Generic placeholder image

Current Proteomics

Editor-in-Chief

ISSN (Print): 1570-1646
ISSN (Online): 1875-6247

Research Article

Proteomic Analysis of the Molecular Mechanisms of Chlorpromazine Inhibiting Migration of Oral Squamous Cell Carcinoma

Author(s): Nannan Zhang, Junzhi Liu, Qiuping Dong, Chen Liu, Xinyu Liang, Peiyuan Tang and Zheng Liang*

Volume 21, Issue 1, 2024

Published on: 21 February, 2024

Page: [2 - 13] Pages: 12

DOI: 10.2174/0115701646291510240212091951

Price: $65

Abstract

Background: Oral squamous cell carcinoma (OSCC) is a common malignant tumor of the head and neck region known for its high metastatic and invasive potential. Chlorpromazine (CPZ) has been shown to inhibit the growth of oral cancer cells. However, the effects of CPZ on OSCC migration and its underlying molecular mechanisms remain unclear.

Objectives: We aimed to identify global protein changes and potential core proteins involved in CPZ-mediated inhibition of migration in SCC-15 cells using proteomics.

Methods: We assessed the effect of CPZ on SCC-15 using CCK-8 assays and wound healing experiments. Next, we performed LC-MS-based proteomic analysis to identify protein alterations in SCC-15 cells treated with CPZ at different times. Differential expression proteins (DEPs) were identified and subjected to bioinformatics analysis using GO, KEGG, and PPI tools. Key candidate proteins were selected and validated using the TCGA-HNSCC database and molecular docking.

Results: It was found that 20μm of CPZ had no effect on cell proliferation, but inhibited cell migration. A total of 4748 proteins were identified by Proteomics, among which 56 DEPs were identified, including 34 upregulated proteins and 22 downregulated proteins. Three proteins (RPF2, ACTB, and TGFBI) were identified as key candidate proteins associated with cell adhesion and migration in oral cancer cells.

Conclusion: CPZ may affect the expression of RPF2, ACTB, and TGFBI proteins and change the extracellular matrix and cell adhesion function, thus inhibiting the migration of SCC-15 cells. The results of this study provide a robust basis for further research on the molecular mechanism of CPZ to inhibit the migration of OSCC.

Keywords: Chlorpromazine, oral squamous cell carcinoma, proteomics, liquid chromatography-mass spectrometry, cell migration, molecular docking.

Graphical Abstract
[1]
Bugshan, A.; Farooq, I. Oral squamous cell carcinoma: Metastasis, potentially associated malignant disorders, etiology and recent advancements in diagnosis. F1000 Res., 2020, 9, 229.
[http://dx.doi.org/10.12688/f1000research.22941.1] [PMID: 32399208]
[2]
He, S.; Zhang, W.; Li, X.; Wang, J.; Chen, X.; Chen, Y.; Lai, R. Oral squamous cell carcinoma (OSCC)-derived exosomal MiR-221 targets and regulates phosphoinositide-3-kinase regulatory subunit 1 (PIK3R1) to promote human umbilical vein endothelial cells migration and tube formation. Bioengineered, 2021, 12(1), 2164-2174.
[http://dx.doi.org/10.1080/21655979.2021.1932222] [PMID: 34098850]
[3]
Pang, X.; Wang, S.; Zhang, M.; Jiang, J.; Fan, H.; Wu, J.; Wang, H.; Liang, X.; Tang, Y. OSCC cell-secreted exosomal CMTM6 induced M2-like macrophages polarization via ERK1/2 signaling pathway. Cancer Immunol. Immunother., 2021, 70(4), 1015-1029.
[http://dx.doi.org/10.1007/s00262-020-02741-2] [PMID: 33104837]
[4]
Roi, A.; Roi, C.I.; Negruțiu, M.L.; Riviș, M.; Sinescu, C.; Rusu, L.C. The challenges of OSCC diagnosis: Salivary cytokines as potential biomarkers. J. Clin. Med., 2020, 9(9), 2866.
[http://dx.doi.org/10.3390/jcm9092866] [PMID: 32899735]
[5]
Hingsammer, L.; Seier, T.; Ikenberg, J.; Schumann, P.; Zweifel, D.; Rücker, M.; Bredell, M.; Lanzer, M. The influence of lymph node ratio on survival and disease recurrence in squamous cell carcinoma of the tongue. Int. J. Oral Maxillofac. Surg., 2019, 48(7), 851-856.
[http://dx.doi.org/10.1016/j.ijom.2019.01.008] [PMID: 30738712]
[6]
Jiang, M.; Li, B. STAT3 and its targeting inhibitors in oral squamous cell carcinoma. Cells, 2022, 11(19), 3131.
[http://dx.doi.org/10.3390/cells11193131] [PMID: 36231093]
[7]
Zhang, Z.; Zhou, L.; Xie, N.; Nice, E.C.; Zhang, T.; Cui, Y.; Huang, C. Overcoming cancer therapeutic bottleneck by drug repurposing. Signal Transduct. Target. Ther., 2020, 5(1), 113.
[http://dx.doi.org/10.1038/s41392-020-00213-8] [PMID: 32616710]
[8]
Kirtonia, A.; Gala, K.; Fernandes, S.G.; Pandya, G.; Pandey, A.K.; Sethi, G.; Khattar, E.; Garg, M. Repurposing of drugs: An attractive pharmacological strategy for cancer therapeutics. Semin. Cancer Biol., 2021, 68, 258-278.
[http://dx.doi.org/10.1016/j.semcancer.2020.04.006] [PMID: 32380233]
[9]
Abbruzzese, C.; Matteoni, S.; Persico, M.; Villani, V.; Paggi, M.G. Repurposing chlorpromazine in the treatment of glioblastoma multiforme: Analysis of literature and forthcoming steps. J. Exp. Clin. Cancer Res., 2020, 39(1), 26.
[http://dx.doi.org/10.1186/s13046-020-1534-z] [PMID: 32005270]
[10]
Jhou, A.J.; Chang, H.C.; Hung, C.C.; Lin, H.C.; Lee, Y.C.; Liu, W.; Han, K.F.; Lai, Y.W.; Lin, M.Y.; Lee, C.H. Chlorpromazine, an antipsychotic agent, induces G2/M phase arrest and apoptosis via regulation of the PI3K/AKT/mTOR-mediated autophagy pathways in human oral cancer. Biochem. Pharmacol., 2021, 184, 114403.
[http://dx.doi.org/10.1016/j.bcp.2020.114403] [PMID: 33388284]
[11]
Yi, G.; Xiang, W.; Feng, W.; Chen, Z.; Li, Y.; Deng, S.; Guo, M.; Zhao, L.; Sun, X.; He, M.; Qi, S.; Liu, Y. Identification of key candidate proteins and pathways associated with temozolomide resistance in glioblastoma based on subcellular proteomics and bioinformatical analysis. BioMed Res. Int., 2018, 2018, 1-12.
[http://dx.doi.org/10.1155/2018/5238760] [PMID: 29687002]
[12]
Fonseca-Montaño, M.A.; Blancas, S.; Herrera-Montalvo, L.A.; Hidalgo-Miranda, A. Cancer genomics. Arch. Med. Res., 2022, 53(8), 723-731.
[http://dx.doi.org/10.1016/j.arcmed.2022.11.011] [PMID: 36460546]
[13]
Zhou, Y.; Zhou, B.; Pache, L.; Chang, M.; Khodabakhshi, A.H.; Tanaseichuk, O.; Benner, C.; Chanda, S.K. Metascape provides a biologist-oriented resource for the analysis of systems-level datasets. Nat. Commun., 2019, 10(1), 1523.
[http://dx.doi.org/10.1038/s41467-019-09234-6] [PMID: 30944313]
[14]
Zheng, Y.; Zhong, Z.; Guo, X. Network pharmacology-based and molecular docking analysis of resveratrol’s pharmacological effects on type I endometrial cancer. Anticancer. Agents Med. Chem., 2022, 22(10), 1933-1944.
[http://dx.doi.org/10.2174/1871520621666211015140455] [PMID: 34773964]
[15]
Frankenburg, F.R.; Baldessarini, R.J. Neurosyphilis, malaria, and the discovery of antipsychotic agents. Harv. Rev. Psychiatry, 2008, 16(5), 299-307.
[http://dx.doi.org/10.1080/10673220802432350] [PMID: 18803105]
[16]
Belkin, M.; Hardy, W.G. Effect of reserpine and chlorpromazine on sarcoma 37. Science, 1957, 125(3241), 233-234.
[http://dx.doi.org/10.1126/science.125.3241.233] [PMID: 13401229]
[17]
Cranston, E.M. Effects of some tranquilizers on a mammary adenocarcinoma in mice. Cancer Res., 1958, 18(8 Part 1), 897-899.
[PMID: 13573361]
[18]
Fujita, K.; Iwase, S.; Ito, T.; Matsuyama, M. Inhibiting effect of chlorpromazine on the experimental production of liver cancer. Nature, 1958, 181(4601), 54.
[http://dx.doi.org/10.1038/181054a0] [PMID: 13493597]
[19]
Oliva, C.R.; Zhang, W.; Langford, C.; Suto, M.J.; Griguer, C.E. Repositioning chlorpromazine for treating chemoresistant glioma through the inhibition of cytochrome c oxidase bearing the COX4-1 regulatory subunit. Oncotarget, 2017, 8(23), 37568-37583.
[http://dx.doi.org/10.18632/oncotarget.17247] [PMID: 28455961]
[20]
Brown, J.S. Treatment of cancer with antipsychotic medications: Pushing the boundaries of schizophrenia and cancer. Neurosci. Biobehav. Rev., 2022, 141, 104809.
[http://dx.doi.org/10.1016/j.neubiorev.2022.104809] [PMID: 35970416]
[21]
Lialiaris, T.S.; Papachristou, F.; Mourelatos, C.; Simopoulou, M. Antineoplastic and cytogenetic effects of chlorpromazine on human lymphocytes in vitro and on Ehrlich ascites tumor cells in vivo. Anticancer Drugs, 2009, 20(8), 746-751.
[http://dx.doi.org/10.1097/CAD.0b013e32832f567b] [PMID: 19584706]
[22]
Mizero, B.; Villacrés, C.; Spicer, V.; Viner, R.; Saba, J.; Patel, B.; Snovida, S.; Jensen, P.; Huhmer, A.; Krokhin, O.V. Retention time prediction for TMT-labeled peptides in proteomic LC-MS experiments. J. Proteome Res., 2022, 21(5), 1218-1228.
[http://dx.doi.org/10.1021/acs.jproteome.1c00833] [PMID: 35363494]
[23]
Sturtz, L.A.; Wang, G.; Shah, P.; Searfoss, R.; Raj-Kumar, P.K.; Hooke, J.A.; Fantacone-Campbell, J.L.; Deyarmin, B.; Cutler, M.L.; Sarangarajan, R.; Narain, N.R.; Hu, H.; Kiebish, M.A.; Kovatich, A.J.; Shriver, C.D. Comparative analysis of differentially abundant proteins quantified by LC–MS/MS between flash frozen and laser microdissected OCT-embedded breast tumor samples. Clin. Proteomics, 2020, 17(1), 40.
[http://dx.doi.org/10.1186/s12014-020-09300-y] [PMID: 33292179]
[24]
Micic, J.; Li, Y.; Wu, S.; Wilson, D.; Tutuncuoglu, B.; Gao, N.; Woolford, J.L., Jr Coupling of 5S RNP rotation with maturation of functional centers during large ribosomal subunit assembly. Nat. Commun., 2020, 11(1), 3751.
[http://dx.doi.org/10.1038/s41467-020-17534-5] [PMID: 32719344]
[25]
Zhang, J.; Harnpicharnchai, P.; Jakovljevic, J.; Tang, L.; Guo, Y.; Oeffinger, M.; Rout, M.P.; Hiley, S.L.; Hughes, T.; Woolford, J.L., Jr Assembly factors Rpf2 and Rrs1 recruit 5S rRNA and ribosomal proteins rpL5 and rpL11 into nascent ribosomes. Genes Dev., 2007, 21(20), 2580-2592.
[http://dx.doi.org/10.1101/gad.1569307] [PMID: 17938242]
[26]
Li, H.; Hu, X.; Cheng, C.; Lu, M.; Huang, L.; Dou, H.; Zhang, Y.; Wang, T. Ribosome production factor 2 homolog promotes migration and invasion of colorectal cancer cells by inducing epithelial–mesenchymal transition via AKT/Gsk-3β signaling pathway. Biochem. Biophys. Res. Commun., 2022, 597, 52-57.
[http://dx.doi.org/10.1016/j.bbrc.2022.01.090] [PMID: 35123266]
[27]
Sibbin, K.; Yap, P.; Nyaga, D.; Heller, R.; Evans, S.; Strachan, K.; Alburaiky, S.; Nguyen, H.M.A.; Hermann-Le Denmat, S.; Ganley, A.R.D.; O’Sullivan, J.M.; Bloomfield, F.H. A de novoACTB gene pathogenic variant in identical twins with phenotypic variation for hydrops and jejunal atresia. Am. J. Med. Genet. A., 2022, 188(4), 1299-1306.
[http://dx.doi.org/10.1002/ajmg.a.62631] [PMID: 34970864]
[28]
Guo, C.; Liu, S.; Wang, J.; Sun, M.Z.; Greenaway, F.T. ACTB in cancer. Clin. Chim. Acta, 2013, 417, 39-44.
[http://dx.doi.org/10.1016/j.cca.2012.12.012] [PMID: 23266771]
[29]
Malek, N.; Mrówczyńska, E.; Michrowska, A.; Mazurkiewicz, E.; Pavlyk, I.; Mazur, A.J. Knockout of ACTB and ACTG1 with CRISPR/Cas9(D10A) technique shows that non-muscle β and γ actin are not equal in relation to human melanoma cells’ motility and focal adhesion formation. Int. J. Mol. Sci., 2020, 21(8), 2746.
[http://dx.doi.org/10.3390/ijms21082746] [PMID: 32326615]
[30]
Li, Y.; Ma, H.; Shi, C.; Feng, F.; Yang, L. Mutant ACTB mRNA 3′-UTR promotes hepatocellular carcinoma development by regulating miR-1 and miR-29a. Cell. Signal., 2020, 67, 109479.
[http://dx.doi.org/10.1016/j.cellsig.2019.109479] [PMID: 31846694]
[31]
Gu, Y.; Tang, S.; Wang, Z.; Cai, L.; Lian, H.; Shen, Y.; Zhou, Y. A pan-cancer analysis of the prognostic and immunological role of β-actin (ACTB) in human cancers. Bioengineered, 2021, 12(1), 6166-6185.
[http://dx.doi.org/10.1080/21655979.2021.1973220] [PMID: 34486492]
[32]
He, Y.; Shao, F.; Pi, W.; Shi, C.; Chen, Y.; Gong, D.; Wang, B.; Cao, Z.; Tang, K. Largescale transcriptomics analysis suggests over-expression of BGH3, MMP9 and PDIA3 in oral squamous cell carcinoma. PLoS One, 2016, 11(1), e0146530.
[http://dx.doi.org/10.1371/journal.pone.0146530] [PMID: 26745629]
[33]
Corona, A.; Blobe, G.C. The role of the extracellular matrix protein TGFBI in cancer. Cell. Signal., 2021, 84, 110028.
[http://dx.doi.org/10.1016/j.cellsig.2021.110028] [PMID: 33940163]
[34]
Steitz, A.M.; Steffes, A.; Finkernagel, F.; Unger, A.; Sommerfeld, L.; Jansen, J.M.; Wagner, U.; Graumann, J.; Müller, R.; Reinartz, S. Tumor-associated macrophages promote ovarian cancer cell migration by secreting transforming growth factor beta induced (TGFBI) and tenascin C. Cell Death Dis., 2020, 11(4), 249.
[http://dx.doi.org/10.1038/s41419-020-2438-8] [PMID: 32312959]
[35]
Guo, S.K.; Shen, M.F.; Yao, H.W.; Liu, Y.S. Enhanced expression of TGFBI promotes the proliferation and migration of glioma cells. Cell. Physiol. Biochem., 2018, 49(3), 1138-1150.
[http://dx.doi.org/10.1159/000493293] [PMID: 30196284]
[36]
Fico, F.; Santamaria-Martínez, A. TGFBI modulates tumour hypoxia and promotes breast cancer metastasis. Mol. Oncol., 2020, 14(12), 3198-3210.
[http://dx.doi.org/10.1002/1878-0261.12828] [PMID: 33080107]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy