Generic placeholder image

当代肿瘤药物靶点

Editor-in-Chief

ISSN (Print): 1568-0096
ISSN (Online): 1873-5576

Review Article

NADPH氧化酶2 (NOX2)与肿瘤耐药的关系

卷 24, 期 12, 2024

发表于: 15 February, 2024

页: [1195 - 1212] 页: 18

弟呕挨: 10.2174/0115680096277328240110062433

价格: $65

摘要

NADPH氧化酶作为细胞内活性氧(ROS)的主要来源,在机体的免疫反应和氧化应激反应中起着重要作用。NADPH氧化酶2 (NADPH oxidase 2, NOX2)是NADPH氧化酶家族中第一个也是最具代表性的成员,其在肿瘤细胞发育中的作用越来越受到人们的关注。我们之前的研究表明,NOX2的关键亚基p40phox中的NCF4多态性影响了弥漫性大B细胞淋巴瘤患者使用利美昔单抗治疗的结果。假设NOX2介导的ROS可增强某些抗肿瘤药物的细胞毒作用,有利于肿瘤患者。一些文献综述了NOX2及其同源物介导的ROS在抗肿瘤治疗中的作用,但很少有研究关注NOX2的表达与抗肿瘤耐药之间的关系。本文系统介绍了以NOX2为代表的氮氧化物家族,并对最新的NOX2抑制剂和激动剂进行了分类。这将有助于研究者更加理性、客观地认识NOX2在肿瘤耐药中的双重作用,并有望为肿瘤治疗和克服肿瘤耐药提供新的思路。

关键词: 活性氧,NADPH氧化酶2,癌症药物开发,耐药性,癌症,肿瘤

图形摘要
[1]
Farhan, M. Insights on the role of polyphenols in combating cancer drug resistance. Biomedicines, 2023, 11(6), 1709.
[http://dx.doi.org/10.3390/biomedicines11061709] [PMID: 37371804]
[2]
Lim, S.H.; Hwang, I.G.; Ji, J.H.; Oh, S.Y.; Yi, J.H.; Lim, D.H.; Lim, H.Y.; Lee, S.J.; Park, S.H. Intrinsic resistance to sunitinib in patients with metastatic renal cell carcinoma. Asia Pac. J. Clin. Oncol., 2017, 13(1), 61-67.
[http://dx.doi.org/10.1111/ajco.12465] [PMID: 27030134]
[3]
Li, Y.; Wang, Z.; Ajani, J.A.; Song, S. Drug resistance and Cancer stem cells. Cell Commun. Signal., 2021, 19(1), 19.
[http://dx.doi.org/10.1186/s12964-020-00627-5] [PMID: 33588867]
[4]
Holohan, C.; Van Schaeybroeck, S.; Longley, D.B.; Johnston, P.G. Cancer drug resistance: An evolving paradigm. Nat. Rev. Cancer, 2013, 13(10), 714-726.
[http://dx.doi.org/10.1038/nrc3599] [PMID: 24060863]
[5]
Khamisipour, G.; Jadidi-Niaragh, F.; Jahromi, A.S.; zandi, K.; Hojjat-Farsangi, M. Mechanisms of tumor cell resistance to the current targeted-therapy agents. Tumour Biol., 2016, 37(8), 10021-10039.
[http://dx.doi.org/10.1007/s13277-016-5059-1] [PMID: 27155851]
[6]
Nikolaou, M.; Pavlopoulou, A.; Georgakilas, A.G.; Kyrodimos, E. The challenge of drug resistance in cancer treatment: A current overview. Clin. Exp. Metastasis, 2018, 35(4), 309-318.
[http://dx.doi.org/10.1007/s10585-018-9903-0] [PMID: 29799080]
[7]
Ciszewski, W.M.; Sobierajska, K.; Stasiak, A.; Wagner, W. Lactate drives cellular DNA repair capacity: Role of lactate and related short-chain fatty acids in cervical cancer chemoresistance and viral infection. Front. Cell Dev. Biol., 2022, 10, 1012254.
[http://dx.doi.org/10.3389/fcell.2022.1012254] [PMID: 36340042]
[8]
Asić, K. Dominant mechanisms of primary resistance differ from dominant mechanisms of secondary resistance to targeted therapies. Crit. Rev. Oncol. Hematol., 2016, 97, 178-196.
[http://dx.doi.org/10.1016/j.critrevonc.2015.08.004] [PMID: 26364890]
[9]
Yadav, D.; Rao, G.S.N.K.; Paliwal, D.; Singh, A.; Shadab, S. Insight into the basic mechanisms and various modulation strategies involved in cancer drug resistance. Curr. Cancer Drug Targets, 2023, 23(10), 778-791.
[http://dx.doi.org/10.2174/1568009623666230508110258] [PMID: 37157204]
[10]
Hu, G.; Zhang, Y.; Ouyang, K.; Xie, F.; Fang, H.; Yang, X.; Liu, K.; Wang, Z.; Tang, X.; Liu, J.; Yang, L.; Jiang, Z.; Tao, W.; Zhou, H.; Zhang, L. In vivo acquired sorafenib-resistant patient-derived tumor model displays alternative angiogenic pathways, multi-drug resistance and chromosome instability. Oncol. Lett., 2018.
[http://dx.doi.org/10.3892/ol.2018.9078]
[11]
Taylor, S.T.; Hickman, J.A.; Dive, C. Epigenetic determinants of resistance to etoposide regulation of Bcl-X(L) and Bax by tumor microenvironmental factors. J. Natl. Cancer Inst., 2000, 92(1), 18-23.
[http://dx.doi.org/10.1093/jnci/92.1.18] [PMID: 10620629]
[12]
Jiang, E.; Yan, T.; Xu, Z.; Shang, Z. Tumor microenvironment and cell fusion. BioMed Res. Int., 2019, 2019, 1-12.
[http://dx.doi.org/10.1155/2019/5013592] [PMID: 31380426]
[13]
Rebucci, M.; Michiels, C. Molecular aspects of cancer cell resistance to chemotherapy. Biochem. Pharmacol., 2013, 85(9), 1219-1226.
[http://dx.doi.org/10.1016/j.bcp.2013.02.017] [PMID: 23435357]
[14]
Yang, Y.; Neo, S.Y.; Chen, Z.; Cui, W.; Chen, Y.; Guo, M.; Wang, Y.; Xu, H.; Kurzay, A.; Alici, E.; Holmgren, L.; Haglund, F.; Wang, K.; Lundqvist, A. Thioredoxin activity confers resistance against oxidative stress in tumor-infiltrating NK cells. J. Clin. Invest., 2020, 130(10), 5508-5522.
[http://dx.doi.org/10.1172/JCI137585] [PMID: 32673292]
[15]
Lin, L.S.; Wang, J.F.; Song, J.; Liu, Y.; Zhu, G.; Dai, Y.; Shen, Z.; Tian, R.; Song, J.; Wang, Z.; Tang, W.; Yu, G.; Zhou, Z.; Yang, Z.; Huang, T.; Niu, G.; Yang, H.H.; Chen, Z.Y.; Chen, X. Cooperation of endogenous and exogenous reactive oxygen species induced by zinc peroxide nanoparticles to enhance oxidative stress-based cancer therapy. Theranostics, 2019, 9(24), 7200-7209.
[http://dx.doi.org/10.7150/thno.39831] [PMID: 31695762]
[16]
Kiyokawa, H.; Hoshino, Y.; Sakaguchi, K.; Muro, S.; Yodoi, J. Redox regulation in aging lungs and therapeutic implications of antioxidants in COPD. Antioxidants, 2021, 10
[17]
Cho, K.J.; Seo, J.M.; Kim, J.H. Bioactive lipoxygenase metabolites stimulation of NADPH oxidases and reactive oxygen species. Mol. Cells, 2011, 32(1), 1-5.
[http://dx.doi.org/10.1007/s10059-011-1021-7] [PMID: 21424583]
[18]
Kohler, A.; Barrientos, A.; Fontanesi, F.; Ott, M. The functional significance of mitochondrial respiratory chain supercomplexes. EMBO Rep., 2023, 24(11), e57092.
[http://dx.doi.org/10.15252/embr.202357092] [PMID: 37828827]
[19]
Ameziane El Hassani, R.; Buffet, C.; Leboulleux, S.; Dupuy, C. Oxidative stress in thyroid carcinomas: Biological and clinical significance. End.-Related Cancer, 2019, 26, R131-R143.
[20]
Srinivas, U.S.; Vellayappan, B.A. Jeyasekharan, ROS and the DNA damage response in cancer. Redox Biol., 2019, 25, 101084.
[21]
Pavlova, N.N.; Zhu, J.; Thompson, C.B. The hallmarks of cancer metabolism: Still emerging. Cell Metab., 2022, 34(3), 355-377.
[http://dx.doi.org/10.1016/j.cmet.2022.01.007] [PMID: 35123658]
[22]
Mendes, F.; Pereira, E.; Martins, D.; Tavares-Silva, E.; Pires, A.S.; Abrantes, A.M.; Figueiredo, A.; Botelho, M.F. Oxidative stress in bladder cancer: An ally or an enemy? Mol. Biol. Rep., 2021, 48(3), 2791-2802.
[http://dx.doi.org/10.1007/s11033-021-06266-4] [PMID: 33733384]
[23]
Wang, Y.; Qi, H.; Liu, Y.; Duan, C.; Liu, X.; Xia, T.; Chen, D.; Piao, H.; Liu, H.X. The double-edged roles of ROS in cancer prevention and therapy. Theranostics, 2021, 11(10), 4839-4857.
[http://dx.doi.org/10.7150/thno.56747] [PMID: 33754031]
[24]
Kotsantis, P.; Petermann, E.; Boulton, S.J. Mechanisms of oncogene-induced replication stress: Jigsaw falling into place. Cancer Discov., 2018, 8(5), 537-555.
[http://dx.doi.org/10.1158/2159-8290.CD-17-1461] [PMID: 29653955]
[25]
Barrera, G.; Cucci, M.A.; Grattarola, M.; Dianzani, C.; Muzio, G.; Pizzimenti, S. Control of oxidative stress in cancer chemoresistance: Spotlight on Nrf2 role. Antioxidants, 2021, 10.
[26]
Weinberg, F.; Ramnath, N.; Nagrath, D. Reactive oxygen species in the tumor microenvironment: An overview. Cancers, 2019, 11(8), 1191.
[http://dx.doi.org/10.3390/cancers11081191] [PMID: 31426364]
[27]
Redza-Dutordoir, M.; Averill-Bates, D.A. Activation of apoptosis signalling pathways by reactive oxygen species. Biochim. Biophys. Acta Mol. Cell Res., 2016, 1863(12), 2977-2992.
[http://dx.doi.org/10.1016/j.bbamcr.2016.09.012] [PMID: 27646922]
[28]
Kim, T.H.; Lee, H.C.; Kim, J.H.; Hewawaduge, C.Y.; Chathuranga, K.; Chathuranga, W.A.G.; Ekanayaka, P.; Wijerathne, H.M.S.M.; Kim, C.J.; Kim, E.; Lee, J.S. Fas-associated factor 1 mediates NADPH oxidase-induced reactive oxygen species production and proinflammatory responses in macrophages against Listeria infection. PLoS Pathog., 2019, 15(8), e1008004.
[http://dx.doi.org/10.1371/journal.ppat.1008004] [PMID: 31412082]
[29]
Xu, W.T.; Shen, G.N.; Li, T.Z.; Zhang, Y.; Zhang, T.; Xue, H.; Zuo, W.B.; Li, Y.N.; Zhang, D.J.; Jin, C.H. Isoorientin induces the apoptosis and cell cycle arrest of A549 human lung cancer cells via the ROS-regulated MAPK, STAT3 and NF-κB signaling pathways. Int. J. Oncol., 2020, 57(2), 550-561.
[http://dx.doi.org/10.3892/ijo.2020.5079] [PMID: 32626938]
[30]
Wang, J.; Li, Y.; Zhang, J.; Luo, C. Isoliquiritin modulates ferroptosis via NF-κB signalling inhibition and alleviates doxorubicin resistance in breast cancer. Immunopharmacol. Immunotoxicol., 2023, 45(4), 443-454.
[31]
Mortezaee, K.; Goradel, N.H.; Amini, P.; Shabeeb, D.; Musa, A.E.; Najafi, M.; Farhood, B. NADPH oxidase as a target for modulation of radiation response; implications to carcinogenesis and radiotherapy. Curr. Mol. Pharmacol., 2019, 12(1), 50-60.
[http://dx.doi.org/10.2174/1874467211666181010154709] [PMID: 30318012]
[32]
Paolillo, R.; Boulanger, M.; Gâtel, P.; Gabellier, L.; De Toledo, M.; Tempé, D.; Hallal, R.; Akl, D.; Moreaux, J.; Baik, H.; Gueret, E.; Recher, C.; Sarry, J.E.; Cartron, G.; Piechaczyk, M.; Bossis, G. The NADPH oxidase NOX2 is a marker of adverse prognosis involved in chemoresistance of acute myeloid leukemias. Haematologica, 2022, 107(11), 2562-2575.
[http://dx.doi.org/10.3324/haematol.2021.279889] [PMID: 35172562]
[33]
Weng, M.S.; Chang, J.H.; Hung, W.Y.; Yang, Y.C.; Chien, M.H. The interplay of reactive oxygen species and the epidermal growth factor receptor in tumor progression and drug resistance. J. Exp. Clin. Cancer Res., 2018, 37(1), 61.
[http://dx.doi.org/10.1186/s13046-018-0728-0] [PMID: 29548337]
[34]
Trevelin, S.C.; Shah, A.M.; Lombardi, G. Beyond bacterial killing: NADPH oxidase 2 is an immunomodulator. Immunol. Lett., 2020, 221, 39-48.
[http://dx.doi.org/10.1016/j.imlet.2020.02.009] [PMID: 32092360]
[35]
Ogboo, B.C.; Grabovyy, U.V.; Maini, A.; Scouten, S.; van der Vliet, A.; Mattevi, A.; Heppner, D.E. Architecture of the NADPH oxidase family of enzymes. Redox Biol., 2022, 52, 102298.
[36]
Taylor, J.P.; Tse, H.M. The role of NADPH oxidases in infectious and inflammatory diseases. Redox Biol., 2021, 48, 102159.
[37]
Shanmugasundaram, K.; Nayak, B.K.; Friedrichs, W.E.; Kaushik, D.; Rodriguez, R.; Block, K. NOX4 functions as a mitochondrial energetic sensor coupling cancer metabolic reprogramming to drug resistance. Nat. Commun., 2017, 8(1), 997.
[http://dx.doi.org/10.1038/s41467-017-01106-1] [PMID: 29051480]
[38]
Smith, D.; Lloyd, L.; Wei, E.; Radmanesh, P.; Wei, C.C. Calmodulin binding to the dehydrogenase domain of NADPH oxidase 5 alters its oligomeric state. Biochem. Biophys. Rep., 2022, 29, 101198.
[http://dx.doi.org/10.1016/j.bbrep.2021.101198] [PMID: 35079639]
[39]
Aviello, G.; Singh, A.K.; O’Neill, S.; Conroy, E.; Gallagher, W.; D’Agostino, G.; Walker, A.W.; Bourke, B.; Scholz, D.; Knaus, U.G. Colitis susceptibility in mice with reactive oxygen species deficiency is mediated by mucus barrier and immune defense defects. Mucosal Immunol., 2019, 12(6), 1316-1326.
[http://dx.doi.org/10.1038/s41385-019-0205-x] [PMID: 31554901]
[40]
Wang, F.T.; Hassan, M.; Ansari, K.; Xu, G.L.; Li, X.P.; Fan, Y.Z. Upregulated NOX1 expression in gallbladder cancer-associated fibroblasts predicts a poor prognosis. Oncol. Rep., 2019, 42(4), 1475-1486.
[http://dx.doi.org/10.3892/or.2019.7249] [PMID: 31364740]
[41]
Nocella, C.; D'Amico, A.; Cammisotto, V.; Bartimoccia, S.; Castellani, V.; Loffredo, L.; Marini, L.; Ferrara, G.; Testa, M.; Motta, G.; Benazzi, B.; Zara, F.; Frati, G.; Sciarretta, S.; Pignatelli, P.; Violi, F.; Carnevale, R.; Group, S. Group, structure, activation, and regulation of NOX2: At the crossroad between the innate immunity and oxidative stress-mediated pathologies. Antioxidants, 2023, 12
[42]
Sumimoto, H.; Minakami, R.; Miyano, K. Soluble regulatory proteins for activation of NOX family NADPH oxidases. In: NADPH Oxidases; Humana, 2019; pp. 121-137.
[http://dx.doi.org/10.1007/978-1-4939-9424-3_8]
[43]
Giusti, N.; Gillotay, P.; Trubiroha, A.; Opitz, R.; Dumont, J.E.; Costagliola, S.; De Deken, X. Inhibition of the thyroid hormonogenic H2O2 production by Duox/DuoxA in zebrafish reveals VAS2870 as a new goitrogenic compound. Mol. Cell. Endocrinol., 2020, 500, 110635.
[http://dx.doi.org/10.1016/j.mce.2019.110635] [PMID: 31678421]
[44]
Han, M.; Zhang, T.; Yang, L.; Wang, Z.; Ruan, J.; Chang, X. Association between NADPH oxidase (NOX) and lung cancer: A systematic review and meta-analysis. J. Thorac. Dis., 2016, 8(7), 1704-1711.
[http://dx.doi.org/10.21037/jtd.2016.06.31] [PMID: 27499960]
[45]
Kuhns, D.B.; Alvord, W.G.; Heller, T.; Feld, J.J.; Pike, K.M.; Marciano, B.E.; Uzel, G.; DeRavin, S.S.; Priel, D.A.L.; Soule, B.P.; Zarember, K.A.; Malech, H.L.; Holland, S.M.; Gallin, J.I. Residual NADPH oxidase and survival in chronic granulomatous disease. N. Engl. J. Med., 2010, 363(27), 2600-2610.
[http://dx.doi.org/10.1056/NEJMoa1007097] [PMID: 21190454]
[46]
Henríquez-Olguín, C.; Boronat, S.; Cabello-Verrugio, C.; Jaimovich, E.; Hidalgo, E.; Jensen, T.E. The emerging roles of nicotinamide adenine dinucleotide phosphate oxidase 2 in skeletal muscle redox signaling and metabolism. Antioxid. Redox Signal., 2019, 31(18), 1371-1410.
[http://dx.doi.org/10.1089/ars.2018.7678] [PMID: 31588777]
[47]
Coats, B.R.; Schoenfelt, K.Q.; Barbosa-Lorenzi, V.C.; Peris, E.; Cui, C.; Hoffman, A.; Zhou, G.; Fernandez, S.; Zhai, L.; Hall, B.A.; Haka, A.S.; Shah, A.M.; Reardon, C.A.; Brady, M.J.; Rhodes, C.J.; Maxfield, F.R.; Becker, L. Metabolically activated adipose tissue macrophages perform detrimental and beneficial functions during diet-induced obesity. Cell Reports, 2017, 20, 3149-3161.
[48]
Vlajkovic, S.M.; Lin, S.C.; Wong, A.C. Thorne, Noise-induced changes in expression levels of NADPH oxidases in the cochlea. Hearing Res., 2020, 41(4), 305-316.
[http://dx.doi.org/10.1002/jcc.26103] [PMID: 31713255]
[49]
Martner, A.; Aydin, E.; Hellstrand, K.; Dolg, M. NOX2 in autoimmunity, tumor growth and metastasis. J. pathol., 2019, 247, 151-154.
[50]
Cao, X.; Wu, L.; Zhang, J.; Dolg, M. Density functional studies of coenzyme NADPH and its oxidized form NADP + : Structures, UV-Vis spectra, and the oxidation mechanism of NADPH. J. Comput. Chem., 2020, 41(4), 305-316.
[http://dx.doi.org/10.1002/jcc.26103] [PMID: 31713255]
[51]
Liu, R.; Song, K.; Wu, J.X.; Geng, X.P.; Zheng, L.; Gao, X.; Peng, H.; Chen, L. Structure of human phagocyte NADPH oxidase in the resting state. eLife, 2022, 11, e83743.
[http://dx.doi.org/10.7554/eLife.83743] [PMID: 36413210]
[52]
Reshetnikov, V.; Hahn, J.; Maueröder, C.; Czegley, C.; Munoz, L.E.; Herrmann, M.; Hoffmann, M.H.; Mokhir, A. Chemical tools for targeted amplification of reactive oxygen species in neutrophils. Front. Immunol., 2018, 9, 1827.
[http://dx.doi.org/10.3389/fimmu.2018.01827] [PMID: 30150984]
[53]
Rastogi, R.; Geng, X.; Li, F.; Ding, Y. NOX activation by subunit interaction and underlying mechanisms in disease. Front. Cell. Neurosci., 2017, 10, 301.
[http://dx.doi.org/10.3389/fncel.2016.00301] [PMID: 28119569]
[54]
Avagimyan, A.; Popov, S.; Shalnova, S. The pathophysiological basis of diabetic cardiomyopathy development. Curr. Probl. Cardiol., 2022, 47(9), 101156.
[http://dx.doi.org/10.1016/j.cpcardiol.2022.101156] [PMID: 35192869]
[55]
Damascena, H.L.; Silveira, W.A.A.; Castro, M.S.; Fontes, W. Neutrophil activated by the famous and potent PMA (Phorbol Myristate Acetate). Cells, 2022, 11
[56]
Mattos, R.T.; Bosco, A.A.; Nogueira-Machado, J.A. Rosiglitazone, a PPAR-γ agonist, inhibits VEGF secretion by peripheral blood mononuclear cells and ROS production by human leukocytes. Inflamm. Res., 2012, 61(1), 37-41.
[http://dx.doi.org/10.1007/s00011-011-0386-6] [PMID: 21986923]
[57]
Ebner, J.K.; König, G.M.; Kostenis, E.; Siegert, P.; Aktories, K.; Orth, J.H.C. Activation of Gq signaling by Pasteurella multocida toxin inhibits the osteoblastogenic-like actions of Activin A in C2C12 myoblasts, a cell model of fibrodysplasia ossificans progressiva. Bone, 2019, 127, 592-601.
[58]
Freitas, M.; Porto, G.; Fernandes, E. Zinc activates neutrophils’ oxidative burst. Biometals, 2010, 23, 31-41.
[59]
Mondola, P.; Santillo, M.; Serù, R.; Damiano, S.; Alvino, C.; Ruggiero, G.; Formisano, P.; Terrazzano, G.; Secondo, A.; Annunziato, L. Cu,Zn superoxide dismutase increases intracellular calcium levels via a phospholipase C-protein kinase C pathway in SK-N-BE neuroblastoma cells. Biochem. Biophys. Res. Commun., 2004, 324(2), 887-892.
[http://dx.doi.org/10.1016/j.bbrc.2004.09.131] [PMID: 15474511]
[60]
Schepetkin, I.A.; Kirpotina, L.N.; Khlebnikov, A.I.; Quinn, M.T. High-throughput screening for small-molecule activators of neutrophils: identification of novel N-formyl peptide receptor agonists. Mol. Pharmacol., 2007, 71(4), 1061-1074.
[http://dx.doi.org/10.1124/mol.106.033100] [PMID: 17229869]
[61]
Liu, W.; Huang, J.; Doycheva, D.; Gamdzyk, M.; Tang, J.; Zhang, J.H. RvD1binding with FPR2 attenuates inflammation via Rac1/NOX2 pathway after neonatal hypoxic-ischemic injury in rats. Exp. Neurol., 2019, 320, 112982.
[http://dx.doi.org/10.1016/j.expneurol.2019.112982] [PMID: 31247196]
[62]
Sundqvist, M.; Holdfeldt, A.; Wright, S.C.; Møller, T.C.; Siaw, E.; Jennbacken, K.; Franzyk, H.; Bouvier, M.; Dahlgren, C.; Forsman, H. Barbadin selectively modulates FPR2-mediated neutrophil functions independent of receptor endocytosis. Biochim. Biophys. Acta Mol. Cell Res., 2020, 1867(12), 118849.
[http://dx.doi.org/10.1016/j.bbamcr.2020.118849] [PMID: 32916203]
[63]
Cristóvão, A.C.; Barata, J.; Je, G.; Kim, Y.S. PKCδ mediates paraquat-induced Nox1 expression in dopaminergic neurons. Biochem. Biophys. Res. Commun., 2013, 437(3), 380-385.
[http://dx.doi.org/10.1016/j.bbrc.2013.06.085] [PMID: 23827392]
[64]
Wang, X.; Luo, F.; Zhao, H. Paraquat-induced reactive oxygen species inhibit neutrophil apoptosis via a p38 MAPK/NF-κB-IL-6/TNF-α positive-feedback circuit. PLoS One, 2014, 9(4), e93837.
[http://dx.doi.org/10.1371/journal.pone.0093837] [PMID: 24714343]
[65]
Liang, W.; Zhang, Y.; Song, L.; Li, Z. 2,3‘4,4’,5-Pentachlorobiphenyl induces hepatocellular carcinoma cell proliferation through pyruvate kinase M2-dependent glycolysis. Toxicol. Lett., 2019, 313, 108-119.
[http://dx.doi.org/10.1016/j.toxlet.2019.06.006] [PMID: 31251971]
[66]
Liu, Z.; Duan, X.; Yuan, M.; Yu, J.; Hu, X.; Han, X.; Lan, L.; Liu, B.; Wang, Y.; Qin, J. Glucagon-like peptide-1 receptor activation by liraglutide promotes breast cancer through NOX4/ROS/VEGF pathway. Life Sci., 2022, 294, 120370.
[http://dx.doi.org/10.1016/j.lfs.2022.120370] [PMID: 35124000]
[67]
Choi, J.Y.; Lee, N.K.; Wang, Y.Y.; Hong, J.P.; Son, S.R.; Gu, D.H.; Jang, D.S.; Choi, J.H. 1'-acetoxyeugenol acetate isolated from thai ginger induces apoptosis in human ovarian cancer cells by ROS production via NADPH oxidase. Antioxidants, 2022, 11
[68]
Chocry, M.; Leloup, L. The NADPH oxidase family and its inhibitors. Antioxid Redox Signal, 2020, 33, 332-353.
[69]
Wedgwood, S.; Lakshminrusimha, S.; Farrow, K.N.; Czech, L.; Gugino, S.F.; Soares, F.; Russell, J.A.; Steinhorn, R.H. Apocynin improves oxygenation and increases eNOS in persistent pulmonary hypertension of the newborn. Am. J. Physiol. Lung Cell. Mol. Physiol., 2012, 302(6), L616-L626.
[http://dx.doi.org/10.1152/ajplung.00064.2011] [PMID: 22198908]
[70]
Heumüller, S.; Wind, S.; Barbosa-Sicard, E.; Schmidt, H.H.; Busse, R.; Schröder, K.; Brandes, R.P. Apocynin is not an inhibitor of vascular NADPH oxidases but an antioxidant. Hypertension, 2008, 51, 211-217.
[71]
Szilagyi, J.T.; Mishin, V.; Heck, D.E.; Jan, Y.H.; Aleksunes, L.M.; Richardson, J.R.; Heindel, N.D.; Laskin, D.L.; Laskin, J.D. Selective targeting of heme protein in cytochrome P450 and nitric oxide synthase by diphenyleneiodonium. Toxicol. Sci., 2016, 151, 150-159.
[72]
Smith, S.M.E.; Min, J.; Ganesh, T.; Diebold, B.; Kawahara, T.; Zhu, Y.; McCoy, J.; Sun, A.; Snyder, J.P.; Fu, H.; Du, Y.; Lewis, I.; Lambeth, J.D. Ebselen and congeners inhibit NADPH oxidase 2-dependent superoxide generation by interrupting the binding of regulatory subunits. Chem. Biol., 2012, 19(6), 752-763.
[http://dx.doi.org/10.1016/j.chembiol.2012.04.015] [PMID: 22726689]
[73]
Reis, J.; Massari, M.; Marchese, S.; Ceccon, M.; Aalbers, F.S.; Corana, F.; Valente, S.; Mai, A.; Magnani, F.; Mattevi, A. A closer look into NADPH oxidase inhibitors: Validation and insight into their mechanism of action. Redox Biol., 2020, 32, 101466.
[http://dx.doi.org/10.1016/j.redox.2020.101466] [PMID: 32105983]
[74]
Grauers Wiktorin, H.; Nilsson, M.S.; Kiffin, R.; Sander, F.E.; Lenox, B.; Rydstrom, A.; Hellstrand, K.; Martner, A. Histamine targets myeloid-derived suppressor cells and improves the anti-tumor efficacy of PD-1/PD-L1 checkpoint blockade. Cancer Immunol. Immunother., 2019, 68, 163-174.
[75]
Kiffin, R.; Grauers Wiktorin, H.; Kiffin, R. Anti-leukemic properties of histamine in monocytic leukemia: The role of NOX2. Front. Oncol., 2018, 8, 218.
[76]
Seredenina, T.; Chiriano, G.; Filippova, A.; Nayernia, Z.; Mahiout, Z.; Fioraso-Cartier, L.; Plastre, O.; Scapozza, L.; Krause, K.H.; Jaquet, V. A subset of N-substituted phenothiazines inhibits NADPH oxidases. Free Radic. Biol. Med., 2015, 86, 239-249.
[http://dx.doi.org/10.1016/j.freeradbiomed.2015.05.023] [PMID: 26013584]
[77]
Cui, W.; Matsuno, K.; Iwata, K.; Ibi, M.; Katsuyama, M.; Kakehi, T.; Sasaki, M.; Ikami, K.; Zhu, K.; Yabe-Nishimura, C. NADPH oxidase isoforms and anti-hypertensive effects of atorvastatin demonstrated in two animal models. J. Pharmacol. Sci., 2009, 111(3), 260-268.
[http://dx.doi.org/10.1254/jphs.09148FP] [PMID: 19881226]
[78]
Jaquet, V.; Marcoux, J.; Forest, E.; Leidal, K.G.; McCormick, S.; Westermaier, Y.; Perozzo, R.; Plastre, O.; Fioraso-Cartier, L.; Diebold, B.; Scapozza, L.; Nauseef, W.M.; Fieschi, F.; Krause, K.H.; Bedard, K. NADPH oxidase (NOX) isoforms are inhibited by celastrol with a dual mode of action. Br. J. Pharmacol., 2011, 164(2b), 507-520.
[http://dx.doi.org/10.1111/j.1476-5381.2011.01439.x] [PMID: 21501142]
[79]
Liu, Z.M.; Shen, P.C.; Lu, C.C.; Chou, S.H.; Tien, Y.C. Suramin enhances chondrogenic properties by regulating the p67 phox/PI3K/AKT/SOX9 signalling pathway. Bone Joint Res., 2022, 11(10), 723-738.
[http://dx.doi.org/10.1302/2046-3758.1110.BJR-2022-0013.R2] [PMID: 36222195]
[80]
Smith, R.M.; Kruzliak, P.; Adamcikova, Z.; Zulli, A. Role of Nox inhibitors plumbagin, ML 090 and gp91ds-tat peptide on homocysteine thiolactone induced blood vessel dysfunction. Clin. Exp. Pharmacol. Physiol., 2015, 42(8), 860-864.
[http://dx.doi.org/10.1111/1440-1681.12427] [PMID: 25998981]
[81]
Padilha, E.C.; Shah, P.; Rai, G.; Xu, X. NOX2 inhibitor GSK2795039 metabolite identification towards drug optimization. J. Pharm. Biomed. Anal., 2021, 201, 114102.
[http://dx.doi.org/10.1016/j.jpba.2021.114102] [PMID: 33992989]
[82]
Xue, N.; Wang, L.; Wang, B.; Hu, J.; Zhang, S. NOX2 oxidase inhibitor GSK2795039 possess antiviral activity against H1N1 influenza A virus in vitro and in vivo. Microb. Pathog., 2023, 174, 105942.
[http://dx.doi.org/10.1016/j.micpath.2022.105942] [PMID: 36502994]
[83]
Li, Y.; Cifuentes-Pagano, E.; DeVallance, E.R.; de Jesus, D.S.; Sahoo, S.; Meijles, D.N.; Koes, D.; Camacho, C.J.; Ross, M.; St Croix, C.; Pagano, P.J. NADPH oxidase 2 inhibitors CPP11G and CPP11H attenuate endothelial cell inflammation & vessel dysfunction and restore mouse hind-limb flow. Redox Biol., 2019, 22, 101143.
[http://dx.doi.org/10.1016/j.redox.2019.101143] [PMID: 30897521]
[84]
Gatto, G.J., Jr; Ao, Z.; Kearse, M.G.; Zhou, M.; Morales, C.R.; Daniels, E.; Bradley, B.T.; Goserud, M.T.; Goodman, K.B.; Douglas, S.A.; Harpel, M.R.; Johns, D.G. NADPH oxidase-dependent and -independent mechanisms of reported inhibitors of reactive oxygen generation. J. Enzyme Inhib. Med. Chem., 2013, 28(1), 95-104.
[http://dx.doi.org/10.3109/14756366.2011.636360] [PMID: 22136506]
[85]
Wang, Q.; Zhou, H.; Gao, H.; Chen, S.H.; Chu, C.H.; Wilson, B.; Hong, J.S. Naloxone inhibits immune cell function by suppressing superoxide production through a direct interaction with gp91 phox subunit of NADPH oxidase. J. Neuroinflammation, 2012, 9(1), 32.
[http://dx.doi.org/10.1186/1742-2094-9-32] [PMID: 22340895]
[86]
Lee, Y.C.; Chiou, J.T.; Wang, L.J.; Shi, Y.J.; Chen, Y.J.; Chang, L.S. Carboxyl group-modified myoglobin induces TNF-α-mediated apoptosis in leukemia cells. Pharmaceuticals, 2022, 15
[87]
Liu, D.; Wu, N.; Sun, H.; Dong, M.; Guo, T.; Chi, P.; Li, G.; Sun, D.; Jin, Y. ABCG2 and NCF4 polymorphisms are associated with clinical outcomes in diffuse large B-cell lymphoma patients treated with R-CHOP. Oncotarget, 2017, 8(35), 58292-58303.
[http://dx.doi.org/10.18632/oncotarget.16869] [PMID: 28938556]
[88]
Wang, N.; Song, L.; Xu, Y.; Zhang, L.; Wu, Y.; Guo, J.; Ji, W.; Li, L.; Zhao, J.; Zhang, X.; Zhan, L. Loss of Scribble confers cisplatin resistance during NSCLC chemotherapy via Nox2/ROS and Nrf2/PD-L1 signaling. EBioMedicine, 2019, 47, 65-77.
[http://dx.doi.org/10.1016/j.ebiom.2019.08.057] [PMID: 31495720]
[89]
Jamali, T.; Kavoosi, G.; Jamali, Y.; Mortezazadeh, S.; Ardestani, S.K. In-vitro, in-vivo, and in-silico assessment of radical scavenging and cytotoxic activities of Oliveria decumbens essential oil and its main components. Sci. Rep., 2021, 11(1), 14281.
[http://dx.doi.org/10.1038/s41598-021-93535-8] [PMID: 34253776]
[90]
Tsai, M.H.; Liu, J.F.; Chiang, Y.C.; Chu-Sung Hu, S.; Hsu, L.F.; Lin, Y.C.; Lin, Z.C.; Lee, H.C.; Chen, M.C.; Huang, C.L.; Lee, C.W. Artocarpin, an isoprenyl flavonoid, induces p53-dependent or independent apoptosis via ROS-mediated MAPKs and Akt activation in non-small cell lung cancer cells. Oncotarget, 2017, 8(17), 28342-28358.
[http://dx.doi.org/10.18632/oncotarget.16058] [PMID: 28423703]
[91]
Han, Z.; Kang, D.; Joo, Y.; Lee, J.; Oh, G.H.; Choi, S.; Ko, S.; Je, S.; Choi, H.J.; Song, J.J. TGF-β downregulation-induced cancer cell death is finely regulated by the SAPK signaling cascade. Exp. Mol. Med., 2018, 50(12), 1-19.
[http://dx.doi.org/10.1038/s12276-018-0189-8] [PMID: 30523245]
[92]
Chiou, J.T.; Lee, Y.C.; Wang, L.J.; Chang, L.S. BCL2 inhibitor ABT-199 and BCL2L1 inhibitor WEHI-539 coordinately promote NOXA-mediated degradation of MCL1 in human leukemia cells. Chem. Biol. Interact., 2022, 361, 109978.
[http://dx.doi.org/10.1016/j.cbi.2022.109978] [PMID: 35561756]
[93]
Liu, L.; Rezvani, H.R.; Back, J.H.; Hosseini, M.; Tang, X.; Zhu, Y.; Mahfouf, W.; Raad, H.; Raji, G.; Athar, M.; Kim, A.L.; Bickers, D.R. Inhibition of p38 MAPK signaling augments skin tumorigenesis via NOX2 driven ROS generation. PLoS One, 2014, 9(5), e97245.
[http://dx.doi.org/10.1371/journal.pone.0097245] [PMID: 24824222]
[94]
Ishii, T. Close teamwork between Nrf2 and peroxiredoxins 1 and 6 for the regulation of prostaglandin D2 and E2 production in macrophages in acute inflammation. Free Radic. Biol. Med., 2015, 88(Pt B), 189-198.
[http://dx.doi.org/10.1016/j.freeradbiomed.2015.04.034] [PMID: 25968070]
[95]
Cha, M.Y.; Lee, K.O.; Kim, M.; Song, J.Y.; Lee, K.H.; Park, J.; Chae, Y.J.; Kim, Y.H.; Suh, K.H.; Lee, G.S.; Park, S.B.; Kim, M.S. Antitumor activity of HM781-36B, a highly effective pan-HER inhibitor in erlotinib-resistant NSCLC and other EGFR-dependent cancer models. Int. J. Cancer, 2012, 130(10), 2445-2454.
[http://dx.doi.org/10.1002/ijc.26276] [PMID: 21732342]
[96]
Hong, S.W.; Park, N.S.; Noh, M.H.; Shim, J.A.; Ahn, B.N.; Kim, Y.S.; Kim, D.; Lee, H.K.; Hur, D.Y. Combination treatment with erlotinib and ampelopsin overcomes erlotinib resistance in NSCLC cells via the Nox2-ROS-Bim pathway. Lung Cancer, 2017, 106, 115-124.
[http://dx.doi.org/10.1016/j.lungcan.2017.02.009] [PMID: 28285685]
[97]
Leung, E.L.H.; Fan, X.X.; Wong, M.P.; Jiang, Z.H.; Liu, Z.Q.; Yao, X.J.; Lu, L.L.; Zhou, Y.L.; Yau, L.F.; Tin, V.P.C.; Liu, L. Targeting tyrosine kinase inhibitor-resistant non-small cell lung cancer by inducing epidermal growth factor receptor degradation via methionine 790 oxidation. Antioxid. Redox Signal., 2016, 24(5), 263-279.
[http://dx.doi.org/10.1089/ars.2015.6420] [PMID: 26528827]
[98]
Zhang, Z.; Zhang, H.; Li, D.; Zhou, X.; Qin, Q.; Zhang, Q. Caspase-3-mediated GSDME induced Pyroptosis in breast cancer cells through the ROS/JNK signalling pathway. J. Cell. Mol. Med., 2021, 25(17), 8159-8168.
[http://dx.doi.org/10.1111/jcmm.16574] [PMID: 34369076]
[99]
McLaughlin, D.; Zhao, Y.; O’Neill, K.M.; Edgar, K.S.; Dunne, P.D.; Kearney, A.M.; Grieve, D.J.; McDermott, B.J. Signalling mechanisms underlying doxorubicin and Nox2 NADPH oxidase-induced cardiomyopathy: involvement of mitofusin-2. Br. J. Pharmacol., 2017, 174(21), 3677-3695.
[http://dx.doi.org/10.1111/bph.13773] [PMID: 28261787]
[100]
Lanza-Jacoby, S.; Cheng, G. 3,3′-Diindolylmethane enhances apoptosis in docetaxel-treated breast cancer cells by generation of reactive oxygen species. Pharm. Biol., 2018, 56(1), 407-414.
[http://dx.doi.org/10.1080/13880209.2018.1495747] [PMID: 30301388]
[101]
Guo, Y.; Han, B.; Luo, K.; Ren, Z.; Cai, L.; Sun, L. NOX2-ROS-HIF-1α signaling is critical for the inhibitory effect of oleanolic acid on rectal cancer cell proliferation. Biomed. Pharmacother., 2017, 85, 733-739.
[http://dx.doi.org/10.1016/j.biopha.2016.11.091] [PMID: 27938946]
[102]
Ishaq, M.; Evans, M.D.; Ostrikov, K.K. Atmospheric pressure gas plasma-induced colorectal cancer cell death is mediated by Nox2-ASK1 apoptosis pathways and oxidative stress is mitigated by Srx-Nrf2 anti-oxidant system. Biochimic. et Biophys. Acta., 2014, 1843, 2827-2837.
[103]
Saber, M.M.; Al-Mahallawi, A.M. Targeting colorectal cancer cell metabolism through development of cisplatin and metformin nano-cubosomes. BMC Cancer, 2018, 18, 822.
[104]
Hacioglu, C. Capsaicin inhibits cell proliferation by enhancing oxidative stress and apoptosis through SIRT1/NOX4 signaling pathways in HepG2 and HL-7702 cells. J. Biochem. Mol. Toxicol., 2022, 36(3), e22974.
[http://dx.doi.org/10.1002/jbt.22974] [PMID: 34939720]
[105]
Liu, L.; Yang, Z.; Xu, Y.; Li, J.; Xu, D.; Zhang, L.; Sun, J.; Xia, S.; Zou, F.; Liu, Y. Inhibition of oxidative stress-elicited AKT activation facilitates PPARγ agonist-mediated inhibition of stem cell character and tumor growth of liver cancer cells. PLoS One, 2013, 8(8), e73038.
[http://dx.doi.org/10.1371/journal.pone.0073038] [PMID: 24023668]
[106]
Ko, Y.H.; Jeong, M.; Jang, D.S.; Choi, J.H. Gomisin L1, a lignan isolated from schisandra berries, induces apoptosis by regulating NADPH oxidase in human ovarian cancer cells. Life, 2021, 11
[107]
Yang, W.H.; Huang, Z.; Wu, J.; Ding, C.K.C.; Murphy, S.K.; Chi, J.T. A TAZ-ANGPTL4-NOX2 Axis Regulates Ferroptotic Cell Death and Chemoresistance in Epithelial Ovarian Cancer. Mol. Cancer Res., 2020, 18(1), 79-90.
[http://dx.doi.org/10.1158/1541-7786.MCR-19-0691] [PMID: 31641008]
[108]
Zheng, K.; Jiang, Y.; Liao, C.; Hu, X.; Li, Y.; Zeng, Y.; Zhang, J.; Wu, X.; Wu, H.; Liu, L.; Wang, Y.; He, Z. NOX2-Mediated TFEB Activation and Vacuolization Regulate Lysosome-Associated Cell Death Induced by Gypenoside L, a Saponin Isolated from Gynostemma pentaphyllum. J. Agric. Food Chem., 2017, 65(31), 6625-6637.
[http://dx.doi.org/10.1021/acs.jafc.7b02296] [PMID: 28697598]
[109]
Waghela, B.N.; Vaidya, F.U.; Pathak, C. Upregulation of NOX-2 and Nrf-2 Promotes 5-Fluorouracil Resistance of Human Colon Carcinoma (HCT-116) Cells. Biochemistry, 2021, 86(3), 262-274.
[http://dx.doi.org/10.1134/S0006297921030044] [PMID: 33838628]
[110]
Vyas, A.; Duvvuri, U.; Kiselyov, K. Copper-dependent ATP7B up-regulation drives the resistance of TMEM16A-overexpressing head-and-neck cancer models to platinum toxicity. Biochem. J., 2019, 476(24), 3705-3719.
[http://dx.doi.org/10.1042/BCJ20190591] [PMID: 31790150]
[111]
Badia, E.; Morena, M.; Lauret, C.; Boulahtouf, A.; Boulle, N.; Cavaillès, V.; Balaguer, P.; Cristol, J.P. Effect of tamoxifen and fulvestrant long-term treatments on ROS production and (pro/anti)-oxidant enzymes mRNA levels in a MCF-7-derived breast cancer cell line. Breast Cancer, 2016, 23(5), 692-700.
[http://dx.doi.org/10.1007/s12282-015-0626-7] [PMID: 26193841]
[112]
Mukawera, E.; Chartier, S.; Williams, V.; Pagano, P.J.; Lapointe, R.; Grandvaux, N. Redox-modulating agents target NOX2-dependent IKKε oncogenic kinase expression and proliferation in human breast cancer cell lines. Redox Biol., 2015, 6, 9-18.
[http://dx.doi.org/10.1016/j.redox.2015.06.010] [PMID: 26177467]
[113]
Huang, H.S.; Liu, Z.M.; Chen, P.C.; Tseng, H.Y.; Yeh, B.W. TG-interacting factor-induced superoxide production from NADPH oxidase contributes to the migration/invasion of urothelial carcinoma. Free Radic. Biol. Med., 2012, 53(4), 769-778.
[http://dx.doi.org/10.1016/j.freeradbiomed.2012.06.014] [PMID: 22728270]
[114]
Irwin, M.E.; Johnson, B.P.; Manshouri, R.; Amin, H.M.; Chandra, J. A NOX2/Egr-1/Fyn pathway delineates new targets for TKI-resistant malignancies. Oncotarget, 2015, 6, 23631-23646.
[115]
Xiang, H.; Ramil, C.P.; Manshouri, R.; Amin, H.M.; Chandra, J. Brandish, cancer-associated fibroblasts promote immunosuppression by inducing ROS-generating monocytic MDSCs in lung squamous cell carcinoma. Cancer Immunol. Res., 2020, 8, 436-450.
[116]
Cui, Q.; Wang, J.Q.; Assaraf, Y.G.; Ren, L.; Gupta, P.; Wei, L.; Ashby, C.R., Jr; Yang, D.H.; Chen, Z.S. Modulating ROS to overcome multidrug resistance in cancer. Drug Resist. Updat., 2018, 41, 1-25.
[http://dx.doi.org/10.1016/j.drup.2018.11.001] [PMID: 30471641]
[117]
Ligtenberg, M.A.; Çınar, Ö.; Holmdahl, R.; Mougiakakos, D.; Kiessling, R. Methylcholanthrene-induced sarcomas develop independently from NOX2-derived ROS. PLoS One, 2015, 10(6), e0129786.
[http://dx.doi.org/10.1371/journal.pone.0129786] [PMID: 26076008]
[118]
Okada, F.; Kobayashi, M.; Tanaka, H.; Kobayashi, T.; Tazawa, H.; Iuchi, Y.; Onuma, K.; Hosokawa, M.; Dinauer, M.C.; Hunt, N.H. The role of nicotinamide adenine dinucleotide phosphate oxidase-derived reactive oxygen species in the acquisition of metastatic ability of tumor cells. Am. J. Pathol., 2006, 169(1), 294-302.
[http://dx.doi.org/10.2353/ajpath.2006.060073] [PMID: 16816381]
[119]
Aydin, E.; Johansson, J.; Nazir, F.H.; Hellstrand, K.; Martner, A. Role of NOX2-derived reactive oxygen species in NK cell-mediated control of murine melanoma metastasis. Cancer Immunol. Res., 2017, 5(9), 804-811.
[http://dx.doi.org/10.1158/2326-6066.CIR-16-0382] [PMID: 28760732]
[120]
Grauers Wiktorin, H.; Aydin, E.; Hellstrand, K.; Martner, A. NOX2-derived reactive oxygen species in cancer. Oxid. Med. Cell. Longev., 2020, 2020, 1-15.
[http://dx.doi.org/10.1155/2020/7095902] [PMID: 33312338]
[121]
Su, R.; Chong, G.; Dong, H.; Gu, J.; Zang, J.; He, R.; Sun, J.; Zhang, T.; Zhao, Y.; Zheng, X.; Yang, Y.; Li, Y.; Li, Y. Nanovaccine biomineralization for cancer immunotherapy: a NADPH oxidase-inspired strategy for improving antigen cross-presentation via lipid peroxidation. Biomaterials, 2021, 277, 121089.
[http://dx.doi.org/10.1016/j.biomaterials.2021.121089] [PMID: 34481292]
[122]
Espinosa, A.; Henríquez-Olguín, C.; Jaimovich, E. Reactive oxygen species and calcium signals in skeletal muscle: A crosstalk involved in both normal signaling and disease. Cell Calcium, 2016, 60(3), 172-179.
[http://dx.doi.org/10.1016/j.ceca.2016.02.010] [PMID: 26965208]
[123]
Petrillo, S.; Pietrafusa, N.; Trivisano, M.; Calabrese, C.; Saura, F.; Gallo, M.G.; Bertini, E.S.; Vigevano, F.; Specchio, N.; Piemonte, F. Imbalance of systemic redox biomarkers in children with epilepsy: Role of ferroptosis. Antioxidants, 2021, 10(8), 1267.
[http://dx.doi.org/10.3390/antiox10081267] [PMID: 34439515]
[124]
Cao, Y.; Luo, F.; Peng, J.; Fang, Z.; Liu, Q.; Zhou, S. KMT2B-dependent RFK transcription activates the TNF-α/NOX2 pathway and enhances ferroptosis caused by myocardial ischemia-reperfusion. J. Mol. Cell. Cardiol., 2021, 173, 75-91.
[125]
Dömer, D.; Walther, T.; Möller, S. Neutrophil extracellular traps activate proinflammatory functions of human neutrophils. Front. Immunol., 2021, 12, 636954.
[126]
Parker, H.A.; Jones, H.M.; Kaldor, C.D.; Hampton, M.B.; Winterbourn, C.C. Neutrophil NET formation with microbial stimuli requires late stage NADPH oxidase activity. Antioxidants, 2021, 10
[127]
Tallet, A.V.; Dhermain, F.; Le Rhun, E.; Noël, G.; Kirova, Y.M. Combined irradiation and targeted therapy or immune checkpoint blockade in brain metastases: Toxicities and efficacy. Ann. Oncol., 2017, 28(12), 2962-2976.
[http://dx.doi.org/10.1093/annonc/mdx408] [PMID: 29045524]
[128]
Wu, Q.; Allouch, A.; Paoletti, A.; Leteur, C.; Mirjolet, C.; Martins, I.; Voisin, L.; Law, F.; Dakhli, H.; Mintet, E.; Thoreau, M.; Muradova, Z.; Gauthier, M.; Caron, O.; Milliat, F.; Ojcius, D.M.; Rosselli, F.; Solary, E.; Modjtahedi, N.; Deutsch, E.; Perfettini, J.L. NOX2-dependent ATM kinase activation dictates pro-inflammatory macrophage phenotype and improves effectiveness to radiation therapy. Cell Death Differ., 2017, 24(9), 1632-1644.
[http://dx.doi.org/10.1038/cdd.2017.91] [PMID: 28574504]
[129]
Lu, J.P.; Monardo, L.; Bryskin, I.; Hou, Z.F.; Trachtenberg, J.; Wilson, B.C.; Pinthus, J.H. Androgens induce oxidative stress and radiation resistance in prostate cancer cells though NADPH oxidase. Prostate Cancer Prostatic Dis., 2010, 13(1), 39-46.
[http://dx.doi.org/10.1038/pcan.2009.24] [PMID: 19546883]
[130]
Cooper, K.L.; Volk, L.B.; Dominguez, D.R.; Duran, A.D.; Ke Jian Liu, K.J.; Hudson, L.G. Contribution of NADPH oxidase to the retention of UVR-induced DNA damage by arsenic. Toxicol. Appl. Pharmacol., 2022, 434, 115799.
[http://dx.doi.org/10.1016/j.taap.2021.115799] [PMID: 34798142]
[131]
Zhu, W.; Cui, G.; Li, T.; Chen, H.; Zhu, J.; Ding, Y.; Zhao, L. Docosahexaenoic acid protects traumatic brain injury by regulating NOX2 generation via Nrf2 signaling pathway. Neurochem. Res., 2020, 45(8), 1839-1850.
[http://dx.doi.org/10.1007/s11064-020-03078-z] [PMID: 32676950]
[132]
Yuan, P.; Sun, X.; Liu, X.; Hutterer, G.; Pummer, K.; Hager, B.; Ye, Z.; Chen, Z. Kaempferol alleviates calcium oxalate crystal-induced renal injury and crystal deposition via regulation of the AR/NOX2 signaling pathway. Phytomedicine, 2021, 86, 153555.
[http://dx.doi.org/10.1016/j.phymed.2021.153555] [PMID: 33852977]
[133]
Zhang, R.; Liu, C.; Yang, L.; Ji, T.; Zhang, N.; Dong, X.; Chen, X.; Ma, J.; Gao, W.; Huang, S.; Chen, L. NOX2-derived hydrogen peroxide impedes the AMPK/Akt-mTOR signaling pathway contributing to cell death in neuronal cells. Cell. Signal., 2022, 94, 110330.
[http://dx.doi.org/10.1016/j.cellsig.2022.110330] [PMID: 35390465]
[134]
Cheng, D.; Tu, W.; Chen, L.; Wang, H.; Wang, Q.; Liu, H.; Zhu, N.; Fang, W.; Yu, Q. MSCs enhances the protective effects of valsartan on attenuating the doxorubicin-induced myocardial injury via AngII/NOX/ROS/MAPK signaling pathway. Aging, 2021, 13(18), 22556-22570.
[http://dx.doi.org/10.18632/aging.203569] [PMID: 34587120]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy