): 750.
[http://dx.doi.org/10.4172/2155-9600.1000750]
[168]
Mousavi SM, Karimi E, Hajishafiee M, Milajerdi A, Amini MR, Esmaillzadeh A. Anti-hypertensive effects of cinnamon supplementation in adults: A systematic review and dose-response Meta-analysis of randomized controlled trials. Crit Rev Food Sci Nutr 2020; 60(18): 3144-54.
[http://dx.doi.org/10.1080/10408398.2019.1678012]
[169]
Sohrabi R, Pazgoohan M, Seresht HR, Amin B. Repeated systemic administration of the cinnamon essential oil possesses anti-anxiety and anti-depressant activities in mice. Iran J Basic Med Sci 2017; 20: 708-14.
[170]
Mousavi SM, Rahmani J, Kord-Varkaneh H, Sheikhi A, Larijani B, Esmaillzadeh A. Cinnamon supplementation positively affects obesity: A systematic review and dose-response meta-analysis of randomized controlled trials. Clin Nutr 2020; 39(1): 123-33.
[http://dx.doi.org/10.1016/j.clnu.2019.02.017]
[171]
Hadi A, Campbell MS, Hassani B, Pourmasoumi M, Salehi-sahlabadi A, Hosseini SA. The effect of cinnamon supplementation on blood pressure in adults: A systematic review and meta-analysis of randomized controlled trials. Clin Nutr ESPEN 2020; 36: 10-6.
[http://dx.doi.org/10.1016/j.clnesp.2020.01.002]
[172]
Sabet H, Mortazaeinezhad F. Yield, growth and Fe uptake of cumin (Cuminum cyminum L.) affected by Fe-nano, Fe-chelated and Fe-siderophore fertilization in the calcareous soils. J Trace Elem Med Biol 2018; 50: 154-60.
[http://dx.doi.org/10.1016/j.jtemb.2018.06.020]
[173]
Milan KSM, Dholakia H, Tiku PK, Vishveshwaraiah P. Enhancement of digestive enzymatic activity by cumin (Cuminum cyminum L.) and role of spent cumin as a bionutrient. Food Chem 2008; 110(3): 678-83.
[http://dx.doi.org/10.1016/j.foodchem.2008.02.062]
[174]
Razmjoo J, Alinian S. Influence of magnetopriming on germination, growth, physiology, oil and essential contents of cumin ( Cuminum cyminum L.). Electromagn Biol Med 2017; 36(4): 325-9.
[http://dx.doi.org/10.1080/15368378.2017.1373661]
[175]
Archangi A, Heidari B, Mohammadi-Nejad G. Association between seed yield-related traits and cDNA-AFLP markers in cumin (Cuminum cyminum) under drought and irrigation regimes. Ind Crops Prod 2019; 133: 276-83.
[http://dx.doi.org/10.1016/j.indcrop.2019.03.038]
[176]
Mehdizadeh L, Pirbalouti AG, Moghaddam M. Storage stability of essential oil of cumin (Cuminum Cyminum L.) as a function of temperature. Int J Food Prop 2017; 20(2): 1742-50.
[http://dx.doi.org/10.1080/10942912.2017.1354018]
[177]
Piri R, Moradi A, Balouchi H, Salehi A. Improvement of cumin (Cuminum cyminum) seed performance under drought stress by seed coating and biopriming. Sci Hortic 2019; 257: 108667.
[http://dx.doi.org/10.1016/j.scienta.2019.108667]
[178]
Gondaliya SB, Khatrani TJ, Soni KK, Baravalia YK. Consequence on long term storage on phytochemical attributes of cumin (Cuminum cyminum, L.) from districts of north Gujarat, India. Ind Crops Prod 2018; 111: 908-13.
[http://dx.doi.org/10.1016/j.indcrop.2017.10.054]
[179]
Khan IU, Rathore BS, Mehriya ML, Singh B. Evaluation, estimation and identification of essential oil constituents in cumin (Cuminum cyminum) genotypes grown in western Rajasthan. J Essent Oil-Bear Plants 2017; 20(3): 769-78.
[http://dx.doi.org/10.1080/0972060X.2017.1333462]
[180]
Sowbhagya HB. Chemistry, technology and nutraceutical functions of cumin (Cuminum cyminum L.): An overview. Crit Rev Food Sci Nutr 2013; 53(1): 1-10.
[http://dx.doi.org/10.1080/10408398.2010.500223]
[181]
Abbdellaoui M, Bouhlali ET, Rhaffari LE. Chemical composition and antioxidant activities of the essential oils of cumin (Cuminum cyminum) conducted under organic production conditions. J Essent Oil-Bear Plants 2019; 22(6): 1500-8.
[http://dx.doi.org/10.1080/0972060X.2019.1699866]
[182]
Farshi P, Tabibiazar M, Ghorbani M, Mohammadifar M, Amirkhiz MB, Hamishehkar H. Whey protein isolate-guar gum stabilized cumin seed oil nanoemulsion. Food Biosci 2019; 28: 49-56.
[http://dx.doi.org/10.1016/j.fbio.2019.01.011]
[183]
Tayade PB, Adivarekar RV. Dyeing of cotton fabric with Cuminum cyminum L. as a natural dye and its comparison with synthetic dye. J Textil Inst 2013; 104(10): 1080-8.
[http://dx.doi.org/10.1080/00405000.2013.774944]
[184]
Surya D, Vijayakumar RS, Nalini N. Oxidative stress and the role of cumin (Cuminum cyminum Linn.) in alloxan-induced diabetic rats. J Herbs Spices Med Plants 2005; 11(3): 127-39.
[http://dx.doi.org/10.1300/J044v11n03_12]
[185]
Jafari T, Mahmoodnia L, Tahmasebi P, et al. Effect of cumin (Cuminum cyminum) essential oil supplementation on metabolic profile and serum leptin in pre-diabetic subjects: A randomized double-blind placebo-controlled clinical trial. J Funct Foods 2018; 47: 416-22.
[http://dx.doi.org/10.1016/j.jff.2018.06.009]
[186]
Jafarnejad S, Tsang C, Taghizadeh M, Asemi Z, Keshavarz SA. A meta-analysis of cumin ( Cuminum cyminim L.) consumption on metabolic and anthropometric indices in overweight and type 2 diabetics. J Funct Foods 2018; 44: 313-21.
[http://dx.doi.org/10.1016/j.jff.2018.03.026]
[187]
Chen J, Mu T, Zhang M, et al. Structure, physicochemical, and functional properties of protein isolates and major fractions from cumin ( Cuminum cyminum ) seeds. Int J Food Prop 2018; 21(1): 685-701.
[http://dx.doi.org/10.1080/10942912.2018.1454467]
[188]
Guo YR, An YM, Jia YX, Xu JG. Effects of drying methods on chemical composition and biological activity of essential oil from cumin (Cuminum cyminum L.). J Essent Oil-Bear Plants 2018; 21(5): 1295-302.
[http://dx.doi.org/10.1080/0972060X.2018.1538818]
[189]
Alizadeh Behbahani B, Noshad M, Falah F. Cumin essential oil: Phytochemical analysis, antimicrobial activity and investigation of its mechanism of action through scanning electron microscopy. Microb Pathog 2019; 136: 103716.
[http://dx.doi.org/10.1016/j.micpath.2019.103716]
[190]
Mohammad Reza Z, Atefeh JY, Faezeh F. Activities of Cuminum cyminum L. essential oils in vitro and in vivo systems. J Essent Oil-Bear Plants 2015; 18(3): 582-91.
[http://dx.doi.org/10.1080/0972060X.2014.958559]
[191]
Shababdoust A, Ehsani M, Shokrollahi P, Zandi M. Fabrication of curcumin-loaded electrospun nanofiberous polyurethanes with anti-bacterial activity. Prog Biomater 2018; 7(1): 23-33.
[http://dx.doi.org/10.1007/s40204-017-0079-5]
[192]
Aruna K, Sivaramakrishnan VM. Anticarcinogenic effects of the essential oils from cumin, poppy, and basil. Phytother Res 1996; 10(7): 577-80.
[http://dx.doi.org/10.1002/(SICI)1099-1573(199611)10:7<577::AID-PTR906>3.0.CO;2-Q]
[193]
Gagandeep D, Dhanalakshmi S, Mendiz E, Rao AR, Kale RK. Chemopreventive effects of Cuminum cyminum in chemically induced forestomach and uterine cervix tumors in murine model systems. Nutr Cancer 2003; 47(2): 171-80.
[http://dx.doi.org/10.1207/s15327914nc4702_10]
[194]
Dubey PN, Saxena SN, Mishra BK, et al. Preponderance of cumin (Cuminum cyminum L.) essential oil constituents across cumin growing Agro-Ecological Sub Regions, India. Ind Crops Prod 2017; 95: 50-9.
[http://dx.doi.org/10.1016/j.indcrop.2016.10.011]
[195]
Bettaieb Rebey I, Bourgou S, Rahali FZ, Msaada K, Ksouri R, Marzouk B. Relation between salt tolerance and biochemical changes in cumin ( Cuminum cyminum L.) seeds. J Food Drug Anal 2017; 25(2): 391-402.
[http://dx.doi.org/10.1016/j.jfda.2016.10.001]
[196]
Shori AB. Proteolytic activity, antioxidant, and α-Amylase inhibitory activity of yogurt enriched with coriander and cumin seeds. Lebensm Wiss Technol 2020; 133: 109912.
[http://dx.doi.org/10.1016/j.lwt.2020.109912]
[197]
Jafari SM, Bahrami I, Dehnad D, Shahidi SA. The influence of nanocellulose coating on saffron quality during storage. Carbohydr Polym 2018; 181: 536-42.
[http://dx.doi.org/10.1016/j.carbpol.2017.12.008]
[198]
Motamedifar M, Ghafari N, Talezadeh Shirazi P. The effect of cumin seed extracts against herpes simplex virus type 1 in vero cell culture. Iran J Med Sci 2010; 35(4): 304-9.
[199]
Wei J, Zhang X, Bi Y, Miao R, Zhang Z, Su H. Anti-inflammatory effects of cumin essential oil by blocking JNK, ERK, & NF-κB signaling pathways in LPS-stimulated RAW 264.7 cells. Evid Based Complement Alternat Med 2015; 2015: 1-8.
[http://dx.doi.org/10.1155/2015/474509]
[200]
Mohammadi S, Bardei LJ, Hojati V, Ghorbani A, Nabiuni M. Anti-inflammatory effects of curcumin on insulin resistance index, levels of interleukin-6, C-reactive protein, and liver histology in polycystic ovary syndrome-induced rats. Cell J 2017; 19(3): 425-33.
[201]
Dhandapani S, Subramanian VR, Rajagopal S, Namasivayam N. Hypolipidemic effect of Cuminumcyminum L. on alloxan induced diabetic rats. Pharmacol Res 2002; 46(3): 251-5.
[http://dx.doi.org/10.1016/S1043-6618(02)00131-7]
[202]
Mostafa DM, Kassem AA, Asfour MH, Al Okbi SY, Mohamed DA, Hamed TE-S. Transdermal cumin essential oil nanoemulsions with potent antioxidant and hepatoprotective activities: In-vitro and in-vivo evaluation. J Mol Liq 2015; 212: 6-15.
[http://dx.doi.org/10.1016/j.molliq.2015.08.047]
[203]
Sun Y, Wang Y, Xie Z, et al. Activity and biochemical characteristics of plant extract cuminic acid against Sclerotinia sclerotiorum. Crop Prot 2017; 101: 76-83.
[http://dx.doi.org/10.1016/j.cropro.2017.07.024]
[204]
Wang Y, Sun Y, Han L, Zhang X, Feng J. Potential use of cuminic acid as a botanical fungicide against Valsa mali. Microb Pathog 2017; 106: 9-15.
[http://dx.doi.org/10.1016/j.micpath.2017.01.006]
[205]
Pandey V, Verma RS, Chauhan A, Tiwari R. Compositional variation in the leaf, flower and stem essential oils of Hyssop (Hyssopus officinalis L.) from Western-Himalaya. J Herb Med 2014; 4(2): 89-95.
[http://dx.doi.org/10.1016/j.hermed.2013.12.001]
[206]
Saeidi K, Jafari S, Hosseinzadeh Samani B, Lorigooini Z, Doodman S. Effect of some novel and conventional drying methods quantitative and qualitative characteristics of hyssop essential oil. J Essent Oil-Bear Plants 2020; 23(1): 156-67.
[http://dx.doi.org/10.1080/0972060X.2020.1723443]
[207]
Fatemeh Fathiazad , Hamedeyazdan S. A review on Hyssopus officinalis L.: Composition and biological activities. Afr J Microbiol Res 2011; 5(17): 1959-66.
[http://dx.doi.org/10.5897/AJPP11.527]
[208]
Jahantigh O, Najafi F, Naghdi Badi H, Khavari-Nejad RA, Sanjarian F. Essential oil composition of Hyssop ( Hyssopus officinalis L.) under salt stress at flowering stage. J Essent Oil Res 2016; 28(5): 458-64.
[http://dx.doi.org/10.1080/10412905.2016.1153001]
[209]
Wesolowska A, Jadczak D. Comparison of the chemical composition of essential oils isolated from Hyssop (Hyssopus officinalis L.) with blue, pink and white flowers. J Essent Oil-Bear Plants 2018; 21(4): 938-49.
[http://dx.doi.org/10.1080/0972060X.2018.1530613]
[210]
Zawislak G. The chemical composition of essential hyssop oil depending on plant growth stage. Acta Sci Pol Hortorum Cultus 2012; 12(3): 161-70.
[211]
Said-Al Ahl HAH, Abbas ZK, Sabra AS, Tkachenko KG. Essential oil composition of Hyssopus officinalis L. cultivated in Egypt. Int J Plant Sci Ecol 2015; 1(2): 49-53.
[212]
Hristova Y, Wanner J, Jirovetz L, Stappen I, Iliev I, Gochev V. Chemical composition and antifungal activity of essential oil of Hyssopus officinalis L. from Bulgaria against clinical isolates of Candida species. Biotechnol Biotechnol Equip 2015; 29(3): 592-601.
[http://dx.doi.org/10.1080/13102818.2015.1020341]
[213]
Ortiz de Elguea-Culebras G, Sánchez-Vioque R, Berruga MI, et al. Biocidal potential and chemical composition of industrial essential oils from Hyssopus officinalus, Lavandulaxintermedia var. super, and Santolina chamaecyparissus. Chem Biodivers 2018; 15(1): e1700313.
[http://dx.doi.org/10.1002/cbdv.201700313]
[214]
Pirbalouti AG, Mohamadpoor H, Bajalan I, Malekpoor F. Chemical composition and antioxidant activity of essential oils from inflorescences of two landraces of hyssop (Hyssopus officinalis L. subsp. angustifolius (Bieb.) cultivated in Southwestern, Iran. J Essent Oil-Bear Plants 2019; 22(4): 1074-81.
[http://dx.doi.org/10.1080/0972060X.2019.1641431]
[215]
Rezaei Savadkouhi N, Ariaii P, Charmchian Langerodi M. The effect of encapsulated plant extract of hyssop ( Hyssopus officinalis L. ) in biopolymer nanoemulsions of Lepidium perfoliatum and Orchis mascula on controlling oxidative stability of soybean oil. Food Sci Nutr 2020; 8(2): 1264-71.
[http://dx.doi.org/10.1002/fsn3.1415]
[216]
Ben Hamida N, Martínez-Díaz RA, Hela M, et al. Effect of salinity on the antiparasitic activity of hyssop essential oil. J Essent Oil Res 2020; 32(1): 69-78.
[http://dx.doi.org/10.1080/10412905.2019.1656677]
[217]
Mahboubi M, Haghi G, Kazempour N. Antimicrobial activity and chemical composition of Hyssopus officinalis L. essential oil. Journal of Biologically Active Products from Nature 2011; 1(2): 132-7.
[http://dx.doi.org/10.1080/22311866.2011.10719080]
[218]
Michalczyk M, Macura R, Tesarowicz I, Banaś J. Effect of adding essential oils of coriander (Coriandrum sativum L.) and hyssop (Hyssopus officinalis L.) on the shelf life of ground beef. Meat Sci 2012; 90(3): 842-50.
[http://dx.doi.org/10.1016/j.meatsci.2011.11.026]
[219]
Renzini G, Scazzocchio F, Lu M, Mazzanti G, Salvatore G. Antibacterial and cytotoxic activity of Hyssopus officinalis L. oils. J Essent Oil Res 1999; 11(5): 649-54.
[http://dx.doi.org/10.1080/10412905.1999.9701232]
[220]
Matsuura H, Miyazaki H, Asakawa C, Amano M, Yoshihara T, Mizutani J. Isolation of α-glusosidase inhibitors from hyssop ( Hyssopus officinalis ). Phytochemistry 2004; 65(1): 91-7.
[http://dx.doi.org/10.1016/j.phytochem.2003.10.009]
[221]
Akram M. Diabetes mellitus type-II: treatment strategies and options: a review. J Diabetes Metab 2013; 4(9): 1-9.
[http://dx.doi.org/10.4172/2155-6156.1000304]
[222]
Kreis W, Kaplan MH, Freeman J, Sun DK, Sarin PS. Inhibition of HIV replication by Hyssop officinalis extracts. Antiviral Res 1990; 14(6): 323-37.
[http://dx.doi.org/10.1016/0166-3542(90)90051-8]
[223]
Gollapudi S, Sharma HA, Aggarwal S, Byers LD, Ensley HE, Gupta S. Isolation of a previously unidentified polysaccharide (MAR-10) from Hyssop officinalis that exhibits strong activity against human immunodeficiency virus type 1. Biochem Biophys Res Commun 1995; 210(1): 145-51.
[http://dx.doi.org/10.1006/bbrc.1995.1639]
[224]
Allegra A, Sortino G, Inglese P, Settanni L, Todaro A, Gallotta A. The effectiveness of Opuntia ficus-indica mucilage edible coating on post-harvest maintenance of ‘Dottato’ fig ( Ficus carica L.) fruit. Food Packag Shelf Life 2017; 12: 135-41.
[http://dx.doi.org/10.1016/j.fpsl.2017.04.010]
[225]
Saddoud O, Baraket G, Chatti K, et al. Morphological variability of fig (Ficus carica L.) cultivars. Int J Fruit Sci 2008; 8(1-2): 35-51.
[http://dx.doi.org/10.1080/15538360802365921]
[226]
Soliman HI, Gabr M, Abdallah NA. Efficient transformation and regeneration of fig ( Ficus carica L. ) via somatic embryogenesis. GM Crops 2010; 1(1): 40-51.
[http://dx.doi.org/10.4161/gmcr.1.1.10632]
[227]
Bachir bey, M.; Meziant, L.; Benchikh, Y.; Louaileche, H. Deployment of response surface methodology to optimize recovery of dried dark fig (Ficus carica L., var. Azenjar) total phenolic compounds and antioxidant activity. Int Food Res J 2014; 21(4): 1477-82.
[http://dx.doi.org/10.1016/j.foodchem.2014.04.054]
[228]
Bey MB, Louaileche H. A comparative study of phytochemical profile and in vitro antioxidant activities of dark and light dried fig (Ficus carica L.) varieties. Journal of Phytopharmacology 2015; 4(1): 41-8.
[http://dx.doi.org/10.31254/phyto.2015.4108]
[229]
Ercisli S, Tosun M, Karlidag H, Dzubur A, Hadziabulic S, Aliman Y. Color and antioxidant characteristics of some fresh fig (Ficus carica L.) genotypes from Northeastern Turkey. Plant Foods Hum Nutr 2012; 67(3): 271-6.
[http://dx.doi.org/10.1007/s11130-012-0292-2]
[230]
Khodarahmi G, Ghasemi N, Hassanzadeh F, Safair M. Cytotoxic effects of different extracts and latex of Ficus carica L. on hela cell lines. Iran J Pharm Res 2011; 10(2): 273-7.
[231]
Mujic I, Kralj MB, Jokic S, et al. Characterisation of volatiles in dried white varieties figs (Ficus carcia L.). J Food Sci Technol 2012.
[http://dx.doi.org/10.1007/s13197-012-0740-x]
[232]
Sagili JL, Roopa BRS, Sharanagouda H, Ramachandra CT, Sushila N, Udaykumar N. Effect of biosynthesized zinc oxide nanoparticles coating on quality parameters of fig (Ficus carcia L.) fruit. J Pharmacogn Phytochem 2018; 7(3): 10-4.
[http://dx.doi.org/10.20546/ijcmas.2018.709.060]
[233]
Mahmoudi S, Khali M, Benkhaled A, et al. Fresh figs (Ficus carica L.): pomological characteristics, nutritional value, and phytochemical properties. Eur J Hortic Sci 2018; 83(2): 104-13.
[http://dx.doi.org/10.17660/eJHS.2018/83.2.6]
[234]
Pourghayoumi M, Bakhshi D, Rahemi M, et al. Phytochemical attributes of some dried fig (Ficus carica L.) fruit cultivars grown in Iran. ACS Agric Conspec Sci 2016; 81(3): 161-6.
[235]
Soni N, Mehta S, Satpathy G, Gupta RK. Estimation of nutritional, phytochemical, antioxidant and antibacterial activity of dried fig (Ficus carica). J Pharmacogn Phytochem 2014; 3(2): 158-65.
[236]
Mopuri R, Ganjayi M, Meriga B, Koorbanally NA, Islam MS. The effects of Ficus carica on the activity of enzymes related to metabolic syndrome. J Food Drug Anal 2018; 26(1): 201-10.
[http://dx.doi.org/10.1016/j.jfda.2017.03.001]
[237]
Ivanov I, Dincheva I, Badjakov I, Petkova N, Denev P, Pavlov A. GC-MS analysis of unpolar fraction from Ficus carica L. (fig) leaves. Int Food Res J 2018; 25(1): 282-6.
[http://dx.doi.org/10.1515/znc-2017-0107]
[238]
Turan A, Celik I, Bati B. The healing properties of dried figs (Ficus carcia L.) against oxidative stress caused by ethyl alcohol in rats. Bull Environ Pharmacol Life Sci 2018; 7(6): 30-6.
[239]
Palaniyappan V, Bommireddy EP, Gudipudi H, Chitturi RD, Yandamala N. In vivo fertility enhancing activity (Aphrodisiac) of Ficus carcia fruit on male wistar rats. Int J Pharm Pharm Sci 2013; 5(2): 516-8.
[240]
Khan KY, Khan MA, Ahmad M, et al. Ethno-medicinal species of genus Ficus L. used to treat diabetes in Pakistan. J Appl Pharm Sci 2011; 01(06): 209-11.
[241]
Ghandehari F, Fatemi M. The effect of Ficus carcia latex on 7,12-dimethylbenz (a) anthracene-induced breast cancer in rats. Avicenna J Phytomed 2018; 8(4): 286-95.
[242]
Fathy AH, Bashandy MA, Mansour AM, Azab KS, Bashandy SA. Hepatoprotective effects of olive oil with fig and date-palm fruit extracts in rats treated with doxorubicin and gamma radiation. Adv Pharm Ethnomed 2017; 5(1): 8-15.
[243]
Patil VV, Bhangale SC, Patil VR. Studies on immunomodulatory activity of Ficus carcia. Int J Pharm Pharm Sci 2010; 2(4): 97-9.
[244]
Purnamasari R, Winarni D, Permanasari AA, Agustina E, Hayaza S, Darmanto W. Anticancer activity of methanol extract of Ficus carica leaves and fruits against proliferation, apoptosis, and necrosis in Huh7it cells. Cancer Inform 2019; 18
[http://dx.doi.org/10.1177/1176935119842576]
[245]
Zhang Y, Wan Y, Huo B, Li B, Jin Y, Hu X. Extracts and components of Ficus carica leaves suppress survival, cell cycle, and migration of triple-negative breast cancer MDA-MB-231 cells. OncoTargets Ther 2018; 11: 4377-86.
[http://dx.doi.org/10.2147/OTT.S171601]
[246]
Sharma M, Abid R, Ahmad Y, Nabi NG. Protective effect of leaves of Ficus carica against carbon tetrachloride-induced hepatic damage in rats. UK J Pharm Biosci 2017; 5(1): 6-11.
[http://dx.doi.org/10.20510/ukjpb/5/i1/147019]
[247]
Jeong MR, Kim HY, Cha JD. Antimicrobial activity of methanol extract from Ficus carica leaves against oral bacteria. J Bacteriol Virol 2009; 39(2): 97-102.
[http://dx.doi.org/10.4167/jbv.2009.39.2.97]
[248]
Idrus RH, Sainik NQAV, Ansari AS, et al. Ficus carica and bone health: A systematic review. Sains Malays 2018; 47(11): 2741-55.
[http://dx.doi.org/10.17576/jsm-2018-4711-17]
[249]
Gilani AH, Mehmood MH, Janbaz KH, Khan A, Saeed SA. Ethnopharmacological studies on antispasmodic and antiplatelet activities of Ficus carica. J Ethnopharmacol 2008; 119(1): 1-5.
[http://dx.doi.org/10.1016/j.jep.2008.05.040]
[250]
Chawla A, Kaur R, Sharma AK. Ficus carica Linn.: A review on its pharmacognostic, phytochemical and pharmacological aspects. Int J Pharm Phytopharmacol Res 2014; 1(4): 215-32.
[251]
Mawa S, Husain K, Jantan I. Ficus carica L. (Moraceae): phytochemistry, traditional uses and biological activities. Evid Based Complement Alter Med 2013.
[252]
Guarrera PM. Traditional phytotherapy in Central Italy (Marche, Abruzzo, and Latium). Fitoterapia 2005; 76(1): 1-25.
[http://dx.doi.org/10.1016/j.fitote.2004.09.006]
[253]
Badgujar SB, Patel VV, Bandivdekar AH, Mahajan RT. Traditional uses, phytochemistry and pharmacology of Ficus carica : A review. Pharm Biol 2014; 52(11): 1487-503.
[http://dx.doi.org/10.3109/13880209.2014.892515]
[254]
Bouyahya A, Bensaid M, Bakri Y, Dakka N. Phytochemistry and ethnopharmacology of Ficus carica. Int J Biochem Res Rev 2016; 14(1): 1-12.
[http://dx.doi.org/10.9734/IJBCRR/2016/29029]
[255]
Rassouli A, Ardestani F, Asadi F, Salehi MH. Effects of fig tree (Ficuscarica) leaf extracts on serum and liver cholesterol levels in hyperlipidemic rats. Int J Vet Res 2010; 4(2): 77-80.
[256]
Smith W. Criteria to distinguish capsule fragments of flax/linseed (Linum usitatissimum) from wild radish (Raphanus raphanistrum L.). Environ Archaeol 1999; 4(1): 19-24.
[http://dx.doi.org/10.1179/env.1999.4.1.19]
[257]
Zuk M, Richter D, Matuła J, Szopa J. Linseed, the multipurpose plant. Ind Crops Prod 2015; 75: 165-77.
[http://dx.doi.org/10.1016/j.indcrop.2015.05.005]
[258]
Gao Y, Li Y, Wang Y, et al. Effect of different film color mulching on dry matter and grain yield of oil flax in dry-land. Oil Crop Science 2020; 5(2): 17-22.
[http://dx.doi.org/10.1016/j.ocsci.2020.04.003]
[259]
Li J, Tian Y-Z, Sun B-Y, Yang D, Chen J-P, Men Q-M. Analysis on volatile constituents in leaves and fruits of Ficus carcia by GC-MS. Chin Herb Med 2011; 4(1): 63-9.
[260]
Sydow Z, Idaszewska N, Janeba-Bartoszewicz E, Bieńczak K. The influence of pressing temperature and storage conditions on the quality of the linseed oil obtained from Linum Usitatissimum L. J Nat Fibers 2021; 18(3): 442-51.
[http://dx.doi.org/10.1080/15440478.2019.1628866]
[261]
Chhillar H, Chopra P, Ashfaq MA. Lignans from linseed ( Linum usitatissimum L.) and its allied species: Retrospect, introspect and prospect. Crit Rev Food Sci Nutr 2021; 61(16): 2719-41.
[http://dx.doi.org/10.1080/10408398.2020.1784840]
[262]
Uyumaz A. Experimental evaluation of linseed oil biodiesel/diesel fuel blends on combustion, performance and emission characteristics in a DI diesel engine. Fuel 2020; 267: 117150.
[http://dx.doi.org/10.1016/j.fuel.2020.117150]
[263]
Xie Y, Yan Z, Niu Z, et al. Yield, oil content, and fatty acid profile of flax (Linum usitatissimum L.) as affected by phosphorus rate and seeding rate. Ind Crops Prod 2020; 145: 112087.
[http://dx.doi.org/10.1016/j.indcrop.2020.112087]
[264]
Kumar A, Pramanick B, Mahapatra BS, Singh SP, Shukla DK. Growth, yield and quality improvement of flax (Linum usitattisimum L.) grown under tarai region of Uttarakhand, India through integrated nutrient management practices. Ind Crops Prod 2019; 140: 111710.
[http://dx.doi.org/10.1016/j.indcrop.2019.111710]
[265]
Liu D, Cui Z, Yan B, et al. Effect of nitrogen and phosphorus application on soil nitrogen morphological characteristics and grain yield of oil flax. Oil Crop Science 2020; 5(2): 29-35.
[http://dx.doi.org/10.1016/j.ocsci.2020.05.002]
[266]
Waldron D, Harwood J. A preliminary investigation into influence of chemical composition on the dynamic mechanical properties of flax (Linum usitattisimum) straw. J Nat Fibers 2011; 8(2): 126-42.
[http://dx.doi.org/10.1080/15440478.2011.577596]
[267]
Saleem MH, Ali S, Hussain S, et al. Flax (Linum usitatissimum L.): A potential candidate for phytoremediation? Biological and economical points of view. Plants 2020; 9(4): 496.
[http://dx.doi.org/10.3390/plants9040496]
[268]
Kudrna V, Marounek M. Influence of feeding whole sunflower seed and extruded linseed on production of dairy cows, rumen and plasma constituents, and fatty acid composition of milk. Arch Anim Nutr 2008; 62(1): 60-9.
[http://dx.doi.org/10.1080/17450390701780243]
[269]
Qi X, Shang M, Chen C, et al. Dietary supplementation with linseed oil improves semen quality, reproductive hormone, gene and protein expression related to testosterone synthesis in aging layer breeder roosters. Theriogenology 2019; 131: 9-15.
[http://dx.doi.org/10.1016/j.theriogenology.2019.03.016]
[270]
Rodríguez ML, Alzueta C, Rebolé A, Ortiz LT, Centeno C, Treviño J. Effect of inclusion level of linseed on the nutrient utilisation of diets for growing broiler chickens. Br Poult Sci 2001; 42(3): 368-75.
[http://dx.doi.org/10.1080/00071660120055359]
[271]
Castrovilli C, Toschi I, Bava L, Roveda P. Nutritive value of linseed oil in poultry diets. Ital J Anim Sci 2003; 2(1): 468-70.
[272]
Khoshniat MT, Towhidi A, Rezayazdi K, et al. Dietary omega-3 fatty acids from linseed oil improve quality of post-thaw but not fresh sperm in Holstein bulls. Cryobiology 2020; 93: 102-8.
[http://dx.doi.org/10.1016/j.cryobiol.2020.02.002]
[273]
Ahmad S, Ali S, Abbas A, et al. Effects of dietary supplementation of linseed oil (Omega-3) on quality parameters of Nili Ravi bull spermatozoa. Livest Sci 2019; 224: 57-9.
[http://dx.doi.org/10.1016/j.livsci.2019.04.007]
[274]
Członka S, Bertino MF, Kośny J, Strąkowska A, Masłowski M, Strzelec K. Linseed oil as a natural modifier of rigid polyurethane foams. Ind Crops Prod 2018; 115: 40-51.
[http://dx.doi.org/10.1016/j.indcrop.2018.02.019]
[275]
Ghaedi M, Yousefi-Nejad M, Safarpoor M, et al. Synthesis of CuS nanoparticles and evaluation of its antimicrobial properties in combination with Linum usitatissimum root and shoot extract. Desalination Water Treat 2016; 57(51): 24456-66.
[http://dx.doi.org/10.1080/19443994.2016.1138896]
[276]
Fadzir UA, Darnis DS, Mustafa BE, Mokhtar KI. Linum usitatissimum as an antimicrobial agent and a potential natural healer: A review. Arch Orofac Sci 2018; 13(2): 55-62.
[277]
Sawant SH, Bodhankar SL. Flax lignan concentrate reverses alterations in blood pressure, left ventricular functions, lipid profile and antioxidant status in DOCA-salt induced renal hypertension in rats. Ren Fail 2016; 38(3): 411-23.
[http://dx.doi.org/10.3109/0886022X.2015.1136895]
[278]
Han H, Yılmaz H, Gülçin İ. Antioxidant activity of flaxseed (Linum usitatissimum L.) shell and analysis of its polyphenol contents by LC-MS/MS. Rec Nat Prod 2018; 12(4): 397-402.
[http://dx.doi.org/10.25135/rnp.46.17.09.155]
[279]
Kodama T, Miyazaki T, Kitamura I, et al. Effects of single and long-term administration of wheat albumin on blood glucose control: randomized controlled clinical trials. Eur J Clin Nutr 2005; 59(3): 384-92.
[http://dx.doi.org/10.1038/sj.ejcn.1602085]
[280]
Cunnane SC, Ganguli S, Menard C, et al. High α-linolenic acid flaxseed ( Linum usitatissimum ):some nutritional properties in humans. Br J Nutr 1993; 69(2): 443-53.
[http://dx.doi.org/10.1079/BJN19930046]
[281]
Linseisen J, Piller R, Hermann S, Chang-Claude J. Dietary phytoestrogen intake and premenopausal breast cancer risk in a German case‐control study. Int J Cancer 2004; 110(2): 284-90.
[http://dx.doi.org/10.1002/ijc.20119]
[282]
Burkitt DP, Walker ARP, Painter NS. Effect of dietary fiber on stools and transit times and its role in the causation of disease. Lancet 1972; 300(7792): 1408-11.
[http://dx.doi.org/10.1016/S0140-6736(72)92974-1]
[283]
Joshi S, Mandawgade S, Mehta V, Sathaye S. Antiulcer effect of mammalian lignin precursors from flaxseed. Pharm Biol 2008; 46(5): 329-32.
[http://dx.doi.org/10.1080/13880200801887732]
[284]
Shahrajabian MH, Kuang Y, Cui H, Fu L, Sun W. Metabolic changes of active components of important medicinal plants on the basis of traditional Chinese medicine under different environmental stresses. Curr Org Chem 2023; 27(9): 782-806.
[http://dx.doi.org/10.2174/1385272827666230807150910]
[285]
Shahrajabian MH, Sun W. Study of different types of fermentation in wine-making process and considering aromatic substances and organic acid. Curr Org Synth 2023; 20
[http://dx.doi.org/10.2174/1570179420666230803102253]
[286]
Shahrajabian MH, Sun W. Five important seeds in traditional medicine, and pharmacological benefits. Seeds 2023; 2(3): 290-308.
[http://dx.doi.org/10.3390/seeds2030022]
[287]
Shahrajabian MH, Sun W. The importance of salicylic acid, humic acid and fulvic acid on crop production. Lett Drug Des Discov 2023; 20(20): 1-16.
[http://dx.doi.org/10.2174/1570180820666230411102209]
[288]
Sun W, Shahrajabian MH. Therapeutic potential of phenolic compounds in medicinal plants-natural health products for human health. Molecules 1845; 2023(28): 1-47.
[http://dx.doi.org/10.3390/molecules28041845]
[289]
Shahrajabian MH, Petropoulos SA, Sun W. Survey of the influences of microbial biostimulants on horticultural crops: case studies and successful paradigms. Horticulturae 2023; 9(2): 193.
[http://dx.doi.org/10.3390/horticulturae9020193]
[290]
Shahrajabian MH, Sun W. Importance of thyoquinone, sulforaphane, phloretin, and epigallocatechin and their health benefits. Lett Drug Des Discov 2023; 19
[http://dx.doi.org/10.2174/1570180819666220902115521]
[291]
Sun W, Shahrajabian MH, Lin M. Research progress of fermented functional foods and protein factory-microbial fermentation technology. Fermentation 2022; 8(12): 688.
[http://dx.doi.org/10.3390/fermentation8120688]
[292]
Sun W, Shahrajabian MH, Petropoulos SA, Shahrajabian N. Developing sustainable agriculture systems in medicinal and aromatic plant production by using chitosan and chitin-based biostimulants. Plants 2023; 12(13): 2469.
[http://dx.doi.org/10.3390/plants12132469]
[293]
Sun W, Shahrajabian MH. The application of arbuscular mycorrhizal fungi as microbial biostimulant, sustainable approaches in modern agriculture. Plants 2023; 12(17): 3101.
[http://dx.doi.org/10.3390/plants12173101]
[294]
Shahrajabian MH, Sun W. Mechanism of action of collagen and epidermal growth factor: A review on theory and research methods. Mini Rev Med Chem 2023; 23
[http://dx.doi.org/10.2174/1389557523666230816090054]
[295]
Shahrajabian MH, Sun W. The importance of traditional Chinese medicine in the intervention and treatment of HIV while considering its safety and efficacy. Curr HIV Res 2023; 21(6): 331-46.
[http://dx.doi.org/10.2174/011570162X271199231128092621]
[296]
Shahrajabian MH, Sun W. Iranian traditional medicine (ITM) and natural remedies for treatment of the common cold and flu. Rev Recent Clin Trials 2023; 18: 1-10.
[http://dx.doi.org/10.2174/0115748871275500231127065053]
[297]
Shahrajabian MH, Sun W. The significance and importance of dPCR, qPCR, and SYBR Green PCR Kit in the detection of numerous diseases. Curr Pharm Des 2024; 30
[http://dx.doi.org/10.2174/0113816128276560231218090436]
[298]
Sun W, Shahrajabian MH, Kuang Y, Wang N. Amino acids biostimulants and protein hydrolysates in agricultural sciences. Plants 2024; 13(2): 210.
[http://dx.doi.org/10.3390/plants13020210]
[299]
Shahrajabian MH, Sun W. Carob (Ceratonia siliqua L.), pharmacological and phytochemical activities of neglected legume of the Mediterranean basin, as functional food. Rev Recent Clin Trials 2024; 19
[http://dx.doi.org/10.2174/0115748871278128240109074506]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy