Generic placeholder image

Current Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 0929-8673
ISSN (Online): 1875-533X

General Review Article

Natural Phenolic Compounds with Antithrombotic and Antiplatelet Effects: A Drug-likeness Approach

Author(s): Diégina Araújo Fernandes, Ayala Nara Pereira Gomes, Camila Macaubas da Silva, Isabelly Soares de Medeiros Henriques, Renata Priscila Barros de Menezes, Marcus Tullius Scotti, Yanna Carolina Ferreira Teles, RuAngelie Edrada-Ebel and Maria de Fatima Vanderlei de Souza*

Volume 31, Issue 26, 2024

Published on: 19 February, 2024

Page: [4138 - 4159] Pages: 22

DOI: 10.2174/0109298673268452231108061008

Price: $65

Abstract

Background: Thrombosis is one of the major causes of morbidity and mortality in a wide range of vessel diseases. Several studies have been conducted to identify antithrombotic agents from medicinal plants, and phenolic compounds (PCs) have been shown to effectively inhibit plasma coagulation and platelet aggregation.

Objectives: This study aimed to conduct a survey of the natural PCs with proven antithrombotic and antiplatelet activities, as well as to evaluate by computational modeling the physicochemical and toxicological properties of these compounds using drug-likeness approaches.

Methods: The data were collected from the scientific database: ‘Web of Science’, ‘Scifinder’, ‘Pubmed’, ‘ScienceDirect’ and ‘Google Scholar’, the different classes of PCs with antithrombotic or antiplatelet effects were used as keywords. These molecules were also evaluated for their Drug-Likeness properties and toxicity to verify their profile for being candidates for new antithrombotic drugs.

Results: In this review, it was possible to register 85 lignans, 73 flavonoids, 28 coumarins, 21 quinones, 23 phenolic acids, 8 xanthones and 8 simple phenols. Activity records for tannins were not found in the researched databases. Of these 246 compounds, 213 did not violate any of Lipinski's rules of five, of which 125 (59%) showed non-toxicity, being promising candidates for new potential antithrombotic drugs.

Conclusion: This review arouses interest in the isolation of phenolic compounds that may allow a new approach for the prevention of both arterial and venous thrombosis, with the potential to become alternatives in the prevention and treatment of cardiovascular diseases.

Keywords: Phenolic compounds, anticoagulant, antiplatelet, antithrombotic, drug-likeness, bioinformatics.

[1]
Kumar, S.; Joseph, L.; George, M.; Sharma, A. A review on anticoagulant/antithrombotic activity of natural plants used in traditional medicine. Int. J. Pharm. Sci. Rev. Res., 2011, 8(1), 70-74.
[2]
Lee, W.; Ku, S.K.; Bae, J.S. Antiplatelet, anticoagulant, and profibrinolytic activities of baicalin. Arch. Pharm. Res., 2015, 38(5), 893-903.
[http://dx.doi.org/10.1007/s12272-014-0410-9] [PMID: 24849036]
[3]
Choi, J.H.; Park, S.E.; Kim, S.J.; Kim, S. Kaempferol inhibits thrombosis and platelet activation. Biochimie, 2015, 115, 177-186.
[http://dx.doi.org/10.1016/j.biochi.2015.06.001] [PMID: 26073152]
[4]
Lv, J.L.; Li, Z.Z.; Zhang, L.B. Two new flavonoids from Artemisia argyi with their anticoagulation activities. Nat. Prod. Res., 2018, 32(6), 632-639.
[http://dx.doi.org/10.1080/14786419.2017.1332603] [PMID: 28539062]
[5]
Mega, J.L.; Simon, T. Pharmacology of antithrombotic drugs: An assessment of oral antiplatelet and anticoagulant treatments. Lancet, 2015, 386(9990), 281-291.
[http://dx.doi.org/10.1016/S0140-6736(15)60243-4] [PMID: 25777662]
[6]
Kim, K.; Do, H.J.; Oh, T.W.; Kim, K.Y.; Kim, T.H.; Ma, J.Y.; Park, K.I. Antiplatelet and atithrombotic activity of a traditional medicine, Hwangryunhaedok-Tang. Front. Pharmacol., 2019, 9, 1502.
[http://dx.doi.org/10.3389/fphar.2018.01502] [PMID: 30687085]
[7]
Kubatka, P.; Mazurakova, A.; Koklesova, L.; Samec, M.; Sokol, J.; Samuel, S.M.; Kudela, E.; Biringer, K.; Bugos, O.; Pec, M.; Link, B.; Adamkov, M.; Smejkal, K.; Büsselberg, D.; Golubnitschaja, O. Antithrombotic and antiplatelet effects of plant-derived compounds: A great utility potential for primary, secondary, and tertiary care in the framework of 3P medicine. EPMA J., 2022, 13(3), 407-431.
[http://dx.doi.org/10.1007/s13167-022-00293-2] [PMID: 35990779]
[8]
Correia-da-Silva, M.; Sousa, E.; Pinto, M.M.M. Flavonoides glicosilados sulfatados: Agentes antitrombóticos com atividade dual. Rev. Saúde, 2012, 3, 31-39.
[9]
Akram, M.; Rashid, A. Anti-coagulant activity of plants: Mini review. J. Thromb. Thrombolysis, 2017, 44(3), 406-411.
[http://dx.doi.org/10.1007/s11239-017-1546-5] [PMID: 28866770]
[10]
Beretz, A.; Cazenave, J.P. Old and new natural products as the source of modern antithrombotic drugs. Planta Med., 1991, 57(S 1), S68-S72.
[http://dx.doi.org/10.1055/s-2006-960232]
[11]
Chaves, D.S.A.; Costa, S.S.; Almeida, A.P.; Frattani, F.; Assafim, M.; Zingali, R.B. Metabólitos secundários de origem vegetal: Uma fonte potencial de fármacos antitrombóticos. Quim. Nova, 2010, 33(1), 172-180.
[http://dx.doi.org/10.1590/S0100-40422010000100030]
[12]
Bijak, M.; Saluk, J.; Nowak, P. Comparison of anticoagulant effect of selected polyphenols. Acta Pol. Pharm., 2018, 75(2), 533-544.
[13]
Cui, L.; Xing, M.; Xu, L.; Wang, J.; Zhang, X.; Ma, C.; Kang, W. Antithrombotic components of Malus halliana Koehne flowers. Food Chem. Toxicol., 2018, 119, 326-333.
[http://dx.doi.org/10.1016/j.fct.2018.02.049] [PMID: 29496530]
[14]
Lipinski, C.A.; Lombardo, F.; Dominy, B.W.; Feeney, P.J. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv. Drug Deliv. Rev., 2001, 46(1-3), 3-26.
[http://dx.doi.org/10.1016/S0169-409X(00)00129-0] [PMID: 11259830]
[15]
Chua, T.; Koh, H. Medicinal plants as potential sources of lead compounds with anti-platelet and anti-coagulant activities. Mini Rev. Med. Chem., 2006, 6(6), 611-624.
[http://dx.doi.org/10.2174/138955706777435751] [PMID: 16787371]
[16]
Dos Santos, D.S.; Farias Rodrigues, M.M. Atividades farmacológicas dos flavonoides: Um estudo de revisão. Estação Científic, 2017, 7(3), 29-35.
[http://dx.doi.org/10.18468/estcien.2017v7n3.p29-35]
[17]
Março, P.H.; Poppi, R.J.; Scarminio, I.S. Procedimentos analíticos para identificação de antocianinas presentes em extratos naturais. Quim. Nova, 2008, 31(5), 1218-1223.
[http://dx.doi.org/10.1590/S0100-40422008000500051]
[18]
Shi, Z.H.; Li, N.G.; Tang, Y.P.; Wei-Li; Lian-Yin; Yang, J.P.; Hao-Tang; Duan, J.A. Metabolism-based synthesis, biologic evaluation and SARs analysis of O-methylated analogs of quercetin as thrombin inhibitors. Eur. J. Med. Chem., 2012, 54, 210-222.
[http://dx.doi.org/10.1016/j.ejmech.2012.04.044] [PMID: 22647223]
[19]
Zverev, Y.F.; Kudinov, A.V.; Momot, A.P.; Fedoreev, S.A.; Zamyatina, S.V.; Kulesh, N.I.; Lycheva, N.A.; Fedorov, D.V. Antiplatelet and anticoagulant activity of 7-O-gentiobioside formononetin in vitro and in vivo. Bull. Sib. Med., 2016, 15, 30-39.
[http://dx.doi.org/10.20538/1682-0363-2016-4-30-39]
[20]
Guglielmone, H.A.; Agnese, A.M.; Núñez Montoya, S.C.; Cabrera, J.L. Anticoagulant effect and action mechanism of sulphated flavonoids from Flaveria bidentis. Thromb. Res., 2002, 105(2), 183-188.
[http://dx.doi.org/10.1016/S0049-3848(01)00419-4] [PMID: 11958811]
[21]
Teles, Y.; Souza, M.; Souza, M. Sulphated flavonoids: Biosynthesis, structures, and biological activities. Molecules, 2018, 23(2), 480.
[http://dx.doi.org/10.3390/molecules23020480] [PMID: 29473839]
[22]
Correia-da-Silva, M.; Sousa, E.; Duarte, B.; Marques, F.; Carvalho, F.; Cunha-Ribeiro, L.M.; Pinto, M.M.M. Flavonoids with an oligopolysulfated moiety: A new class of anticoagulant agents. J. Med. Chem., 2011, 54(1), 95-106.
[http://dx.doi.org/10.1021/jm1013117] [PMID: 21138266]
[23]
Ku, S.K.; Kim, T.H.; Bae, J.S. Anticoagulant activities of persicarin and isorhamnetin. Vascul. Pharmacol., 2013, 58(4), 272-279.
[http://dx.doi.org/10.1016/j.vph.2013.01.005] [PMID: 23391847]
[24]
Poór, M.; Li, Y.; Kunsági-Máté, S.; Petrik, J.; Vladimir-Knežević, S.; Kőszegi, T. Molecular displacement of warfarin from human serum albumin by flavonoid aglycones. J. Lumin., 2013, 142, 122-127.
[http://dx.doi.org/10.1016/j.jlumin.2013.03.056]
[25]
Carotenuto, A.; De Feo, V.; Fattorusso, E.; Lanzotti, V.; Magno, S.; Cicala, C. The flavonoids of Allium ursinum. Phytochemistry, 1996, 41(2), 531-536.
[http://dx.doi.org/10.1016/0031-9422(95)00574-9] [PMID: 8821433]
[26]
Scotti, M.T.; Speck-Planche, A.; Tavares, J.F.; da Silva, M.S.; Cordeiro, M.N.D.S.; Scotti, L. Virtual screening of alkaloids from apocynaceae with potential antitrypanosomal activity. Curr. Bioinform., 2015, 10(5), 509-519.
[http://dx.doi.org/10.2174/1574893610666151008011042]
[27]
Oprea, T.I. Property distribution of drug-related chemical databases. J. Comput. Aided Mol. Des., 2000, 14(3), 251-264.
[http://dx.doi.org/10.1023/A:1008130001697] [PMID: 10756480]
[28]
Walters, W.P.; Murcko, M.A. Prediction of ‘drug-likeness’. Adv. Drug Deliv. Rev., 2002, 54(3), 255-271.
[http://dx.doi.org/10.1016/S0169-409X(02)00003-0] [PMID: 11922947]
[29]
Zheng, S.; Luo, X.; Chen, G.; Zhu, W.; Shen, J.; Chen, K.; Jiang, H. A new rapid and effective chemistry space filter in recognizing a druglike database. J. Chem. Inf. Model., 2005, 45(4), 856-862.
[http://dx.doi.org/10.1021/ci050031j] [PMID: 16045278]
[30]
Rishton, G.M. Nonleadlikeness and leadlikeness in biochemical screening. Drug Discov. Today, 2003, 8(2), 86-96.
[http://dx.doi.org/10.1016/S1359644602025722] [PMID: 12565011]
[31]
Data warrior V.5.5.0. Available form: http://www.open-molecules.org/datawarrior/download.html
[32]
Maistro, E.L.; de Souza Marques, E.; Fedato, R.P.; Tolentino, F.; da Silva, C.A.C.; Tsuboy, M.S.F.; Resende, F.A.; Varanda, E.A. In vitro assessment of mutagenic and genotoxic effects of coumarin derivatives 6,7-dihydroxycoumarin and 4-methylesculetin. J. Toxicol. Environ. Health A, 2015, 78(2), 109-118.
[http://dx.doi.org/10.1080/15287394.2014.943865] [PMID: 25424619]
[33]
Petruľová-Poracká, V.; Repčák, M.; Vilková, M.; Imrich, J. Coumarins of Matricaria chamomilla L.: Aglycones and glycosides. Food Chem., 2013, 141(1), 54-59.
[http://dx.doi.org/10.1016/j.foodchem.2013.03.004] [PMID: 23768326]
[34]
Venugopala, K. N.; Rashmi, V.; Odhav, B. Review on natural coumarin lead compounds for their pharmacological activity. BioMed. Res. Int., 2013, 2013, 963248.
[http://dx.doi.org/10.1155/2013/963248]
[35]
Lacy, A.; O’Kennedy, R. Studies on coumarins and coumarin-related compounds to determine their therapeutic role in the treatment of cancer. Curr. Pharm. Des., 2004, 10(30), 3797-3811.
[http://dx.doi.org/10.2174/1381612043382693] [PMID: 15579072]
[36]
Murray, R.D.H. Coumarins. Nat. Prod. Rep., 1989, 6(6), 591-624.
[http://dx.doi.org/10.1039/np9890600591] [PMID: 2699016]
[37]
Bruneton, J. Coumarins. In: In: Pharmacognosy, Phytochemistry, Medicinal Plants; Intercepted Ltd: Lavoisler: Paris, 1995; pp. 229-240.
[38]
Najmanová, I.; Doseděl, M.; Hrdina, R.; Anzenbacher, P.; Filipský, T.; Říha, M.; Mladěnka, P. Cardiovascular effects of coumarins besides their antioxidant activity. Curr. Top. Med. Chem., 2015, 15(9), 830-849.
[http://dx.doi.org/10.2174/1568026615666150220112437] [PMID: 25697565]
[39]
Durić, K.; Kovac Besovic, E.E.; Niksic, H.; Muratovic, S.; Sofic, E. Anticoagulant activity of some Artemisia dracunculus leaf extracts. Bosn. J. Basic Med. Sci., 2015, 15(2), 9-14.
[PMID: 26042507]
[40]
Greaves, M. Pharmacogenetics in the management of coumarin anticoagulant therapy: The way forward or an expensive diversion? PLoS Med., 2005, 2(10), e342.
[http://dx.doi.org/10.1371/journal.pmed.0020342] [PMID: 16231978]
[41]
Suarez-Kurtz, G.; Botton, M.R. Pharmacogenetics of coumarin anticoagulants in Brazilians. Expert Opin. Drug Metab. Toxicol., 2015, 11(1), 67-79.
[http://dx.doi.org/10.1517/17425255.2015.976201] [PMID: 25345887]
[42]
Jain, P.K.; Joshi, H. Coumarin: Chemical and pharmacological profile. J. Appl. Pharm. Sci., 2012, 2(6), 236-240.
[43]
Chia, Y.C.; Chang, F.R.; Wang, J.C.; Wu, C.C.; Chiang, M.; Lan, Y.H.; Chen, K.S.; Wu, Y.C. Antiplatelet aggregation coumarins from the leaves of Murraya omphalocarpa. Molecules, 2008, 13(1), 122-128.
[http://dx.doi.org/10.3390/molecules13010122] [PMID: 18259135]
[44]
Chen, H.; Walsh, C.T. Synthesis of novel N-substituted-2-oxo-2H-1-coumarin-3-carboxamide & evaluated for selective anti helicobacter pylori activity & cytotoxicity. Chem. Biol., 2001, 8, 288-301.
[45]
Ikawa, M.; Stahmann, M.A.; Link, K.P. Studies on 4-Hydroxycoumarins. V. The Condensation of α,β-Unsaturated Ketones with 4-Hydroxycoumarin. J. Am. Chem. Soc., 1944, 66(6), 902-906.
[http://dx.doi.org/10.1021/ja01234a019]
[46]
Arora, R.B.; Mathur, C.N. Relationship between structure and anticoagulant activity of coumarin derivatives. Br. J. Pharmacol. Chemother., 1963, 20(1), 29-35.
[http://dx.doi.org/10.1111/j.1476-5381.1963.tb01294.x] [PMID: 19108174]
[47]
Chen, I.; Lin, Y.C.; Tsai, I.L.; Teng, C.M.; Ko, F.N.; Ishikawa, T.; Ishii, H. Coumarins and anti-platelet aggregation constituents from Zanthoxylum schinifolium. Phytochemistry, 1995, 39(5), 1091-1097.
[http://dx.doi.org/10.1016/0031-9422(95)00054-B] [PMID: 7662272]
[48]
Tsai, I.L.; Lin, W.Y.; Teng, C.M.; Ishikawa, T.; Doong, S.L.; Huang, M.W.; Chen, Y.C.; Chen, I.S. Coumarins and antiplatelet constituents from the root bark of Zanthoxylum schinifolium. Planta Med., 2000, 66(7), 618-623.
[http://dx.doi.org/10.1055/s-2000-8648] [PMID: 11105565]
[49]
Lei, L.; Xue, Y.; Liu, Z.; Peng, S.; He, Y.; Zhang, Y.; Fang, R.; Wang, J.; Luo, Z.; Yao, G.; Zhang, J.; Zhang, G.; Song, H.; Zhang, Y. Coumarin derivatives from Ainsliaea fragrans and their anticoagulant activity. Sci. Rep., 2015, 5(1), 13544.
[http://dx.doi.org/10.1038/srep13544] [PMID: 26315062]
[50]
Tsai, I.L.; Wun, M.F.; Teng, C.M.; Ishikawa, T.; Chen, I.S. Anti-platelet aggregation constituents from Formosan toddalia asiatica. Phytochemistry, 1998, 48(8), 1377-1382.
[http://dx.doi.org/10.1016/S0031-9422(97)00678-X] [PMID: 9720317]
[51]
Chen, I.S.; Chang, C.T.; Sheen, W.S.; Teng, C.M.; Tsai, I.L.; Duh, C.Y.; Ko, F.N. Coumarins and antiplatelet aggregation constituents from formosan Peucedanum japonicum. Phytochemistry, 1996, 41(2), 525-530.
[http://dx.doi.org/10.1016/0031-9422(95)00625-7] [PMID: 8821432]
[52]
Kontogiorgis, C.; Nicolotti, O.; Mangiatordi, G.F.; Tognolini, M.; Karalaki, F.; Giorgio, C.; Patsilinakos, A.; Carotti, A.; Hadjipavlou-Litina, D.; Barocelli, E. Studies on the antiplatelet and antithrombotic profile of anti-inflammatory coumarin derivatives. J. Enzyme Inhib. Med. Chem., 2015, 30(6), 925-933.
[http://dx.doi.org/10.3109/14756366.2014.995180] [PMID: 25807297]
[53]
Pilkington, L. Lignans: A chemometric analysis. Molecules, 2018, 23(7), 1666.
[http://dx.doi.org/10.3390/molecules23071666] [PMID: 29987225]
[54]
Umezawa, T. Diversity in lignan biosynthesis. Phytochem. Rev., 2003, 2(3), 371-390.
[http://dx.doi.org/10.1023/B:PHYT.0000045487.02836.32]
[55]
Zhang, P.Y. Cardioprotection by phytochemicals via antiplatelet effects and metabolism modulations. Cell Biochem. Biophys., 2015, 73(2), 369-379.
[http://dx.doi.org/10.1007/s12013-015-0612-x] [PMID: 27352325]
[56]
Simões, C.M.O.; Schenkel, E.P.; de Mello, J.C.P.; Mentz, L.A.; Petrovick, P.R. Farmacognosia: Do produto natural ao medicamento, 1st ed.; Artmed: Porto Alegre, 2017.
[57]
Pan, J.Y.; Chen, S.L.; Yang, M.H.; Wu, J.; Sinkkonen, J.; Zou, K. An update on lignans: Natural products and synthesis. Nat. Prod. Rep., 2009, 26(10), 1251-1292.
[http://dx.doi.org/10.1039/b910940d] [PMID: 19779640]
[58]
Ríos, J.L.; Giner, R.M.; Prieto, J.M. New findings on the bioactivity of lignans. Stud. Nat. Prod. Chem., 2002, 26, 183-292.
[http://dx.doi.org/10.1016/S1572-5995(02)80008-4]
[59]
Pan, W.; Liu, K.; Guan, Y.; Tan, G.T.; Hung, N.V.; Cuong, N.M.; Soejarto, D.D.; Pezzuto, J.M.; Fong, H.H.S.; Zhang, H. Bioactive compounds from vitex leptobotrys. J. Nat. Prod., 2014, 77(3), 663-667.
[http://dx.doi.org/10.1021/np400779v] [PMID: 24404757]
[60]
Shi, Y.N.; Shi, Y.M.; Yang, L.; Li, X.C.; Zhao, J.H.; Qu, Y.; Zhu, H.T.; Wang, D.; Cheng, R.R.; Yang, C.R.; Xu, M.; Zhang, Y.J. Lignans and aromatic glycosides from Piper wallichii and their antithrombotic activities. J. Ethnopharmacol., 2015, 162, 87-96.
[http://dx.doi.org/10.1016/j.jep.2014.12.038] [PMID: 25555357]
[61]
Jung, K.Y.; Lee, I.S.; Oh, S.R.; Kim, D.S.; Lee, H.K. Lignans with platelet activating factor antagonist activity from Schisandra chinensis (Turcz.) Baill. Phytomedicine, 1997, 4(3), 229-231.
[http://dx.doi.org/10.1016/S0944-7113(97)80072-4] [PMID: 23195480]
[62]
Ghisalberti, E.L. Cardiovascular activity of naturally occurring lignans. Phytomedicine, 1997, 4(2), 151-166.
[http://dx.doi.org/10.1016/S0944-7113(97)80063-3] [PMID: 23195404]
[63]
Tsai, W.J.; Shen, C.C.; Tsai, T.H.; Lin, L.C. Lignans from the aerial parts of Saururus chinensis: Isolation, structural characterization, and their effects on platelet aggregation. J. Nat. Prod., 2014, 77(1), 125-131.
[http://dx.doi.org/10.1021/np400772h] [PMID: 24387347]
[64]
Kim, M.G.; Lee, C.H.; Lee, H.S. Anti-platelet aggregation activity of lignans isolated from Schisandra chinensis fruits. J. Korean Soc. Appl. Biol. Chem., 2010, 53(6), 740-745.
[http://dx.doi.org/10.3839/jksabc.2010.112]
[65]
Pyo, M.K.; Lee, Y.; Yun-Choi, H.S. Anti-platelet effect of the constituents isolated from the barks and fruits of Magnolia obovata. Arch. Pharm. Res., 2002, 25(3), 325-328.
[http://dx.doi.org/10.1007/BF02976634] [PMID: 12135105]
[66]
Wu, C.M.; Wu, S.C.; Chung, W.J.; Lin, H.C.; Chen, K.T.; Chen, Y.C.; Hsu, M.F.; Yang, J.M.; Wang, J.P.; Lin, C.N. Antiplatelet effect and selective binding to cyclooxygenase (COX) by molecular docking analysis of flavonoids and lignans. Int. J. Mol. Sci., 2007, 8(8), 830-841.
[http://dx.doi.org/10.3390/i8080830]
[67]
Lee, I.S.; Jung, K.Y.; Oh, S.R.; Kim, D.S.; Kim, J.H.; Lee, J.J.; Lee, H.K.; Lee, S.H.; Kim, E.H.; Cheong, C. Platelet-activating factor antagonistic activity and13C NMR assignment of pregomisin and chamigrenal fromSchisandra chinensis. Arch. Pharm. Res., 1997, 20(6), 633-636.
[http://dx.doi.org/10.1007/BF02975223] [PMID: 18982271]
[68]
Chen, J.J.; Chang, Y.L.; Teng, C.M.; Chen, I.S. Anti-platelet aggregation alkaloids and lignans from Hernandia nymphaeifolia. Planta Med., 2000, 66(3), 251-256.
[http://dx.doi.org/10.1055/s-2000-8562] [PMID: 10821052]
[69]
Chen, C.C.; Hsin, W.C.; Ko, F.N.; Huang, Y.L.; Ou, J.C.; Teng, C.M. Antiplatelet arylnaphthalide lignans from justicia procumbens. J. Nat. Prod., 1996, 59(12), 1149-1150.
[http://dx.doi.org/10.1021/np960443+] [PMID: 8988600]
[70]
Ku, S.K.; Kim, J.A.; Han, C.K.; Bae, J.S. Antithrombotic activities of epi-sesamin in vitro and in vivo. Am. J. Chin. Med., 2013, 41(6), 1313-1327.
[http://dx.doi.org/10.1142/S0192415X13500882] [PMID: 24228603]
[71]
Coy-Barrera, E.D.; Cuca-Suarez, L.E. In vitro anti-inflammatory effects of naturally-occurring compounds from two Lauraceae plants. An. Acad. Bras. Cienc., 2011, 83(4), 1397-1402.
[http://dx.doi.org/10.1590/S0001-37652011005000044] [PMID: 22011769]
[72]
Yang, Y.P.; Cheng, M.J.; Teng, C.M.; Chang, Y.L.; Tsai, I.L.; Chen, I.S. Chemical and anti-platelet constituents from Formosan Zanthoxylum simulans. Phytochemistry, 2002, 61(5), 567-572.
[http://dx.doi.org/10.1016/S0031-9422(02)00268-6] [PMID: 12409024]
[73]
Wu, Y.C.; Chang, G.Y.; Ko, F.N.; Teng, C.M. Bioactive constitutents from the stems of Annona montana. Planta Med., 1995, 61(2), 146-149.
[http://dx.doi.org/10.1055/s-2006-958035] [PMID: 7753921]
[74]
Cheng, M.J.; Wu, C.C.; Tsai, I.L.; Chen, I.S. Chemical and antiplatelet constituents from the stem of Zanthoxylum beecheyanum. J. Chin. Chem. Soc., 2004, 51(5A), 1065-1072.
[http://dx.doi.org/10.1002/jccs.200400159]
[75]
Chen, Y.C.; Liao, C.H.; Chen, I.S. Lignans, an amide and anti-platelet activities from Piper philippinum. Phytochemistry, 2007, 68(15), 2101-2111.
[http://dx.doi.org/10.1016/j.phytochem.2007.05.003] [PMID: 17585974]
[76]
Soares, S.E. Ácidos fenólicos como antioxidantes. Rev. Nutr., 2002, 15(1), 71-81.
[http://dx.doi.org/10.1590/S1415-52732002000100008]
[77]
Luceri, C.; Giannini, L.; Lodovici, M.; Antonucci, E.; Abbate, R.; Masini, E.; Dolara, P. p-Coumaric acid, a common dietary phenol, inhibits platelet activity in vitro and in vivo. Br. J. Nutr., 2007, 97(3), 458-463.
[http://dx.doi.org/10.1017/S0007114507657882] [PMID: 17313706]
[78]
Satake, T.; Kamiya, K.; An, Y.; Oishi Nee Taka, T.; Yamamoto, J. The anti-thrombotic active constituents from Centella asiatica. Biol. Pharm. Bull., 2007, 30(5), 935-940.
[http://dx.doi.org/10.1248/bpb.30.935] [PMID: 17473438]
[79]
Luo, X.; Du, C.; Cheng, H.; Chen, J.; Lin, C. Study on the anticoagulant or procoagulant activities of type II phenolic acid derivatives. Molecules, 2017, 22(12), 2047.
[http://dx.doi.org/10.3390/molecules22122047] [PMID: 29182552]
[80]
Pawlaczyk, I.; Capek, P.; Czerchawski, L.; Bijak, J.; Lewik-Tsirigotis, M.; Pliszczak-Król, A.; Gancarz, R. An anticoagulant effect and chemical characterization of Lythrum salicaria L. glycoconjugates. Carbohydr. Polym., 2011, 86(1), 277-284.
[http://dx.doi.org/10.1016/j.carbpol.2011.04.048]
[81]
Khoo, L. T.; Abas, F.; Abdullah, J. O.; Mohd Tohit, E. R.; Hamid, M. Anticoagulant activity of polyphenolic-polysaccharides isolated from Melastoma malabathricum L. Evid. Based. Complement. Altern. Med, 2014.
[82]
Fuentes, E.; Forero-Doria, O.; Carrasco, G.; Maricán, A.; Santos, L.; Alarcón, M.; Palomo, I. Effect of tomato industrial processing on phenolic profile and antiplatelet activity. Molecules, 2013, 18(9), 11526-11536.
[http://dx.doi.org/10.3390/molecules180911526] [PMID: 24048285]
[83]
Lee, D.H.; Kim, H.H.; Cho, H.J.; Bae, J.S.; Yu, Y.B.; Park, H.J. Antiplatelet effects of caffeic acid due to Ca(2+) mobilizationinhibition via cAMP-dependent inositol-1, 4, 5-trisphosphate receptor phosphorylation. J. Atheroscler. Thromb., 2014, 21(1), 23-37.
[http://dx.doi.org/10.5551/jat.18994] [PMID: 24088646]
[84]
El-Najjar, N.; Gali-Muhtasib, H.; Ketola, R.A.; Vuorela, P.; Urtti, A.; Vuorela, H. The chemical and biological activities of quinones: Overview and implications in analytical detection. Phytochem. Rev., 2011, 10(3), 353-370.
[http://dx.doi.org/10.1007/s11101-011-9209-1]
[85]
Sousa, E.T.; Lopes, W.A.; Andrade, J.B. Fontes, formação, reatividade e determinação de quinonas na atmosfera. Quim. Nova, 2016, 39(4), 486-495.
[86]
Asche, C. Antitumour quinones. Mini Rev. Med. Chem., 2005, 5(5), 449-467.
[http://dx.doi.org/10.2174/1389557053765556] [PMID: 15892687]
[87]
Ko, F.N.; Sheu, S.J.; Liu, Y.M.; Huang, T.F.; Teng, C.M. Inhibition of rabbit platelet aggregation by 1,4-naphthoquinones. Thromb. Res., 1990, 57(3), 453-463.
[http://dx.doi.org/10.1016/0049-3848(90)90261-A] [PMID: 2156351]
[88]
Blackwell, G.J.; Radomski, M.; Moncada, S. Inhibition of human platelet aggregation by vitamin K. Thromb. Res., 1985, 37(1), 103-114.
[http://dx.doi.org/10.1016/0049-3848(85)90037-4] [PMID: 2984800]
[89]
Chang, T.S.; Kim, H.M.; Lee, K.S.; Khil, L.Y.; Mar, W.C.; Ryu, C.K.; Moon, C.K. Thromboxane A2 synthase inhibition and thromboxane A2 receptor blockade by 2-[(4- cyanophenyl)amino]-3-chloro-1,4-naphthalenedione (NQ-Y15) in rat platelets. Biochem. Pharmacol., 1997, 54(2), 259-268.
[http://dx.doi.org/10.1016/S0006-2952(97)00179-2] [PMID: 9271330]
[90]
Kim, S.R.; Lee, J.Y.; Lee, M.Y.; Chung, S.M.; Bae, O.N.; Chung, J.H. Association of quinone-induced platelet anti-aggregation with cytotoxicity. Toxicol. Sci., 2001, 62(1), 176-182.
[http://dx.doi.org/10.1093/toxsci/62.1.176] [PMID: 11399805]
[91]
Wubuli, P.; Xin-ling, W.; Kasimu, R.; Abilimiti, A.; Xiao-mei, W.; Jun-ping, H. Inhibition of platelet aggregation investigation and optimization of extracting technology of 6, 7-dehydroroyleanone in roots of Salvia deserta schang. Zhongguo Shiyan Fangjixue Zazhi, 2013, 2013, 22.
[92]
Wang, X.L.; Wang, X.Q.; Hu, J.P.; Wang, X.M.; Kasimu, R.; Cui, Z.H. Determination of diterpenoid quinone in Salvia deserta roots and its inhibition for platelet aggregation. Zhongguo Shiyan Fangjixue Zazhi, 2016, 2016, 19.
[93]
Ferreira, M A D.; Do Nascimento, N.R.F.; De Sousa, C.M.; Pessoa, O.D.L.; De Lemos, T.L.G.; Ventura, J.S.; Schattner, M.; Chudzinski-Tavassi, A.M. Oncocalyxone A inhibits human platelet aggregation by increasing cGMP and by binding to GP Ibα glycoprotein. Br. J. Pharmacol., 2008, 154(6), 1216-1224.
[http://dx.doi.org/10.1038/bjp.2008.199] [PMID: 18516074]
[94]
Liou, M.J.; Teng, C.M.; Wu, T.S. Constituents from Rubia ustulate Diels and R. yunnanensis Diels and their antiplatelet aggregation activity. J. Chin. Chem. Soc., 2002, 49(6), 1025-1030.
[http://dx.doi.org/10.1002/jccs.200200146]
[95]
Teng, C.M.; Lin, C.H.; Lin, C.N.; Chung, M.; Huang, T.F. Frangulin B, an antagonist of collagen-induced platelet aggregation and adhesion, isolated from Rhamnus formosana. Thromb. Haemost., 1993, 70(6), 1014-1018.
[http://dx.doi.org/10.1055/s-0038-1649717] [PMID: 8165593]
[96]
Liao, C.H.; Ko, F.N.; Wu, C.L.; Teng, C.M. Antiplatelet effect of marchantinquinone, isolated from Reboulia hemisphaerica, in rabbit washed platelets. J. Pharm. Pharmacol., 2010, 52(3), 353-359.
[http://dx.doi.org/10.1211/0022357001773913] [PMID: 10757426]
[97]
Ko, F.N.; Lee, Y.S.; Kuo, S.C.; Chang, Y.S.; Teng, C.M. Inhibition on platelet activation by shikonin derivatives isolated from Arnebia euchroma. Biochim. Biophys. Acta Mol. Cell Res., 1995, 1268(3), 329-334.
[http://dx.doi.org/10.1016/0167-4889(95)00078-7] [PMID: 7548232]
[98]
Lee, C. L.; Yen, M. H.; Chang, F. R.; Wu, C. C.; Wu, Y. C. Antiplatelet aggregation effects of phenanthrenes from Calanthe arisanensis. Nat. Prod. Commun, 2014, 9(1), 1934578X1400900124.
[99]
Roberts, J.C. Naturally occurring xanthones. Chem. Rev., 1961, 61(6), 591-605.
[http://dx.doi.org/10.1021/cr60214a003]
[100]
Vieira, L.M.M.; Kijjoa, A. Naturally-occurring xanthones: Recent developments. Curr. Med. Chem., 2005, 12(21), 2413-2446.
[http://dx.doi.org/10.2174/092986705774370682] [PMID: 16250871]
[101]
Negi, J.S.; Bisht, V.K.; Singh, P.; Rawat, M.S.M.; Joshi, G.P. Naturally occurring xanthones: Chemistry and biology. J. Appl. Chem, 2013, 2013(9)
[102]
Jiang, D.J.; Dai, Z.; Li, Y.J. Pharmacological effects of xanthones as cardiovascular protective agents. Cardiovasc. Drug Rev., 2004, 22(2), 91-102.
[http://dx.doi.org/10.1111/j.1527-3466.2004.tb00133.x] [PMID: 15179447]
[103]
Jantan, I.; Mohd Yasin, Y.H.; Jalil, J.; Murad, S.; Idris, M.S. Antiplatelet aggregation activity of compounds isolated from Guttiferae species in human whole blood. Pharm. Biol., 2009, 47(11), 1090-1095.
[http://dx.doi.org/10.3109/13880200903008641]
[104]
Liou, S.S.; Lin, C-N.; Teng, C-M.; Ko, F-N. γ-Pyrone compounds. 5. Synthesis and antiplatelet effects of xanthonoxypropanolamines and related compounds. J. Pharm. Sci., 1994, 83(3), 391-395.
[http://dx.doi.org/10.1002/jps.2600830325] [PMID: 8207688]
[105]
Teng, C.M.; Chun-Nan, L.; Feng-Nien, K.; Kam-Lin, C.; Tur-Fu, H. Novel inhibitory actions on platelet thromboxane and inositolphosphate formation by xanthones and their glycosides. Biochem. Pharmacol., 1989, 38(21), 3791-3795.
[http://dx.doi.org/10.1016/0006-2952(89)90587-X] [PMID: 2512926]
[106]
Lamponi, S. Bioactive natural compounds with antiplatelet and anticoagulant activity and their potential role in the treatment of thrombotic disorders. Life, 2021, 11(10), 1095.
[http://dx.doi.org/10.3390/life11101095] [PMID: 34685464]
[107]
Tian, S.; Wang, J.; Li, Y.; Li, D.; Xu, L.; Hou, T. The application of in silico drug-likeness predictions in pharmaceutical research. Adv. Drug Deliv. Rev., 2015, 86, 2-10.
[http://dx.doi.org/10.1016/j.addr.2015.01.009] [PMID: 25666163]
[108]
Hossain, S.; Sarkar, B.; Prottoy, M.N.I.; Araf, Y.; Taniya, M.A.; Ullah, M.A. Thrombolytic activity, drug likeness property and adme/t analysis of isolated phytochemicals from ginger (Zingiber officinale) using in silico approaches. Mod. Res. Inflamm., 2019, 8(3), 29-43.
[http://dx.doi.org/10.4236/mri.2019.83003]
[109]
Periwal, V.; Bassler, S.; Andrejev, S.; Gabrielli, N.; Patil, K.R.; Typas, A.; Patil, K.R. Bioactivity assessment of natural compounds using machine learning models trained on target similarity between drugs. PLOS Comput. Biol., 2022, 18(4), e1010029.
[http://dx.doi.org/10.1371/journal.pcbi.1010029] [PMID: 35468126]
[110]
Wu, T.S.; Hsu, H.C.; Wu, P.L.; Teng, C.M.; Wu, Y.C. Rhinacanthin-Q, a naphthoquinone from Rhinacanthus nasutus and its biological activity. Phytochemistry, 1998, 49(7), 2001-2003.
[http://dx.doi.org/10.1016/S0031-9422(98)00425-7] [PMID: 9883591]
[111]
Furusawa, M.; Tsuchiya, H.; Nagayama, M.; Tanaka, T.; Nakaya, K.; Iinuma, M. Anti-platelet and membrane-rigidifying flavonoids in brownish scale of onion. J. Health Sci., 2003, 49(6), 475-480.
[http://dx.doi.org/10.1248/jhs.49.475]
[112]
Carotenuto, A.; Fattorusso, E.; Lanzotti, V.; Magno, S.; De Feo, V.; Cicala, C. The flavonoids of Allium neapolitanum. Phytochemistry, 1997, 44(5), 949-957.
[http://dx.doi.org/10.1016/S0031-9422(96)00663-2] [PMID: 9115694]
[113]
Mira, A.; Alkhiary, W.; Shimizu, K. Antiplatelet and anticoagulant activities of Angelica shikokiana extract and its isolated compounds. Clin. Appl. Thromb. Hemost., 2017, 23(1), 91-99.
[http://dx.doi.org/10.1177/1076029615595879] [PMID: 26177661]
[114]
Ku, S.K.; Kim, T.H.; Lee, S.; Kim, S.M.; Bae, J.S. Antithrombotic and profibrinolytic activities of isorhamnetin-3-O-galactoside and hyperoside. Food Chem. Toxicol., 2013, 53, 197-204.
[http://dx.doi.org/10.1016/j.fct.2012.11.040] [PMID: 23220618]
[115]
Wu, T.S.; Tsang, Z.J.; Wu, P.L.; Lin, F.W.; Li, C.Y.; Teng, C.M.; Lee, K.H. New constituents and antiplatelet aggregation and anti-HIV principles of Artemisia capillaris. Bioorg. Med. Chem., 2001, 9(1), 77-83.
[http://dx.doi.org/10.1016/S0968-0896(00)00225-X] [PMID: 11197349]
[116]
Ryu, R.; Jung, U.J.; Kim, H.J.; Lee, W.; Bae, J.S.; Park, Y.B.; Choi, M.S. Anticoagulant and antiplatelet activities of Artemisia princeps Pampanini and its bioactive components. Prev. Nutr. Food Sci., 2013, 18(3), 181-187.
[http://dx.doi.org/10.3746/pnf.2013.18.3.181] [PMID: 24471130]
[117]
Afifi, F.U.; Aburjai, T. Antiplatelet activity of Varthemia iphionoides. Fitoterapia, 2004, 75(7-8), 629-633.
[http://dx.doi.org/10.1016/j.fitote.2004.04.014] [PMID: 15567236]
[118]
Ryu, R.; Jung, U.J.; Seo, Y.R.; Kim, H.J.; Moon, B.S.; Bae, J.S.; Lee, D.G.; Choi, M.S. Beneficial effect of persimmon leaves and bioactive compounds on thrombosis. Food Sci. Biotechnol., 2015, 24(1), 233-240.
[http://dx.doi.org/10.1007/s10068-015-0031-1]
[119]
Stochmal, A.; Rolnik, A.; Skalski, B.; Zuchowski, J.; Olas, B. Antiplatelet and anticoagulant activity of isorhamnetin and its derivatives isolated from sea buckthorn berries, measured in whole blood. Molecules, 2022, 27(14), 4429.
[http://dx.doi.org/10.3390/molecules27144429] [PMID: 35889302]
[120]
Lee, W.; Bae, J.S. Antithrombotic and antiplatelet activities of orientin in vitro and in vivo. J. Funct. Foods, 2015, 17, 388-398.
[http://dx.doi.org/10.1016/j.jff.2015.05.037]
[121]
Kowalska, I.; Adach, W.; Stochmal, A.; Olas, B. A comparison of the effects of apigenin and seven of its derivatives on selected biomarkers of oxidative stress and coagulation in vitro. Food Chem. Toxicol., 2020, 136, 111016.
[http://dx.doi.org/10.1016/j.fct.2019.111016] [PMID: 31805303]
[122]
Cao, P.; Xie, P.; Wang, X.; Wang, J.; Wei, J.; Kang, W. Chemical constituents and coagulation activity of Agastache rugosa. BMC Complement. Altern. Med., 2017, 17(1), 93.
[http://dx.doi.org/10.1186/s12906-017-1592-8] [PMID: 28166786]
[123]
Ku, S.K.; Bae, J.S. Antithrombotic activities of wogonin and wogonoside via inhibiting platelet aggregation. Fitoterapia, 2014, 98, 27-35.
[http://dx.doi.org/10.1016/j.fitote.2014.07.006] [PMID: 25020199]
[124]
Kwon, H.W.; Irfan, M.; Lee, Y.Y.; Rhee, M.H.; Shin, J.H. Artocarpesin acts on human platelet aggregation through inhibition of cyclic nucleotides and MAPKs. Appl. Biol. Chem., 2022, 65(1), 25.
[http://dx.doi.org/10.1186/s13765-022-00694-x]
[125]
Kuntić, V.; Filipović, I.; Vujić, Z. Effects of rutin and hesperidin and their Al(III) and Cu(II) complexes on in vitro plasma coagulation assays. Molecules, 2011, 16(2), 1378-1388.
[http://dx.doi.org/10.3390/molecules16021378] [PMID: 21301410]
[126]
Gullón, B.; Lú-Chau, T.A.; Moreira, M.T.; Lema, J.M.; Eibes, G. Rutin: A review on extraction, identification and purification methods, biological activities and approaches to enhance its bioavailability. Trends Food Sci. Technol., 2017, 67, 220-235.
[http://dx.doi.org/10.1016/j.tifs.2017.07.008]
[127]
Yin, Z.; Zhang, Y.; Zhang, J.; Wang, J.; Kang, W. Coagulatory active constituents of Malus pumila Mill. flowers. Chem. Cent. J., 2018, 12(1), 126.
[http://dx.doi.org/10.1186/s13065-018-0490-6] [PMID: 30506434]
[128]
Han, N.; Gu, Y.; Ye, C.; Cao, Y.; Liu, Z.; Yin, J. Antithrombotic activity of fractions and components obtained from raspberry leaves (Rubus chingii). Food Chem., 2012, 132(1), 181-185.
[http://dx.doi.org/10.1016/j.foodchem.2011.10.051] [PMID: 26434278]
[129]
Le, H.L.; Nguyen, V.H.; Nguyen, T.D.; Nguyen, T.V.A.; Le, D.H. Potential antiaggregatory and anticoagulant activity of Kaempferia parviflora extract and its methoxyflavones. Ind. Crops Prod., 2023, 192, 116030.
[http://dx.doi.org/10.1016/j.indcrop.2022.116030]
[130]
Gómez-Betancur, I.; Pereañez, J.A.; Patiño, A.C.; Benjumea, D. Inhibitory effect of pinostrobin from Renealmia alpinia, on the enzymatic and biological activities of a PLA2. Int. J. Biol. Macromol., 2016, 89, 35-42.
[http://dx.doi.org/10.1016/j.ijbiomac.2016.04.042] [PMID: 27109758]
[131]
Liu, Y.; Xiong, B.; Qiu, X.; Hao, H.; Sha, A. Study on the antithrombotic effect and physiological mechanism of okanin. Biomed. Pharmacother., 2022, 153, 113358.
[http://dx.doi.org/10.1016/j.biopha.2022.113358] [PMID: 35785699]
[132]
Ku, S.K.; Lee, W.; Kang, M.; Bae, J.S. Antithrombotic activities of aspalathin and nothofagin via inhibiting platelet aggregation and FIIa/FXa. Arch. Pharm. Res., 2015, 38(6), 1080-1089.
[http://dx.doi.org/10.1007/s12272-014-0501-7] [PMID: 25325928]
[133]
Ibrahim, R.S.; Mahrous, R.S.R.; Abu EL-Khair, R.M.; Ross, S.A.; Omar, A.A.; Fathy, H.M. Biologically guided isolation and ADMET profile of new factor Xa inhibitors from Glycyrrhiza glabra roots using in vitro and in silico approaches. RSC Advances, 2021, 11(17), 9995-10001.
[http://dx.doi.org/10.1039/D1RA00359C] [PMID: 35423517]
[134]
Kim, J.M.; Yun-Choi, H.S. Anti-platelet effects of flavonoids and flavonoid-glycosides from Sophora japonica. Arch. Pharm. Res., 2008, 31(7), 886-890.
[http://dx.doi.org/10.1007/s12272-001-1242-1] [PMID: 18704331]
[135]
Zaragozá, C.; Álvarez-Mon, M.Á.; Zaragozá, F.; Villaescusa, L. Flavonoids: Antiplatelet effect as inhibitors of COX-1. Molecules, 2022, 27(3), 1146.
[http://dx.doi.org/10.3390/molecules27031146] [PMID: 35164411]
[136]
Chen, S.; Lv, K.; Sharda, A.; Deng, J.; Zeng, W.; Zhang, C.; Hu, Q.; Jin, P.; Yao, G.; Xu, X.; Ming, Z.; Fang, C. Anti-thrombotic effects mediated by dihydromyricetin involve both platelet inhibition and endothelial protection. Pharmacol. Res., 2021, 167, 105540.
[http://dx.doi.org/10.1016/j.phrs.2021.105540] [PMID: 33711433]
[137]
Chun-Nan, L.; Wen-Liang, S.; Feng-Nien, K.; Che-Ming, T. Antiplatelet activity of some prenylflavonoids. Biochem. Pharmacol., 1993, 45(2), 509-512.
[http://dx.doi.org/10.1016/0006-2952(93)90089-F] [PMID: 8435100]
[138]
Golfakhrabadi, F.; Abdollahi, M.; Ardakani, M.R.S.; Saeidnia, S.; Akbarzadeh, T.; Ahmadabadi, A.N.; Ebrahimi, A.; Yousefbeyk, F.; Hassanzadeh, A.; Khanavi, M. Anticoagulant activity of isolated coumarins (suberosin and suberenol) and toxicity evaluation of Ferulago carduchorum in rats. Pharm. Biol., 2014, 52(10), 1335-1340.
[http://dx.doi.org/10.3109/13880209.2014.892140] [PMID: 25017518]
[139]
Ko, F.N.; Wu, T.S.; Liou, M.J.; Huang, T.F.; Teng, C.M. Inhibition of platelet thromboxane formation and phosphoinositides breakdown by osthole from Angelica pubescens. Thromb. Haemost., 1989, 62(3), 996-999.
[http://dx.doi.org/10.1055/s-0038-1651041] [PMID: 2556815]
[140]
Rosselli, S.; Maggio, A.; Bellone, G.; Formisano, C.; Basile, A.; Cicala, C.; Alfieri, A.; Mascolo, N.; Bruno, M. Antibacterial and anticoagulant activities of coumarins isolated from the flowers of Magydaris tomentosa. Planta Med., 2007, 73(2), 116-120.
[http://dx.doi.org/10.1055/s-2006-951772] [PMID: 17128388]
[141]
Chen, K.S.; Wu, C.C.; Chang, F.R.; Chia, Y.C.; Chiang, M.Y.; Wang, W.Y.; Wu, Y.C. Bioactive coumarins from the leaves of Murraya omphalocarpa. Planta Med., 2003, 69(7), 654-657.
[http://dx.doi.org/10.1055/s-2003-41112] [PMID: 12898423]
[142]
Teng, C.M.; Li, H.L.; Wu, T.S.; Huang, S.C.; Huang, T.F. Antiplatelet actions of some coumarin compounds isolated from plant sources. Thromb. Res., 1992, 66(5), 549-557.
[http://dx.doi.org/10.1016/0049-3848(92)90309-X] [PMID: 1523611]
[143]
Tawata, M.; Yoda, Y.; Aida, K.; Shindo, H.; Sasaki, H.; Chin, M.; Onaya, T. Anti-platelet action of GU-7, a 3-arylcoumarin derivative, purified from glycyrrhizae radix. Planta Med., 1990, 56(3), 259-263.
[http://dx.doi.org/10.1055/s-2006-960951] [PMID: 2392489]
[144]
Weng, J.R.; Ko, H.H.; Yeh, T.L.; Lin, H.C.; Lin, C.N. Two new arylnaphthalide lignans and antiplatelet constituents from Justicia procumbens. Arch. Pharm., 2004, 337(4), 207-212.
[http://dx.doi.org/10.1002/ardp.200300841] [PMID: 15065080]
[145]
Pan, J.X.; Hensens, O.D.; Zink, D.L.; Chang, M.N.; Hwang, S. Lignans with platelet activating factor antagonist activity from Magnolia biondii. Phytochemistry, 1987, 26(5), 1377-1379.
[http://dx.doi.org/10.1016/S0031-9422(00)81816-6]
[146]
Khan, A.N.; Fatima, I.; Khaliq, U.A.; Malik, A.; Miana, G.A.; Qureshi, Z.R.; Rasheed, H. Potent anti-platelet constituents from Centaurea iberica. Molecules, 2011, 16(3), 2053-2064.
[http://dx.doi.org/10.3390/molecules16032053] [PMID: 21358593]
[147]
Matsunaga, K.; Shibuya, M.; Ohizumi, Y. Imperanene, a novel phenolic compound with platelet aggregation inhibitory activity from Imperata cylindrica. J. Nat. Prod., 1995, 58(1), 138-139.
[http://dx.doi.org/10.1021/np50115a022] [PMID: 7760071]
[148]
Wu, T.S.; Leu, Y.L.; Chan, Y.Y.; Yu, S.M.; Teng, C.M.; Su, J.D. Lignans and an aromatic acid from Cinnamomum philippinense. Phytochemistry, 1994, 36(3), 785-788.
[http://dx.doi.org/10.1016/S0031-9422(00)89818-0]
[149]
Braquet, P.; Godfroid, J.J. PAF-acether specific binding sites: 2. Design of specific antagonists. Trends Pharmacol. Sci., 1986, 7, 397-403.
[http://dx.doi.org/10.1016/0165-6147(86)90401-3]
[150]
Coy-Barrera, E.D.; Cuca-Suárez, L.E.; Sefkow, M. PAF-antagonistic bicyclo[3.2.1]octanoid neolignans from leaves of Ocotea macrophylla Kunth. (Lauraceae). Phytochemistry, 2009, 70(10), 1309-1314.
[http://dx.doi.org/10.1016/j.phytochem.2009.07.010] [PMID: 19674762]
[151]
Kuroyanagi, M.; Yoshida, K.; Yamamoto, A.; MiWA, M. Bicyclo[3.2.1]octane and 6-Oxabicyclo[3.2.2]nonane Type Neolignans from Magnolia denudata. Chem. Pharm. Bull., 2000, 48(6), 832-837.
[http://dx.doi.org/10.1248/cpb.48.832] [PMID: 10866144]
[152]
Jung, K.Y.; Kim, D.S.; Oh, S.R.; Park, S.H.; Lee, I.S.; Lee, J.J.; Shin, D.H.; Lee, H.K. Magnone A and B, novel anti-PAF tetrahydrofuran lignans from the flower buds of Magnolia fargesii. J. Nat. Prod., 1998, 61(6), 808-811.
[http://dx.doi.org/10.1021/np970445+] [PMID: 9644071]
[153]
Seo, M.J.; Kang, B.W.; Jeong, Y.K. Identification of a neolignan glycoside from the pine tree, Pinus densiflora showed antithrombotic activity. J. Life Sci., 2014, 24(8), 873-879.
[http://dx.doi.org/10.5352/JLS.2014.24.8.873]
[154]
Shen, T.Y.; Hussaini, I.M. Kadsurenone and other related lignans as antagonists of platelet-activating factor receptor. Methods Enzymol., 1990, 187, 446-454.
[http://dx.doi.org/10.1016/0076-6879(90)87051-4] [PMID: 2172742]
[155]
Qu, W.; Xue, J.; Wu, F.H.; Liang, J.Y. Lignans from saururus chinensis with antiplatelet aggregation and neuroprotective activities. Chem. Nat. Compd., 2014, 50(5), 814-818.
[http://dx.doi.org/10.1007/s10600-014-1090-x]
[156]
Zhang, S.X.; Chen, K.; Liu, X.J.; Zhang, D.C.; Tao-Wiedmann, T.W.; Leu, S.; McPhail, A.T.; Lee, K.H. The isolation and structural elucidation of three new neolignans, piperulins [corrected] A, B, and C, as platelet activating factor receptor antagonists from Piper puberulum. J. Nat. Prod., 1995, 58(4), 540-547.
[http://dx.doi.org/10.1021/np50118a009] [PMID: 7623032]
[157]
Ma, Y.; Han, G.Q.; Li, C.L.; Cheng, J.R.; Arison, B.H.; Hwang, S.B. Neolignans from Piper polysyphorum C. DC. Yao xue xue bao=. Yao Xue Xue Bao, 1991, 26(5), 345-350.
[PMID: 1957684]
[158]
Liu, J.S.; Zhang, J.; Qi, Y.D.; Jia, X.G.; Zhang, B.G.; Liu, H.T. Four new lignans from Kadsura interior and their bioactivity. Molecules, 2018, 23(6), 1279.
[http://dx.doi.org/10.3390/molecules23061279] [PMID: 29861462]
[159]
Zhang, J.; Chen, J.; Liang, Z.; Zhao, C. New lignans and their biological activities. Chem. Biodivers., 2014, 11(1), 1-54.
[http://dx.doi.org/10.1002/cbdv.201100433] [PMID: 24443425]
[160]
Shen, Y.C.; Lin, Y.C.; Ahmed, A.F.; Cheng, Y.B.; Liaw, C.C.; Kuo, Y.H. Four new nonaoxygenated C18 dibenzocylcooctadiene lignans from Kadsura philippinensis. Chem. Pharm. Bull., 2007, 55(2), 280-283.
[http://dx.doi.org/10.1248/cpb.55.280] [PMID: 17268102]
[161]
Zhuo, J.X.; Wang, Y.H.; Su, X.L.; Mei, R.Q.; Yang, J.; Kong, Y.; Long, C.L. Neolignans from Selaginella moellendorffii. Nat. Prod. Bioprospect., 2016, 6(3), 161-166.
[http://dx.doi.org/10.1007/s13659-016-0095-5] [PMID: 27052962]
[162]
Le, H.L.; Nguyen, T.M.H.; Vu, T.T.; Nguyen, T.T.O.; Ly, H.D.T.; Le, N.T.; Nguyen, V.H.; Nguyen, T.V.A. Potent antiplatelet aggregation, anticoagulant and antioxidant activity of aerial Canna x generalis L.H Bailey & E.Z Bailey and its phytoconstituents. S. Afr. J. Bot., 2022, 147, 882-893.
[http://dx.doi.org/10.1016/j.sajb.2022.03.035]
[163]
Wang, S.; Gao, Z.; Chen, X.; Lian, X.; Zhu, H.; Zheng, J.; Sun, L. The anticoagulant ability of ferulic acid and its applications for improving the blood compatibility of silk fibroin. Biomed. Mater., 2008, 3(4), 044106.
[http://dx.doi.org/10.1088/1748-6041/3/4/044106] [PMID: 19029605]
[164]
Choi, J.H.; Park, J.K.; Kim, K.M.; Lee, H.J.; Kim, S. In vitro and in vivo antithrombotic and cytotoxicity effects of ferulic acid. J. Biochem. Mol. Toxicol., 2018, 32(1), e22004.
[http://dx.doi.org/10.1002/jbt.22004] [PMID: 29077251]
[165]
Wee, J.J.; Kim, Y.S.; Kyung, J.S.; Song, Y.B.; Do, J.H.; Kim, D.C.; Lee, S.D. Identification of anticoagulant components in Korean red ginseng. J. Ginseng Res., 2010, 34(4), 355-362.
[http://dx.doi.org/10.5142/jgr.2010.34.4.355]
[166]
Choi, J.H.; Kim, S. Mechanisms of attenuation of clot formation and acute thromboembolism by syringic acid in mice. J. Funct. Foods, 2018, 43, 112-122.
[http://dx.doi.org/10.1016/j.jff.2018.02.004]
[167]
Lim, M.Y.; Park, Y.H.; Filho, D.J.; Kim, M.K.; Lee, H.S. Antiplatelet activity of gallic acid and methyl gallate. Food Sci. Biotechnol., 2004, 13(6), 806-809.
[168]
Chang, S.S.; Lee, V.S.Y.; Tseng, Y.L.; Chang, K.C.; Chen, K.B.; Chen, Y.L.; Li, C.Y. Gallic acid attenuates platelet activation and platelet-leukocyte aggregation: Involving pathways of Akt and GSK3β. Evid. Based Complement. Alternat. Med., 2012, 2012, 1-8.
[http://dx.doi.org/10.1155/2012/683872]
[169]
Fan, H.Y.; Fu, F.H.; Yang, M.Y.; Xu, H.; Zhang, A.H.; Liu, K. Antiplatelet and antithrombotic activities of salvianolic acid A. Thromb. Res., 2010, 126(1), e17-e22.
[http://dx.doi.org/10.1016/j.thromres.2010.04.006] [PMID: 20451955]
[170]
Wang, J.; Xiong, X.; Feng, B. Cardiovascular effects of salvianolic acid B. Evid. Based Complement Altern. Med., 2013, 2013, 247948.
[http://dx.doi.org/10.1155/2013/247948]
[171]
Zheng, X.; Liu, H.; Ma, M.; Ji, J.; Zhu, F.; Sun, L. Anti-thrombotic activity of phenolic acids obtained from Salvia miltiorrhiza f. alba in TNF-α-stimulated endothelial cells via the NF-κB/JNK/p38 MAPK signaling pathway. Arch. Pharm. Res., 2021, 44(4), 427-438.
[http://dx.doi.org/10.1007/s12272-021-01325-7] [PMID: 33847919]
[172]
Veach, D.; Hosking, H.; Thompson, K.; Santhakumar, A.B. Anti-platelet and anti-thrombogenic effects of shikimic acid in sedentary population. Food Funct., 2016, 7(8), 3609-3616.
[http://dx.doi.org/10.1039/C6FO00927A] [PMID: 27480079]
[173]
Lis, B.; Jedrejek, D.; Moldoch, J.; Stochmal, A.; Olas, B. The anti-oxidative and hemostasis-related multifunctionality of L-chicoric acid, the main component of dandelion: An in vitro study of its cellular safety, antioxidant and anti-platelet properties, and effect on coagulation. J. Funct. Foods, 2019, 62, 103524.
[http://dx.doi.org/10.1016/j.jff.2019.103524]
[174]
Pyo, M.K.; Jin, J.L.; Koo, Y.K.; Yun-Choi, H.S. Phenolic and furan type compounds isolated from Gastrodia elata and their anti-platelet effects. Arch. Pharm. Res., 2004, 27(4), 381-385.
[http://dx.doi.org/10.1007/BF02980077] [PMID: 15180301]
[175]
Fuentes, E.; Caballero, J.; Alarcón, M.; Rojas, A.; Palomo, I. Chlorogenic acid inhibits human platelet activation and thrombus formation. PLoS One, 2014, 9(3), e90699.
[http://dx.doi.org/10.1371/journal.pone.0090699] [PMID: 24598787]
[176]
Choi, J.H.; Kim, S. Investigation of the anticoagulant and antithrombotic effects of chlorogenic acid. J. Biochem. Mol. Toxicol., 2017, 31(3), e21865.
[http://dx.doi.org/10.1002/jbt.21865] [PMID: 27704645]
[177]
Chang, M.C.; Chang, H.H.; Wang, T.M.; Chan, C.P.; Lin, B.R.; Yeung, S.Y.; Yeh, C.Y.; Cheng, R.H.; Jeng, J.H. Antiplatelet effect of catechol is related to inhibition of cyclooxygenase, reactive oxygen species, ERK/p38 signaling and thromboxane A2 production. PLoS One, 2014, 9(8), e104310.
[http://dx.doi.org/10.1371/journal.pone.0104310] [PMID: 25122505]
[178]
Zou, Q.Y.; Pang, D.R.; Pei, Y.J.; Luo, Y.G.; Wang, Y.X.; Huang, H.; Zhu, Z.X.; Huo, H.X.; Zhao, Y.F.; Tu, P.F.; Li, J. Platelet-inhibitory phenolic constituents from the fruits of Daemonorops draco. Fitoterapia, 2023, 167, 105507.
[http://dx.doi.org/10.1016/j.fitote.2023.105507] [PMID: 37054821]
[179]
Li, J.Y.; Chen, R.J.; Huang, L.T.; Lee, T.Y.; Lu, W.J.; Lin, K.H. Embelin as a novel inhibitor of PKC in the prevention of platelet activation and thrombus formation. J. Clin. Med., 2019, 8(10), 1724.
[http://dx.doi.org/10.3390/jcm8101724] [PMID: 31635287]
[180]
Wang, A.K.; Geng, T.; Jiang, W.; Zhang, Q.; Zhang, Y.; Chen, P.; Shan, M.; Zhang, M.; Tang, Y.; Ding, A.; Zhang, L. Simultaneous determination of twelve quinones from Rubiae radix et Rhizoma before and after carbonization processing by UPLC-MS/MS and their antithrombotic effect on zebrafish. J. Pharm. Biomed. Anal., 2020, 191, 113638.
[http://dx.doi.org/10.1016/j.jpba.2020.113638] [PMID: 32980794]
[181]
Goh, S.H.; Jantan, I. A xanthone from Calophyllum inophyllum. Phytochemistry, 1991, 30(1), 366-367.
[http://dx.doi.org/10.1016/0031-9422(91)84160-T]
[182]
Jantan, I.; Pisar, M.M.; Idris, M.S.; Taher, M.; Ali, R.M. In vitro inhibitory effect of rubraxanthone isolated from Garcinia parvifolia on platelet-activating factor receptor binding. Planta Med., 2002, 68(12), 1133-1134.
[http://dx.doi.org/10.1055/s-2002-36343] [PMID: 12494345]
[183]
Yoo, H.; Ku, S.K.; Lee, W.; Kwak, S.; Baek, Y.D.; Min, B.W.; Jeong, G.S.; Bae, J.S. Antiplatelet, anticoagulant, and profibrinolytic activities of cudratricusxanthone A. Arch. Pharm. Res., 2014, 37(8), 1069-1078.
[http://dx.doi.org/10.1007/s12272-013-0290-4] [PMID: 24234914]
[184]
Goh, S.H.; Jantan, I.; Gray, A.I.; Waterman, P.G. Prenylated xanthones from Garcinia opaca. Phytochemistry, 1992, 31(4), 1383-1386.
[http://dx.doi.org/10.1016/0031-9422(92)80296-Q]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy