Review Article

铁相关生物标志物在铁疾病诊断和治疗中的应用

卷 31, 期 27, 2024

发表于: 19 February, 2024

页: [4233 - 4248] 页: 16

弟呕挨: 10.2174/0109298673263003231228060800

价格: $65

摘要

背景:缺铁和与铁有关的疾病是世界范围内常见的健康问题,影响着很大一部分人口。这些疾病的诊断和管理在很大程度上依赖于使用各种铁相关的生物标志物,这些生物标志物可以提供有价值的临床信息。 目的:本文综述了最常用的铁相关生物标志物,包括血清铁蛋白、转铁蛋白饱和度、可溶性转铁蛋白受体、锌原卟啉和游离红细胞原卟啉。其他新兴的生物标志物,如铁调素和视黄醇结合蛋白4,也进行了讨论。 结果:铁在各种生理过程中起着至关重要的作用,包括氧运输、能量代谢和DNA合成。本文重点介绍了铁生物标志物的优点和局限性,以及它们在诊断和治疗缺铁及铁相关性贫血中的临床应用。 结论:在筛查和监测项目中使用铁相关的生物标志物可以改善患者的预后并降低医疗成本。

关键词: 铁,缺铁,铁相关疾病,生物标志物,hepcidin,血清铁蛋白。

Next »
[1]
Jomova, K.; Makova, M.; Alomar, S.Y.; Alwasel, S.H.; Nepovimova, E.; Kuca, K.; Rhodes, C.J.; Valko, M. Essential metals in health and disease. Chem. Biol. Interact., 2022, 367, 110173.
[http://dx.doi.org/10.1016/j.cbi.2022.110173] [PMID: 36152810]
[2]
Zoroddu, M.A.; Aaseth, J.; Crisponi, G.; Medici, S.; Peana, M.; Nurchi, V.M. The essential metals for humans: A brief overview. J. Inorg. Biochem., 2019, 195, 120-129.
[http://dx.doi.org/10.1016/j.jinorgbio.2019.03.013] [PMID: 30939379]
[3]
Bjørklund, G.; Peana, M.; Pivina, L.; Dosa, A.; Aaseth, J.; Semenova, Y.; Chirumbolo, S.; Medici, S.; Dadar, M.; Costea, D.O. Iron deficiency in obesity and after bariatric surgery. Biomolecules, 2021, 11(5), 613.
[http://dx.doi.org/10.3390/biom11050613] [PMID: 33918997]
[4]
McLean, E.; Cogswell, M.; Egli, I.; Wojdyla, D.; de Benoist, B. Worldwide prevalence of anaemia, WHO Vitamin and Mineral Nutrition Information System, 1993–2005. Public Health Nutr., 2009, 12(4), 444-454.
[http://dx.doi.org/10.1017/S1368980008002401] [PMID: 18498676]
[5]
Latunde-Dada, G.O. Iron metabolism: Microbes, mouse, and man. BioEssays, 2009, 31(12), 1309-1317.
[http://dx.doi.org/10.1002/bies.200900101] [PMID: 19877004]
[6]
Levi, M.; Rosselli, M.; Simonetti, M.; Brignoli, O.; Cancian, M.; Masotti, A.; Pegoraro, V.; Cataldo, N.; Heiman, F.; Chelo, M.; Cricelli, I.; Cricelli, C.; Lapi, F. Epidemiology of iron deficiency anaemia in four European countries: a population-based study in primary care. Eur. J. Haematol., 2016, 97(6), 583-593.
[http://dx.doi.org/10.1111/ejh.12776] [PMID: 27155295]
[7]
Bjørklund, G.; Hangan, T.; Semenova, Y.; Pen, J.J.; Aaseth, J.; Peana, M. Perspectives on iron deficiency as a cause of human disease in global public health. Curr. Med. Chem., 2023, 30, 1-13.
[http://dx.doi.org/10.2174/0929867330666230324154606]
[8]
McKie, A.T.; Barrow, D.; Latunde-Dada, G.O.; Rolfs, A.; Sager, G.; Mudaly, E.; Mudaly, M.; Richardson, C.; Barlow, D.; Bomford, A.; Peters, T.J.; Raja, K.B.; Shirali, S.; Hediger, M.A.; Farzaneh, F.; Simpson, R.J. An iron-regulated ferric reductase associated with the absorption of dietary iron. Science, 2001, 291(5509), 1755-1759.
[http://dx.doi.org/10.1126/science.1057206] [PMID: 11230685]
[9]
Gunshin, H.; Mackenzie, B.; Berger, U.V.; Gunshin, Y.; Romero, M.F.; Boron, W.F.; Nussberger, S.; Gollan, J.L.; Hediger, M.A. Cloning and characterization of a mammalian proton-coupled metal-ion transporter. Nature, 1997, 388(6641), 482-488.
[http://dx.doi.org/10.1038/41343] [PMID: 9242408]
[10]
Mackenzie, B.; Garrick, M.D. Iron Imports. II. Iron uptake at the apical membrane in the intestine. Am. J. Physiol. Gastrointest. Liver Physiol., 2005, 289(6), G981-G986.
[http://dx.doi.org/10.1152/ajpgi.00363.2005] [PMID: 16286504]
[11]
Muckenthaler, M.U.; Rivella, S.; Hentze, M.W.; Galy, B. A red carpet for iron metabolism. Cell, 2017, 168(3), 344-361.
[http://dx.doi.org/10.1016/j.cell.2016.12.034] [PMID: 28129536]
[12]
Daru, J.; Colman, K.; Stanworth, S.J.; De La Salle, B.; Wood, E.M.; Pasricha, S.R. Serum ferritin as an indicator of iron status: what do we need to know? Am. J. Clin. Nutr., 2017, 106(Suppl. 6), 1634S-1639S.
[http://dx.doi.org/10.3945/ajcn.117.155960] [PMID: 29070560]
[13]
Kautz, L.; Jung, G.; Nemeth, E.; Ganz, T. Erythroferrone contributes to recovery from anemia of inflammation. Blood, 2014, 124(16), 2569-2574.
[http://dx.doi.org/10.1182/blood-2014-06-584607] [PMID: 25193872]
[14]
Girelli, D.; Ugolini, S.; Busti, F.; Marchi, G.; Castagna, A. Modern iron replacement therapy: Clinical and pathophysiological insights. Int. J. Hematol., 2018, 107(1), 16-30.
[http://dx.doi.org/10.1007/s12185-017-2373-3] [PMID: 29196967]
[15]
Bai, S.; Cao, S.; Ma, X.; Li, X.; Liao, X.; Zhang, L.; Zhang, M.; Zhang, R.; Hou, S.; Luo, X.; Lu, L. Organic iron absorption and expression of related transporters in the small intestine of broilers. Poult. Sci., 2021, 100(8), 101182.
[http://dx.doi.org/10.1016/j.psj.2021.101182] [PMID: 34198093]
[16]
Hooda, J.; Shah, A.; Zhang, L. Heme, an essential nutrient from dietary proteins, critically impacts diverse physiological and pathological processes. Nutrients, 2014, 6(3), 1080-1102.
[http://dx.doi.org/10.3390/nu6031080] [PMID: 24633395]
[17]
Xu, X.; Liu, Y.; Tang, M.; Yan, Y.; Gu, W.; Wang, W.; Meng, Q. The function of Eriocheir sinensis transferrin and iron in Spiroplasma eriocheiris infection. Fish Shellfish Immunol., 2018, 79, 79-85.
[http://dx.doi.org/10.1016/j.fsi.2018.05.019] [PMID: 29753143]
[18]
Keleş Altun, İ.; Atagün, M.İ.; Erdoğan, A.; Oymak Yenilmez, D.; Yusifova, A.; Şenat, A.; Erel, Ö. Serum hepcidin / ferroportin levels in bipolar disorder and schizophrenia. J. Trace Elem. Med. Biol., 2021, 68, 126843.
[http://dx.doi.org/10.1016/j.jtemb.2021.126843] [PMID: 34416474]
[19]
Nemeth, E.; Ganz, T. Hepcidin and iron in health and disease. Annu. Rev. Med., 2023, 74(1), 261-277.
[http://dx.doi.org/10.1146/annurev-med-043021-032816] [PMID: 35905974]
[20]
Varga, E.; Pap, R.; Jánosa, G.; Sipos, K.; Pandur, E. IL-6 regulates hepcidin expression via the BMP/SMAD pathway by altering BMP6, TMPRSS6 and TfR2 expressions at normal and inflammatory conditions in BV2 microglia. Neurochem. Res., 2021, 46(5), 1224-1238.
[http://dx.doi.org/10.1007/s11064-021-03322-0] [PMID: 33835366]
[21]
Barrows, I.R.; Devalaraja, M.; Kakkar, R.; Chen, J.; Gupta, J.; Rosas, S.E.; Saraf, S.; He, J.; Go, A.; Raj, D.S.; Amdur, R.L.; Unruh, M.L.; Shah, V.O.; Rao, P.S.; Rahman, M.; Nelson, R.G.; Lash, J.P.; Feldman, H.I.; Cohen, D.; Appel, L.J. Race, interleukin-6, TMPRSS6 genotype, and cardiovascular disease in patients with chronic kidney disease. J. Am. Heart Assoc., 2022, 11(18), e025627.
[http://dx.doi.org/10.1161/JAHA.122.025627] [PMID: 36102277]
[22]
Rivera, S.; Liu, L.; Nemeth, E.; Gabayan, V.; Sorensen, O.E.; Ganz, T. Hepcidin excess induces the sequestration of iron and exacerbates tumor-associated anemia. Blood, 2005, 105(4), 1797-1802.
[http://dx.doi.org/10.1182/blood-2004-08-3375] [PMID: 15479721]
[23]
Menon, A.V.; Liu, J.; Tsai, H.P.; Zeng, L.; Yang, S.; Asnani, A.; Kim, J. Excess heme upregulates heme oxygenase 1 and promotes cardiac ferroptosis in mice with sickle cell disease. Blood, 2022, 139(6), 936-941.
[http://dx.doi.org/10.1182/blood.2020008455] [PMID: 34388243]
[24]
Lisova, A.E.; Baranovskiy, A.G.; Morstadt, L.M.; Babayeva, N.D.; Stepchenkova, E.I.; Tahirov, T.H. The iron-sulfur cluster is essential for DNA binding by human DNA polymerase ε. Sci. Rep., 2022, 12(1), 17436.
[http://dx.doi.org/10.1038/s41598-022-21550-4] [PMID: 36261579]
[25]
Burn, M.S.; Lundsberg, L.S.; Culhane, J.F.; Partridge, C.; Son, M. Intravenous iron for treatment of iron deficiency anemia during pregnancy and associated maternal outcomes. J. Matern. Fetal Neonatal Med., 2023, 36(1), 2192855.
[http://dx.doi.org/10.1080/14767058.2023.2192855] [PMID: 36958808]
[26]
Pivina, L.; Semenova, Y.; Doşa, M.D.; Dauletyarova, M.; Bjørklund, G. Iron deficiency, cognitive functions, and neurobehavioral disorders in children. J. Mol. Neurosci., 2019, 68(1), 1-10.
[http://dx.doi.org/10.1007/s12031-019-01276-1] [PMID: 30778834]
[27]
Vinkenoog, M.; de Groot, R.; Lakerveld, J.; Janssen, M.; van den Hurk, K. Individual and environmental determinants of serum ferritin levels: A structural equation model. Transfus. Med., 2023, 33(2), 113-122.
[http://dx.doi.org/10.1111/tme.12902] [PMID: 37009681]
[28]
Parida, A.; Mohanty, A.; Kansara, B.T.; Behera, R.K. Impact of phosphate on iron mineralization and mobilization in nonheme bacterioferritin b from Mycobacterium tuberculosis. Inorg. Chem., 2020, 59(1), 629-641.
[http://dx.doi.org/10.1021/acs.inorgchem.9b02894] [PMID: 31820939]
[29]
Bjørklund, G.; Aaseth, J.; Skalny, A.V.; Suliburska, J.; Skalnaya, M.G.; Nikonorov, A.A.; Tinkov, A.A. Interactions of iron with manganese, zinc, chromium, and selenium as related to prophylaxis and treatment of iron deficiency. J. Trace Elem. Med. Biol., 2017, 41, 41-53.
[http://dx.doi.org/10.1016/j.jtemb.2017.02.005] [PMID: 28347462]
[30]
Young, B.; Zaritsky, J. Hepcidin for clinicians. Clin. J. Am. Soc. Nephrol., 2009, 4(8), 1384-1387.
[http://dx.doi.org/10.2215/CJN.02190309] [PMID: 19556376]
[31]
Kuruppu, A.I.; Turyanska, L.; Bradshaw, T.D.; Manickam, S.; Galhena, B.P.; Paranagama, P.; De Silva, R. Apoferritin and Dps as drug delivery vehicles: Some selected examples in oncology. Biochim. Biophys. Acta, Gen. Subj., 2022, 1866(2), 130067.
[http://dx.doi.org/10.1016/j.bbagen.2021.130067] [PMID: 34896255]
[32]
Guo, M.; Gao, M.; Liu, J.; Xu, N.; Wang, H. Bacterioferritin nanocage: Structure, biological function, catalytic mechanism, self-assembly and potential applications. Biotechnol. Adv., 2022, 61, 108057.
[http://dx.doi.org/10.1016/j.biotechadv.2022.108057] [PMID: 36328189]
[33]
Theil, E.C. Ferritin protein nanocages—the story. Nanotechnol. Percept., 2012, 8(1), 7-16.
[http://dx.doi.org/10.4024/N03TH12A.ntp.08.01] [PMID: 24198751]
[34]
Reyes-Becerril, M.; Angulo-Valadez, C.; Macias, M.E.; Angulo, M.; Ascencio-Valle, F. Iron bioavailability in larvae yellow snapper (Lutjanus argentiventris): Cloning and expression analysis of ferritin-H. Fish Shellfish Immunol., 2014, 37(2), 248-255.
[http://dx.doi.org/10.1016/j.fsi.2014.02.011] [PMID: 24561126]
[35]
Meyron-Holtz, E.G.; Fibach, E.; Gelvan, D.; Konijn, A.M. Binding and uptake of exogenous isoferritins by cultured human erythroid precursor cells. Br. J. Haematol., 1994, 86(3), 635-641.
[http://dx.doi.org/10.1111/j.1365-2141.1994.tb04797.x] [PMID: 8043447]
[36]
World Health Organization. WHO guideline on use of ferritin concentrations to assess iron status in populations. World Health Organization, 2020, 82. https://www.who.int/publications/i/item/9789240000124
[37]
Finch, C.A.; Bellotti, V.; Stray, S.; Lipschitz, D.A.; Cook, J.D.; Pippard, M.J.; Huebers, H.A. Plasma ferritin determination as a diagnostic tool. West. J. Med., 1986, 145(5), 657-663.
[PMID: 3541387]
[38]
Weiss, G. Modification of iron regulation by the inflammatory response. Best Pract. Res. Clin. Haematol., 2005, 18(2), 183-201.
[http://dx.doi.org/10.1016/j.beha.2004.09.001] [PMID: 15737884]
[39]
Kalantar-Zadeh, K.; Kalantar-Zadeh, K.; Lee, G.H. The fascinating but deceptive ferritin: to measure it or not to measure it in chronic kidney disease? Clin. J. Am. Soc. Nephrol., 2006, 1(Suppl. 1), S9-S18.
[http://dx.doi.org/10.2215/CJN.01390406] [PMID: 17699375]
[40]
Alves, M.T.; Vilaça, S.S.; Carvalho, M.G.; Fernandes, A.P.; Dusse, L.M.S.A.; Gomes, K.B. Resistance of dialyzed patients to erythropoietin. Rev. Bras. Hematol. Hemoter., 2015, 37(3), 190-197.
[http://dx.doi.org/10.1016/j.bjhh.2015.02.001] [PMID: 26041422]
[41]
Wish, J.B. Assessing iron status: Beyond serum ferritin and transferrin saturation. Clin. J. Am. Soc. Nephrol., 2006, 1(Suppl. 1), S4-S8.
[http://dx.doi.org/10.2215/CJN.01490506] [PMID: 17699374]
[42]
Guyatt, G.H.; Oxman, A.D.; Ali, M.; Willan, A.; McIlroy, W.; Patterson, C. Laboratory diagnosis of iron-deficiency anemia. J. Gen. Intern. Med., 1992, 7(2), 145-153.
[http://dx.doi.org/10.1007/BF02598003] [PMID: 1487761]
[43]
Peirano, P.D.; Algarin, C.R.; Chamorro, R.; Reyes, S.; Garrido, M.I.; Duran, S.; Lozoff, B. Sleep and neurofunctions throughout child development: lasting effects of early iron deficiency. J. Pediatr. Gastroenterol. Nutr, 2009, 48(1), 8-15.
[http://dx.doi.org/10.1097/MPG.0b013e31819773b]
[44]
Zaritsky, J.; Young, B.; Wang, H.J.; Westerman, M.; Olbina, G.; Nemeth, E.; Ganz, T.; Rivera, S.; Nissenson, A.R.; Salusky, I.B. Hepcidin--a potential novel biomarker for iron status in chronic kidney disease. Clin. J. Am. Soc. Nephrol., 2009, 4(6), 1051-1056.
[http://dx.doi.org/10.2215/CJN.05931108] [PMID: 19406957]
[45]
Baumgartner, J.; Barth-Jaeggi, T. Iron interventions in children from low-income and middle-income populations. Curr. Opin. Clin. Nutr. Metab. Care, 2015, 18(3), 289-294.
[http://dx.doi.org/10.1097/MCO.0000000000000168] [PMID: 25807351]
[46]
Blanchette, N.L.; Manz, D.H.; Torti, F.M.; Torti, S.V. Modulation of hepcidin to treat iron deregulation: Potential clinical applications. Expert Rev. Hematol., 2016, 9(2), 169-186.
[http://dx.doi.org/10.1586/17474086.2016.1124757] [PMID: 26669208]
[47]
Cherayil, B.J. Iron and immunity: Immunological consequences of iron deficiency and overload. Arch. Immunol. Ther. Exp., 2010, 58(6), 407-415.
[http://dx.doi.org/10.1007/s00005-010-0095-9] [PMID: 20878249]
[48]
Zhao, L.; Zhang, X.; Shen, Y.; Fang, X.; Wang, Y.; Wang, F. Obesity and iron deficiency: A quantitative meta-analysis. Obes. Rev., 2015, 16(12), 1081-1093.
[http://dx.doi.org/10.1111/obr.12323] [PMID: 26395622]
[49]
De Falco, L.; Sanchez, M.; Silvestri, L.; Kannengiesser, C.; Muckenthaler, M.U.; Iolascon, A.; Gouya, L.; Camaschella, C.; Beaumont, C. Iron refractory iron deficiency anemia. Haematologica, 2013, 98(6), 845-853.
[http://dx.doi.org/10.3324/haematol.2012.075515] [PMID: 23729726]
[50]
Ding, H.; Yu, X.; Feng, J. Iron homeostasis disorder in piglet intestine. Metallomics, 2020, 12(10), 1494-1507.
[http://dx.doi.org/10.1039/d0mt00149j] [PMID: 32852491]
[51]
Beguin, Y. Soluble transferrin receptor for the evaluation of erythropoiesis and iron status. Clin. Chim. Acta, 2003, 329(1-2), 9-22.
[http://dx.doi.org/10.1016/S0009-8981(03)00005-6] [PMID: 12589962]
[52]
Rieu, J.B.; Largeaud, L.; Da Costa, L.; Cougoul, P. Unexplained iron overload with haemolytic anaemia should prompt looking for morphological changes in erythroid precursors. Br. J. Haematol., 2022, 197(2), 132-132.
[http://dx.doi.org/10.1111/bjh.18030] [PMID: 35178704]
[53]
Abdel Noor, R.A.; Abu-Zaid, M.H.; Elshweikh, S.A.; Rabee, E.S.; Khedr, G.E. FRI0081 The importance of transferrin saturation, serum ferritin, log ferritin and transferrin/log ferritin in differentiating iron deficiency anaemia from anaemia of chronic disease in rheumatoid arthritispatients. Ann. Rheum. Dis., 2018, 77(Suppl. 2), 586.2-587.
[http://dx.doi.org/10.1136/annrheumdis-2018-eular.3969]
[54]
Rathnayake, G.; Badrick, T. Is total iron binding capacity (TIBC) calculation correct? Pathology, 2019, 51(4), 451-452.
[http://dx.doi.org/10.1016/j.pathol.2018.12.419] [PMID: 31000172]
[55]
Barton, J.C.; Acton, R.T. Hepcidin, iron, and bacterial infection. Vitam. Horm., 2019, 110, 223-242.
[http://dx.doi.org/10.1016/bs.vh.2019.01.011] [PMID: 30798814]
[56]
Faruqi, A.; Mukkamalla, S.K.R. Iron binding capacity. 2023 Jan 2. In: StatPearls [Internet].: Treasure Island (FL): StatPearls Publishing;, 2024. https://pubmed.ncbi.nlm.nih.gov/32644545/
[PMID: 32644545]
[57]
Lu, H.Y.; Orkin, S.H.; Sankaran, V.G. Fetal hemoglobin regulation in beta-thalassemia. Hematol. Oncol. Clin. North Am., 2023, 37(2), 301-312.
[http://dx.doi.org/10.1016/j.hoc.2022.12.002] [PMID: 36907604]
[58]
Ikeda-Taniguchi, M.; Takahashi, K.; Shishido, K.; Honda, H. Total iron binding capacity is a predictor for muscle loss in maintenance hemodialysis patients. Clin. Exp. Nephrol., 2022, 26(6), 583-592.
[http://dx.doi.org/10.1007/s10157-022-02193-1] [PMID: 35179679]
[59]
Porter, J.L.; Rawla, P. Hemochromatosis; StatPearls Publishing: Treasure Island, FL, 2022, 68, pp. (4)179-182.
[http://dx.doi.org/10.2478/amma-2022-0031]
[60]
Rozema, J.; van Asten, I.; Kwant, B.; Kibbelaar, R.E.; Veeger, N.J.G.M.; de Wit, H.; van Roon, E.N.; Hoogendoorn, M. Clinical view versus guideline adherence in ferritin monitoring and initiating iron chelation therapy in patients with myelodysplastic syndromes. Eur. J. Haematol., 2022, 109(6), 772-778.
[http://dx.doi.org/10.1111/ejh.13865] [PMID: 36130872]
[61]
Kernan, K.F.; Carcillo, J.A. Hyperferritinemia and inflammation. Int. Immunol., 2017, 29(9), 401-409.
[http://dx.doi.org/10.1093/intimm/dxx031] [PMID: 28541437]
[62]
Leitch, H.A.; Fibach, E.; Rachmilewitz, E. Toxicity of iron overload and iron overload reduction in the setting of hematopoietic stem cell transplantation for hematologic malignancies. Crit. Rev. Oncol. Hematol., 2017, 113, 156-170.
[http://dx.doi.org/10.1016/j.critrevonc.2017.03.002] [PMID: 28427505]
[63]
Choy, M.; Zhen, Z.; Dong, B.; Chen, C.; Dong, Y.; Liu, C.; Liang, W.; Xue, R. Mean corpuscular haemoglobin concentration and outcomes in heart failure with preserved ejection fraction. ESC Heart Fail., 2023, 10(2), 1214-1221.
[http://dx.doi.org/10.1002/ehf2.14225] [PMID: 36695165]
[64]
Ning, S.; Luo, Y.; Liang, Y.; Xie, Y.; Lu, Y.; Meng, B.; Pan, J.; Xu, R.; Liu, Y.; Qin, Y. A novel rearrangement of the α-globin gene cluster containing both the −α3.7 and ααααanti4.2 crossover junctions in a Chinese family. Clin. Chim. Acta, 2022, 535, 7-12.
[http://dx.doi.org/10.1016/j.cca.2022.07.020] [PMID: 35944700]
[65]
WHO. In: Haemoglobin concentrations for the diagnosis of anaemia and assessment of severity World Health Organization, Geneva; , 2011; p. 7. https://www.who.int/publications/i/item/WHO-NMH-NHD-MNM-11.1
[66]
Benediktsson, S.B.; Karason, S.; Sigurdsson, M.I. Haemoglobin levels and outcomes of subgroups of patients with pre-operative anaemia based on red cell size: A retrospective cohort study. Acta Anaesthesiol. Scand., 2023, 67(4), 422-431.
[http://dx.doi.org/10.1111/aas.14198] [PMID: 36635957]
[67]
Sedik, A.S.; Kawana, K.Y.; Koura, A.S.; Mehanna, R.A. Biological effect of bone marrow mesenchymal stem cell- derived extracellular vesicles on the structure of alveolar bone in rats with glucocorticoid-induced osteoporosis. BMC Musculoskelet. Disord., 2023, 24(1), 205.
[http://dx.doi.org/10.1186/s12891-023-06276-2] [PMID: 36932362]
[68]
Wu, Y.H.; Lee, Y.P.; Yu-Fong Chang, J.; Wang, Y.P.; Chiang, C.P.; Sun, A. Higher frequencies of anemia, vitamin B12 deficiency, and gastric parietal cell antibody positivity in folic acid-deficient Taiwanese male oral submucous fibrosis patients. J. Dent. Sci., 2023, 18(2), 801-807.
[http://dx.doi.org/10.1016/j.jds.2023.01.014] [PMID: 37021251]
[69]
Naami, N.; Borkhardt, A.; Yoshimi, A.; Grinstein, L.; Escherich, G. Thirteen-month-old girl with hyporegenerative macrocytic anemia due toBROWN–VIALETTO–VAN Laere syndrome 2. Am. J. Hematol., 2022, 97(11), 1495-1496.
[http://dx.doi.org/10.1002/ajh.26573] [PMID: 35441393]
[70]
Zhao, L.; Yang, X.; Zhang, S.; Zhou, X. Iron metabolism-related indicators as predictors of the incidence of acute kidney injury after cardiac surgery: A meta-analysis. Ren. Fail., 2023, 45(1), 2201362.
[http://dx.doi.org/10.1080/0886022X.2023.2201362] [PMID: 37073631]
[71]
Arshad, S.; Arif, A.; Wattoo, J.I. Response of iron deficiency markers to blood lead levels and synergistic outcomes at prenatal stage. Dose Response, 2022, 20(2)
[http://dx.doi.org/10.1177/15593258221101744] [PMID: 35602584]
[72]
Charlebois, E.; Fillebeen, C.; Katsarou, A.; Rabinovich, A.; Wisniewski, K.; Venkataramani, V.; Michalke, B.; Velentza, A.; Pantopoulos, K. A crosstalk between hepcidin and IRE/IRP pathways controls ferroportin expression and determines serum iron levels in mice. eLife, 2022, 11, e81332.
[http://dx.doi.org/10.7554/eLife.81332] [PMID: 36066082]
[73]
Helman, S.L.; Wilkins, S.J.; McKeating, D.R.; Perkins, A.V.; Cuffe, J.S.M.; Hartel, G.; Faria, N.; Powell, J.J.; Anderson, G.J.; Frazer, D.M. A novel ferritin-core analog is a safe and effective alternative to oral ferrous iron for treating iron deficiency during pregnancy in mice. J. Nutr., 2022, 152(3), 714-722.
[http://dx.doi.org/10.1093/jn/nxab363] [PMID: 34625812]
[74]
Ham, S.Y.; Jun, J.H.; Kim, H.B.; Shim, J.K.; Lee, G.; Kwak, Y.L. Regulators impeding erythropoiesis following iron supplementation in a clinically relevant rat model of iron deficiency anemia with inflammation. Life Sci., 2022, 310, 121124.
[http://dx.doi.org/10.1016/j.lfs.2022.121124] [PMID: 36306536]
[75]
Lachowicz, J.I.; Nurchi, V.M.; Fanni, D.; Gerosa, C.; Peana, M.; Zoroddu, M.A. Nutritional iron deficiency: The role of oral iron supplementation. Curr. Med. Chem., 2014, 21(33), 3775-3784.
[http://dx.doi.org/10.2174/0929867321666140706143925] [PMID: 25005180]
[76]
Hale, A.T.; Brown, R.E.; Luka, Z.; Hudson, B.H.; Matta, P.; Williams, C.S.; York, J.D. Modulation of sulfur assimilation metabolic toxicity overcomes anemia and hemochromatosis in mice. Adv. Biol. Regul., 2020, 76, 100694.
[http://dx.doi.org/10.1016/j.jbior.2020.100694] [PMID: 32019729]
[77]
Czempik, P.F.; Wiórek, A. Comparison of standard and new iron status biomarkers: A prospective cohort study in sepsis patients. Healthcare, 2023, 11(7), 995.
[http://dx.doi.org/10.3390/healthcare11070995] [PMID: 37046922]
[78]
Aimone-Gastin, I. Les outils biochimiques de l’evaluation du bilan martial. Nephrol. Ther., 2006, 2(Suppl. 5), S321-S326.
[PMID: 17373277]
[79]
Kanwar, P.; Kowdley, K.V. Diagnosis and treatment of hereditary hemochromatosis: An update. Expert Rev. Gastroenterol. Hepatol., 2013, 7(6), 517-530.
[http://dx.doi.org/10.1586/17474124.2013.816114] [PMID: 23985001]
[80]
Thomas, C.; Thomas, L. Biochemical markers and hematologic indices in the diagnosis of functional iron deficiency. Clin. Chem., 2002, 48(7), 1066-1076.
[http://dx.doi.org/10.1093/clinchem/48.7.1066] [PMID: 12089176]
[81]
Sies, C.; Florkowski, C.; George, P.; Potter, H. Clinical indications for the investigation of porphyria: Case examples and evolving laboratory approaches to its diagnosis in New Zealand. N. Z. Med. J., 2005, 118(1222), U1658.
[PMID: 16222352]
[82]
Vlachou, M.; Kamperidis, V.; Giannakoulas, G.; Karamitsos, T.; Vlachaki, E.; Karvounis, H. Biochemical and imaging markers in patients with thalassaemia. Hellenic J. Cardiol., 2021, 62(1), 4-12.
[http://dx.doi.org/10.1016/j.hjc.2020.04.012] [PMID: 32387594]
[83]
Thurnham, D.; Northrop-Clewes, C. Biomarkers for the differentiation of anemia and their clinical usefulness. J. Blood Med., 2013, 4, 11-22.
[http://dx.doi.org/10.2147/JBM.S29212] [PMID: 23687454]
[84]
Barcellini, W.; Fattizzo, B. Clinical applications of hemolytic markers in the differential diagnosis and management of hemolytic anemia. Dis. Markers, 2015, 2015, 1-7.
[http://dx.doi.org/10.1155/2015/635670] [PMID: 26819490]
[85]
Fisher, A.L.; Nemeth, E. Iron homeostasis during pregnancy. Am. J. Clin. Nutr., 2017, 106(Suppl. 6), 1567S-1574S.
[http://dx.doi.org/10.3945/ajcn.117.155812] [PMID: 29070542]
[86]
Schümann, K.; Solomons, N.W. Perspective: What makes it so difficult to mitigate worldwide anemia prevalence? Adv. Nutr., 2017, 8(3), 401-408.
[http://dx.doi.org/10.3945/an.116.013847] [PMID: 28507005]
[87]
Yang, K.; Pan, Y.; Jin, L.; Yu, F.; Zhang, F. Low serum soluble transferrin receptor levels are associated with poor prognosis in patients with hepatitis b virus–related acute-on-chronic liver failure. Biol. Trace Elem. Res., 2023, 201(6), 2757-2764.
[http://dx.doi.org/10.1007/s12011-022-03385-2] [PMID: 35969310]
[88]
Ricchi, P.; Ammirabile, M.; Costantini, S.; Di Matola, T.; Verna, R.; Diano, A.; Foglia, M.C.; Spasiano, A.; Cinque, P.; Prossomariti, L. A useful relationship between the presence of extramedullary erythropoeisis and the level of the soluble form of the transferrin receptor in a large cohort of adult patients with thalassemia intermedia: a prospective study. Ann. Hematol., 2012, 91(6), 905-909.
[http://dx.doi.org/10.1007/s00277-011-1385-y] [PMID: 22167341]
[89]
Lismawati; Yusra; Effendy, D.; Kurniawan, L.; Lydia, A. Role of soluble transferrin receptor – An Iron marker in hemodialysis patients. Indian J. Nephrol., 2022, 32(6), 555-559.
[http://dx.doi.org/10.4103/ijn.IJN_486_20] [PMID: 36704598]
[90]
Næss-Andresen, M.L.; Jenum, A.K.; Berg, J.P.; Falk, R.S.; Sletner, L. Prevalence of postpartum anaemia and iron deficiency by serum ferritin, soluble transferrin receptor and total body iron, and associations with ethnicity and clinical factors: A Norwegian population-based cohort study. J. Nutr. Sci., 2022, 11, e46.
[http://dx.doi.org/10.1017/jns.2022.45] [PMID: 35754987]
[91]
Crielaard, B.J.; Lammers, T.; Rivella, S. Targeting iron metabolism in drug discovery and delivery. Nat. Rev. Drug Discov., 2017, 16(6), 400-423.
[http://dx.doi.org/10.1038/nrd.2016.248] [PMID: 28154410]
[92]
Wang, H.; Qi, Q.; Song, S.; Zhang, D.; Feng, L. Association between soluble transferrin receptor and systolic hypertension in adults: National health and nutrition examination survey (2007–2010 and 2015–2018). Front. Cardiovasc. Med., 2022, 9, 1029714.
[http://dx.doi.org/10.3389/fcvm.2022.1029714] [PMID: 36407469]
[93]
Lyle, A.N.; Budd, J.R.; Kennerley, V.M.; Smith, B.N.; Danilenko, U.; Pfeiffer, C.M.; Vesper, H.W. Assessment of WHO 07/202 reference material and human serum pools for commutability and for the potential to reduce variability among soluble transferrin receptor assays. Clin. Chem. Lab. Med., 2023, 61(10), 1719-1729.
[http://dx.doi.org/10.1515/cclm-2022-1198] [PMID: 37071928]
[94]
Leventi, E.; Aksan, A.; Nebe, C.T.; Stein, J.; Farrag, K. Zinc protoporphyrin is a reliable marker of functional iron deficiency in patients with inflammatory bowel disease. Diagnostics, 2021, 11(2), 366.
[http://dx.doi.org/10.3390/diagnostics11020366] [PMID: 33670067]
[95]
Allen, A.; Perera, S.; Perera, L.; Rodrigo, R.; Mettananda, S.; Matope, A.; Silva, I.; Hameed, N.; Fisher, C.A.; Olivieri, N.; Weatherall, D.J.; Allen, S.; Premawardhena, A. A “one-stop” screening protocol for haemoglobinopathy traits and iron deficiency in Sri lanka. Front. Mol. Biosci., 2019, 6, 66.
[http://dx.doi.org/10.3389/fmolb.2019.00066] [PMID: 31448286]
[96]
Teshome, E.M.; Prentice, A.M.; Demir, A.Y.; Andang’o, P.E.A.; Verhoef, H. Diagnostic utility of zinc protoporphyrin to detect iron deficiency in Kenyan preschool children: A community-based survey. BMC Hematol., 2017, 17(1), 11.
[http://dx.doi.org/10.1186/s12878-017-0082-z] [PMID: 28770094]
[97]
Bjørklund, G.; Tippairote, T.; Hangan, T.; Chirumbolo, S.; Peana, M. Early-life lead exposure: risks and neurotoxic consequences. Curr. Med. Chem., 2023, 30
[http://dx.doi.org/10.2174/0929867330666230409135310] [PMID: 37031386]
[98]
Ji, R.; Jia, F.; Chen, X.; Gao, Y.; Yang, J. Carnosol inhibits KGN cells oxidative stress and apoptosis and attenuates polycystic ovary syndrome phenotypes in mice through Keap1-mediated Nrf2/ HO-1 activation. Phytother. Res., 2023, 37(4), 1405-1421.
[http://dx.doi.org/10.1002/ptr.7749] [PMID: 36786429]
[99]
Genovese, G.; Maronese, C.A.; Moltrasio, C.; Piccinno, R.; Marletta, D.A.; De Luca, G.; Graziadei, G.; Granata, F.; Di Pierro, E.; Cappellini, M.D.; Marzano, A.V. Ultraviolet a phototest positivity is associated with higher free erythrocyte protoporphyrin ix concentration and lower transferrin saturation values in erythropoietic protoporphyria. Photodermatol. Photoimmunol. Photomed., 2022, 38(2), 141-149.
[http://dx.doi.org/10.1111/phpp.12727] [PMID: 34420239]
[100]
Juncà, J.; Flores, A.; Roy, C.; Alberti, R.; Millá, F. Red cell distribution width, free erythrocyte protoporphyrin, and England-fraser index in the differential diagnosis of microcytosis due to iron deficiency or beta-thalassemia trait. A study of 200 cases of microcytic anemia. Hematol. Pathol., 1991, 5(1), 33-36.
[PMID: 2050603]
[101]
Jackson, R.T.; Al-Mousa, Z. Iron deficiency is a more important cause of anemia than hemoglobinopathies in Kuwaiti adolescent girls. J. Nutr., 2000, 130(5), 1212-1216.
[http://dx.doi.org/10.1093/jn/130.5.1212] [PMID: 10801921]
[102]
Tristão, V.R.; de Carvalho, F.F.; Gomes, C.Z.; Miranda, A.R.; Vequi-Suplicy, C.C.; Lamy, M.T.; Schor, N.; Bellini, M.H. Study of blood porphyrin spectral profile for diagnosis of chronic renal failure. J. Fluoresc., 2010, 20(3), 665-669.
[http://dx.doi.org/10.1007/s10895-010-0600-x] [PMID: 20177750]
[103]
Sigh, S.; Roos, N.; Chhoun, C.; Laillou, A.; Wieringa, F.T. Ready-to-use therapeutic foods fail to improve vitamin a and iron status meaningfully during treatment for severe acute malnutrition in 6–59-month-old cambodian children. Nutrients, 2023, 15(4), 905.
[http://dx.doi.org/10.3390/nu15040905] [PMID: 36839263]
[104]
Chitekwe, S.; Parajuli, K.R.; Paudyal, N.; Haag, K.C.; Renzaho, A.; Issaka, A.; Agho, K. Individual, household and national factors associated with iron, vitamin A and zinc deficiencies among children aged 6-59 months in Nepal. Matern Child Nutr., 2022, 18(1), 13305.
[http://dx.doi.org/10.1111/mcn.13305]
[105]
Lundeen, E.A.; Lind, J.N.; Clarke, K.E.N.; Aburto, N.J.; Imanalieva, C.; Mamyrbaeva, T.; Ismailova, A.; Timmer, A.; Whitehead, R.D., Jr; Praslova, L.; Samohleb, G.; Minbaev, M.; Addo, O.Y.; Serdula, M.K. Four years after implementation of a national micronutrient powder program in Kyrgyzstan, prevalence of iron deficiency and iron deficiency anemia is lower, but prevalence of vitamin A deficiency is higher. Eur. J. Clin. Nutr., 2019, 73(3), 416-423.
[http://dx.doi.org/10.1038/s41430-018-0368-7] [PMID: 30523305]
[106]
Abizari, A.R.; Azupogo, F.; Brouwer, I.D. Subclinical inflammation influences the association between vitamin A- and iron status among school children in Ghana. PLoS One, 2017, 12(2), e0170747.
[http://dx.doi.org/10.1371/journal.pone.0170747] [PMID: 28152069]
[107]
Brindle, E.; Lillis, L.; Barney, R.; Hess, S.Y.; Wessells, K.R.; Ouédraogo, C.T.; Stinca, S.; Kalnoky, M.; Peck, R.; Tyler, A.; Lyman, C.; Boyle, D.S. Simultaneous assessment of iodine, iron, vitamin A, malarial antigenemia, and inflammation status biomarkers via a multiplex immunoassay method on a population of pregnant women from Niger. PLoS One, 2017, 12(10), e0185868.
[http://dx.doi.org/10.1371/journal.pone.0185868] [PMID: 28982133]
[108]
Szczepanek-Parulska, E.; Hernik, A.; Ruchała, M. Anemia in thyroid diseases. Polish Arch. Intern. Med., 2017, 127(5), 352-360.
[http://dx.doi.org/10.20452/pamw.3985] [PMID: 28400547]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy