Generic placeholder image

当代肿瘤药物靶点

Editor-in-Chief

ISSN (Print): 1568-0096
ISSN (Online): 1873-5576

Research Article

低氧和常氧条件下HSV-G47Δ溶瘤病毒对胶质母细胞瘤多形性癌干细胞端粒酶和端粒长度改变的影响

卷 24, 期 12, 2024

发表于: 13 February, 2024

页: [1262 - 1274] 页: 13

弟呕挨: 10.2174/0115680096274769240115165344

价格: $65

Open Access Journals Promotions 2
摘要

背景:由于肿瘤干细胞具有致瘤性和耐药模式,胶质母细胞瘤的治疗并不容易。缺氧是胶质母细胞瘤治疗的主要问题。端粒酶活性和端粒长度改变在胶质母细胞瘤的进展和侵袭中起关键作用。 目的:本研究旨在探讨HSV-G47Δ溶瘤病毒在缺氧和常氧条件下对U251GBMCSCs (U251-胶质母细胞瘤癌干细胞)端粒酶和端粒长度改变的影响。 方法:U251-CSCs在优化的MOI条件下暴露于HSV-G47Δ病毒(感染次数= 1/14小时)。绝对端粒长度和端粒酶亚基基因表达采用绝对人端粒长度定量PCR测定。此外,还进行了生物信息学途径分析,以评估失调基因与其他潜在基因和途径之间的物理和遗传相互作用。 结果:数据显示,U251CSCs在常氧条件下暴露于HSV-G47Δ时端粒更长,但在缺氧条件下端粒明显更短。此外,hTERC、DKC1和TEP1基因在缺氧和常氧微环境中显著失调。分析显示,TERF2在两种微环境下的表达均显著降低,MRN复合体中的两个关键基因MER11和RAD50在常氧条件下显著上调。RAD50在低氧生态位表现出明显的下调模式。我们的研究结果表明,在这两种微环境中,端粒结构中的修复复合物都可以通过HSV-G47Δ靶向。 结论:在胶质母细胞瘤治疗策略中,端粒酶和端粒复合体可能是HSV-G47Δ在两种微环境中的潜在靶点。

关键词: HSV-G47Δ,端粒酶,端粒长度,缺氧,缺氧,u251 -胶质母细胞瘤癌症干细胞,中枢神经系统(CNS)。

图形摘要
[1]
Holland, E.C. Glioblastoma multiforme: The terminator. Proc. Natl. Acad. Sci., 2000, 97(12), 6242-6244.
[http://dx.doi.org/10.1073/pnas.97.12.6242] [PMID: 10841526]
[2]
Schwartzbaum, J.A.; Fisher, J.L.; Aldape, K.D.; Wrensch, M. Epidemiology and molecular pathology of glioma. Nat. Clin. Pract. Neurol., 2006, 2(9), 494-503.
[http://dx.doi.org/10.1038/ncpneuro0289] [PMID: 16932614]
[3]
Agnihotri, S.; Burrell, K.E.; Wolf, A.; Jalali, S.; Hawkins, C.; Rutka, J.T.; Zadeh, G. Glioblastoma, a brief review of history, molecular genetics, animal models and novel therapeutic strategies. Arch. Immunol. Ther. Exp., 2013, 61(1), 25-41.
[http://dx.doi.org/10.1007/s00005-012-0203-0] [PMID: 23224339]
[4]
Ostrom, Q.T.; Gittleman, H.; Fulop, J.; Liu, M.; Blanda, R.; Kromer, C.; Wolinsky, Y.; Kruchko, C.; Barnholtz-Sloan, J.S. CBTRUS statistical report: Primary brain and central nervous system tumors diagnosed in the United States in 2008-2012. Neuro-oncol., 2015, 17(S4), iv1-iv62.
[http://dx.doi.org/10.1093/neuonc/nov189] [PMID: 26511214]
[5]
Grochans, S.; Cybulska, A.M.; Simińska, D.; Korbecki, J.; Kojder, K.; Chlubek, D.; Baranowska-Bosiacka, I. Epidemiology of glioblastoma multiforme–literature review. Cancers, 2022, 14(10), 2412.
[http://dx.doi.org/10.3390/cancers14102412] [PMID: 35626018]
[6]
Ostrom, Q.T.; Cioffi, G.; Waite, K.; Kruchko, C.; Barnholtz-Sloan, J.S. CBTRUS statistical report: Primary brain and other central nervous system tumors diagnosed in the United States in 2014–2018. Neuro-oncol., 2021, 23(12), iii1-iii105.
[http://dx.doi.org/10.1093/neuonc/noab200] [PMID: 34608945]
[7]
Mohammed, S.; Dinesan, M.; Ajayakumar, T. Survival and quality of life analysis in glioblastoma multiforme with adjuvant chemoradiotherapy: A retrospective study. Rep. Pract. Oncol. Radiother., 2022, 27(6), 1026-1036.
[http://dx.doi.org/10.5603/RPOR.a2022.0113]
[8]
Simińska, D.; Korbecki, J.; Kojder, K.; Kapczuk, P.; Fabiańska, M.; Gutowska, I.; Machoy-Mokrzyńska, A.; Chlubek, D.; Baranowska-Bosiacka, I. Epidemiology of anthropometric factors in glioblastoma multiforme—Literature review. Brain Sci., 2021, 11(1), 116.
[http://dx.doi.org/10.3390/brainsci11010116] [PMID: 33467126]
[9]
Esemen, Y.; Awan, M.; Parwez, R.; Baig, A.; Rahman, S.; Masala, I.; Franchini, S.; Giakoumettis, D. Molecular pathogenesis of glioblastoma in adults and future perspectives: A systematic review. Int. J. Mol. Sci., 2022, 23(5), 2607.
[http://dx.doi.org/10.3390/ijms23052607] [PMID: 35269752]
[10]
Claus, E.B.; Cannataro, V.L.; Gaffney, S.G.; Townsend, J.P. Environmental and sex-specific molecular signatures of glioma causation. Neuro-oncol., 2022, 24(1), 29-36.
[http://dx.doi.org/10.1093/neuonc/noab103] [PMID: 33942853]
[11]
Czarnywojtek, A.; Borowska, M.; Dyrka, K.; Van Gool, S.; Sawicka-Gutaj, N.; Moskal, J.; Ruchała, M. Glioblastoma multiforme: The latest diagnostics and treatment techniques. Pharmacology, 2023, 17, 1-9.
[12]
Rodríguez-Camacho, A.; Flores-Vázquez, J.G.; Moscardini-Martelli, J.; Torres-Ríos, J.A.; Olmos-Guzmán, A.; Ortiz-Arce, C.S.; Cid-Sánchez, D.R.; Pérez, S.R.; Macías-González, M.D.S.; Hernández-Sánchez, L.C.; Heredia-Gutiérrez, J.C.; Contreras-Palafox, G.A.; Suárez-Campos, J.J.E.; Celis-López, M.Á.; Gutiérrez-Aceves, G.A.; Moreno-Jiménez, S. Glioblastoma treatment: State-of-the-art and future perspectives. Int. J. Mol. Sci., 2022, 23(13), 7207.
[http://dx.doi.org/10.3390/ijms23137207] [PMID: 35806212]
[13]
Vescovi, A.L.; Galli, R.; Reynolds, B.A. Brain tumour stem cells. Nat. Rev. Cancer, 2006, 6(6), 425-436.
[http://dx.doi.org/10.1038/nrc1889] [PMID: 16723989]
[14]
Yuan, X.; Curtin, J.; Xiong, Y.; Liu, G.; Waschsmann-Hogiu, S.; Farkas, D.L.; Black, K.L.; Yu, J.S. Isolation of cancer stem cells from adult glioblastoma multiforme. Oncogene, 2004, 23(58), 9392-9400.
[http://dx.doi.org/10.1038/sj.onc.1208311] [PMID: 15558011]
[15]
Vaupel, P.; Mayer, A. Hypoxia in cancer: Significance and impact on clinical outcome. Cancer Metastasis Rev., 2007, 26(2), 225-239.
[http://dx.doi.org/10.1007/s10555-007-9055-1] [PMID: 17440684]
[16]
Galli, R.; Binda, E.; Orfanelli, U.; Cipelletti, B.; Gritti, A.; De Vitis, S.; Fiocco, R.; Foroni, C.; Dimeco, F.; Vescovi, A. Isolation and characterization of tumorigenic, stem-like neural precursors from human glioblastoma. Cancer Res., 2004, 64(19), 7011-7021.
[http://dx.doi.org/10.1158/0008-5472.CAN-04-1364] [PMID: 15466194]
[17]
Lee, J.; Kotliarova, S.; Kotliarov, Y.; Li, A.; Su, Q.; Donin, N.M.; Pastorino, S.; Purow, B.W.; Christopher, N.; Zhang, W.; Park, J.K.; Fine, H.A. Tumor stem cells derived from glioblastomas cultured in bFGF and EGF more closely mirror the phenotype and genotype of primary tumors than do serum-cultured cell lines. Cancer Cell, 2006, 9(5), 391-403.
[http://dx.doi.org/10.1016/j.ccr.2006.03.030] [PMID: 16697959]
[18]
Marian, C.O.; Cho, S.K.; Mcellin, B.M.; Maher, E.A.; Hatanpaa, K.J.; Madden, C.J.; Mickey, B.E.; Wright, W.E.; Shay, J.W.; Bachoo, R.M. The telomerase antagonist, imetelstat, efficiently targets glioblastoma tumor-initiating cells leading to decreased proliferation and tumor growth. Clin. Cancer Res., 2010, 16(1), 154-163.
[http://dx.doi.org/10.1158/1078-0432.CCR-09-2850] [PMID: 20048334]
[19]
Blasco, M.A. Telomere length, stem cells and aging. Nat. Chem. Biol., 2007, 3(10), 640-649.
[http://dx.doi.org/10.1038/nchembio.2007.38] [PMID: 17876321]
[20]
Blackburn, E.H. Telomeres and telomerase: The means to the end (Nobel lecture). Angew. Chem. Int. Ed., 2010, 49(41), 7405-7421.
[http://dx.doi.org/10.1002/anie.201002387] [PMID: 20821774]
[21]
Xin, H.; Liu, D.; Songyang, Z. The telosome/shelterin complex and its functions. Genome Biol., 2008, 9(9), 232.
[http://dx.doi.org/10.1186/gb-2008-9-9-232] [PMID: 18828880]
[22]
Diotti, R.; Loayza, D. Shelterin complex and associated factors at human telomeres. Nucleus, 2011, 2(2), 119-135.
[http://dx.doi.org/10.4161/nucl.2.2.15135] [PMID: 21738835]
[23]
Greider, C.W. Telomerase discovery: the excitement of putting together pieces of the puzzle (Nobel lecture). Angew. Chem. Int. Ed., 2010, 49(41), 7422-7439.
[http://dx.doi.org/10.1002/anie.201002408] [PMID: 20872384]
[24]
Guan, J.Z.; Guan, W.P.; Maeda, T.; Makino, N. Different levels of hypoxia regulate telomere length and telomerase activity. Aging Clin. Exp. Res., 2012, 24(3), 213-217.
[http://dx.doi.org/10.1007/BF03325250] [PMID: 23114548]
[25]
Hiraga, S.; Ohnishi, T.; Izumoto, S.; Miyahara, E.; Kanemura, Y.; Matsumura, H.; Arita, N. Telomerase activity and alterations in telomere length in human brain tumors. Cancer Res., 1998, 58(10), 2117-2125.
[PMID: 9605755]
[26]
Hanif, F.; Muzaffar, K.; Perveen, K.; Malhi, S.M.; Simjee, ShU. Glioblastoma multiforme: A review of its epidemiology and pathogenesis through clinical presentation and treatment. Asian Pacific journal of cancer prevention. APJCP, 2017, 18(1), 3-9.
[http://dx.doi.org/10.22034/APJCP.2017.18.1.3] [PMID: 28239999]
[27]
Picariello, L.; Grappone, C.; Polvani, S.; Galli, A. Telomerase activity: An attractive target for cancer therapeutics. World J. Pharmacol., 2014, 3(4), 86-96.
[http://dx.doi.org/10.5497/wjp.v3.i4.86]
[28]
Wollmann, G.; Ozduman, K.; van den Pol, A.N. Oncolytic virus therapy for glioblastoma multiforme: concepts and candidates. Cancer J., 2012, 18(1), 69-81.
[http://dx.doi.org/10.1097/PPO.0b013e31824671c9] [PMID: 22290260]
[29]
Fukuhara, H.; Martuza, R.L.; Rabkin, S.D.; Ito, Y.; Todo, T. Oncolytic herpes simplex virus vector g47delta in combination with androgen ablation for the treatment of human prostate adenocarcinoma. Clin. Cancer Res., 2005, 11(21), 7886-7890.
[http://dx.doi.org/10.1158/1078-0432.CCR-05-1090] [PMID: 16278413]
[30]
Vazifehmand, R.; Ali, D.S.; Othman, Z.; Chau, D.M.; Stanslas, J.; Shafa, M.; Sekawi, Z. The evaluation expression of non-coding RNAs in response to HSV-G47∆ oncolytic virus infection in glioblastoma multiforme cancer stem cells. J. Neurovirol., 2022, 28(4-6), 566-582.
[http://dx.doi.org/10.1007/s13365-022-01089-w] [PMID: 35951174]
[31]
Wang, J.; Xu, L.; Zeng, W.; Hu, P.; Zeng, M.; Rabkin, S.D.; Liu, R. Treatment of human hepatocellular carcinoma by the oncolytic herpes simplex virus G47delta. Cancer Cell Int., 2014, 14(1), 83.
[http://dx.doi.org/10.1186/s12935-014-0083-y] [PMID: 25360068]
[32]
Livak, K.J.; Schmittgen, T.D. Analysis of relative gene expression data using real-time quantitative PCR and the 2− ΔΔCT method. Methods, 2001, 25(4), 402-408.
[http://dx.doi.org/10.1006/meth.2001.1262]
[33]
Lirussi, L.; Nilsen, H. Telomere maintenance: regulating hTERC fate through RNA modifications. Mol. Cell. Oncol., 2019, 6(6), e1670489.
[http://dx.doi.org/10.1080/23723556.2019.1670489] [PMID: 31692866]
[34]
Leão, R.; Apolónio, J.D.; Lee, D.; Figueiredo, A.; Tabori, U.; Castelo-Branco, P. Mechanisms of human telomerase reverse transcriptase (hTERT) regulation: clinical impacts in cancer. J. Biomed. Sci., 2018, 25(1), 22.
[http://dx.doi.org/10.1186/s12929-018-0422-8] [PMID: 29526163]
[35]
Yang, R.; Han, Y.; Guan, X.; Hong, Y.; Meng, J.; Ding, S.; Long, Q.; Yi, W. Regulation and clinical potential of telomerase reverse transcriptase (TERT/hTERT) in breast cancer. Cell Commun. Signal., 2023, 21(1), 218.
[http://dx.doi.org/10.1186/s12964-023-01244-8] [PMID: 37612721]
[36]
Yik, M.Y.; Azlan, A.; Rajasegaran, Y.; Rosli, A.; Yusoff, N.M.; Moses, E.J. Mechanism of human telomerase reverse transcriptase (hTERT) regulation and clinical impacts in leukemia. Genes, 2021, 12(8), 1188.
[http://dx.doi.org/10.3390/genes12081188] [PMID: 34440361]
[37]
Jin, D.H.; Kim, S.; Kim, D.H.; Park, J. Two genetic variants in telomerase-associated protein 1 are associated with stomach cancer risk. J Hum Genet, 2016, 61(10), 885-889.
[http://dx.doi.org/10.1038/jhg.2016.71]
[38]
Kan, G.; Wang, Z.; Sheng, C.; Yao, C.; Mao, Y.; Chen, S. Inhibition of DKC1 induces telomere-related senescence and apoptosis in lung adenocarcinoma. J. Transl. Med., 2021, 19(1), 161.
[http://dx.doi.org/10.1186/s12967-021-02827-0] [PMID: 33879171]
[39]
Chu, C.M.; Yu, H.H.; Kao, T.L.; Chen, Y.H.; Lu, H.H.; Wu, E.T.; Yang, Y.L.; Lin, C.H.; Lin, S.Y.; Tsai, M.J.M.; Chien, Y.H.; Hwu, W.L.; Chen, W.P.; Lee, N.C.; Tseng, C.K. A missense variant in the nuclear localization signal of DKC1 causes Hoyeraal-Hreidarsson syndrome. NPJ Genom. Med., 2022, 7(1), 64.
[http://dx.doi.org/10.1038/s41525-022-00335-8] [PMID: 36309505]
[40]
Iwano, T.; Tachibana, M.; Reth, M.; Shinkai, Y. Importance of TRF1 for functional telomere structure. J. Biol. Chem., 2004, 279(2), 1442-1448.
[http://dx.doi.org/10.1074/jbc.M309138200] [PMID: 14559908]
[41]
van Steensel, B.; de Lange, T. Control of telomere length by the human telomeric protein TRF1. Nature, 1997, 385(6618), 740-743.
[http://dx.doi.org/10.1038/385740a0] [PMID: 9034193]
[42]
Wang, L.; Tu, Z.; Liu, C.; Liu, H.; Kaldis, P.; Chen, Z.; Li, W. Dual roles of TRF1 in tethering telomeres to the nuclear envelope and protecting them from fusion during meiosis. Cell Death Differ., 2018, 25(6), 1174-1188.
[http://dx.doi.org/10.1038/s41418-017-0037-8] [PMID: 29311622]
[43]
Li, H.L.; Song, J.; Yong, H.M.; Hou, P.F.; Chen, Y.S.; Song, W.B.; Bai, J.; Zheng, J.N. PinX1: Structure, regulation and its functions in cancer. Oncotarget, 2016, 7(40), 66267-66275.
[http://dx.doi.org/10.18632/oncotarget.11411] [PMID: 27556185]
[44]
Cheung, D.H.C.; Kung, H.F.; Huang, J.J.; Shaw, P.C. PinX1 is involved in telomerase recruitment and regulates telomerase function by mediating its localization. FEBS Lett., 2012, 586(19), 3166-3171.
[http://dx.doi.org/10.1016/j.febslet.2012.06.028] [PMID: 22749911]
[45]
Yoo, J.E.; Park, Y.N.; Oh, B.K. PinX1, a telomere repeat-binding factor 1 (TRF1)-interacting protein, maintains telomere integrity by modulating TRF1 homeostasis, the process in which human telomerase reverse Transcriptase (hTERT) plays dual roles. J. Biol. Chem., 2014, 289(10), 6886-6898.
[http://dx.doi.org/10.1074/jbc.M113.506006] [PMID: 24415760]
[46]
Savage, S.A.; Giri, N.; Baerlocher, G.M.; Orr, N.; Lansdorp, P.M.; Alter, B.P. TINF2, a component of the shelterin telomere protection complex, is mutated in dyskeratosis congenita. Am. J. Hum. Genet., 2008, 82(2), 501-509.
[http://dx.doi.org/10.1016/j.ajhg.2007.10.004] [PMID: 18252230]
[47]
Frank, A.K.; Tran, D.C.; Qu, R.W.; Stohr, B.A.; Segal, D.J.; Xu, L. The shelterin TIN2 subunit mediates recruitment of telomerase to telomeres. PLoS Genet., 2015, 11(7), e1005410.
[http://dx.doi.org/10.1371/journal.pgen.1005410] [PMID: 26230315]
[48]
Aramburu, T.; Plucinsky, S.; Skordalakes, E. POT1-TPP1 telomere length regulation and disease. Comput. Struct. Biotechnol. J., 2020, 18, 1939-1946.
[http://dx.doi.org/10.1016/j.csbj.2020.06.040] [PMID: 32774788]
[49]
Gu, P.; Jia, S.; Takasugi, T.; Tesmer, V.M.; Nandakumar, J.; Chen, Y.; Chang, S. Distinct functions of POT1 proteins contribute to the regulation of telomerase recruitment to telomeres. Nat. Commun., 2021, 12(1), 5514.
[http://dx.doi.org/10.1038/s41467-021-25799-7] [PMID: 34535663]
[50]
Kelleher, C.; Kurth, I.; Lingner, J. Human protection of telomeres 1 (POT1) is a negative regulator of telomerase activity in vitro. Mol. Cell. Biol., 2005, 25(2), 808-818.
[http://dx.doi.org/10.1128/MCB.25.2.808-818.2005] [PMID: 15632080]
[51]
van Steensel, B.; Smogorzewska, A.; de Lange, T. TRF2 protects human telomeres from end-to-end fusions. Cell, 1998, 92(3), 401-413.
[http://dx.doi.org/10.1016/S0092-8674(00)80932-0] [PMID: 9476899]
[52]
Imran, S.A.M.; Yazid, M.D.; Cui, W.; Lokanathan, Y. The intra-and extra-telomeric role of TRF2 in the DNA damage response. Int. J. Mol. Sci., 2021, 22(18), 9900.
[http://dx.doi.org/10.3390/ijms22189900] [PMID: 34576063]
[53]
Kim, H.; Lee, O.H.; Xin, H.; Chen, L.Y.; Qin, J.; Chae, H.K.; Lin, S.Y.; Safari, A.; Liu, D.; Songyang, Z. TRF2 functions as a protein hub and regulates telomere maintenance by recognizing specific peptide motifs. Nat. Struct. Mol. Biol., 2009, 16(4), 372-379.
[http://dx.doi.org/10.1038/nsmb.1575] [PMID: 19287395]
[54]
Deng, Y.; Guo, X.; Ferguson, D.O.; Chang, S. Multiple roles for MRE11 at uncapped telomeres. Nature, 2009, 460(7257), 914-918.
[http://dx.doi.org/10.1038/nature08196] [PMID: 19633651]
[55]
Chai, W.; Sfeir, A.J.; Hoshiyama, H.; Shay, J.W.; Wright, W.E. The involvement of the Mre11/Rad50/Nbs1 complex in the generation of G-overhangs at human telomeres. EMBO Rep., 2006, 7(2), 225-230.
[http://dx.doi.org/10.1038/sj.embor.7400600] [PMID: 16374507]
[56]
Saito, Y.; Fujimoto, H.; Kobayashi, J. Role of NBS1 in DNA damage response and its relationship with cancer development. Transl. Cancer Res., 2013, 2(3), 178-189.
[http://dx.doi.org/10.3978/j.issn.2218-676X.2013.04.05]
[57]
Bian, L.; Meng, Y.; Zhang, M.; Li, D. MRE11-RAD50-NBS1 complex alterations and DNA damage response: implications for cancer treatment. Mol. Cancer, 2019, 18(1), 169.
[http://dx.doi.org/10.1186/s12943-019-1100-5] [PMID: 31767017]
[58]
Rai, R.; Chen, Y.; Lei, M.; Chang, S. TRF2-RAP1 is required to protect telomeres from engaging in homologous recombination-mediated deletions and fusions. Nat. Commun., 2016, 7(1), 10881.
[http://dx.doi.org/10.1038/ncomms10881] [PMID: 26941064]
[59]
Lototska, L.; Yue, J.X.; Li, J.; Giraud-Panis, M.J.; Songyang, Z.; Royle, N.J.; Liti, G.; Ye, J.; Gilson, E.; Mendez-Bermudez, A. Human RAP 1 specifically protects telomeres of senescent cells from DNA damage. EMBO Rep., 2020, 21(4), e49076.
[http://dx.doi.org/10.15252/embr.201949076] [PMID: 32096305]
[60]
Manandhar, M.; Boulware, K.S.; Wood, R.D. The ERCC1 and ERCC4 (XPF) genes and gene products. Gene, 2015, 569(2), 153-161.
[http://dx.doi.org/10.1016/j.gene.2015.06.026] [PMID: 26074087]
[61]
McDaniel, L.D.; Schultz, R.A. XPF/ERCC4 and ERCC1: Their products and biological roles. Adv Exp Med Biol, 2008, 637, 65-82.
[http://dx.doi.org/10.1007/978-0-387-09599-8_8]
[62]
Guh, C.Y.; Shen, H.J.; Chen, L.W.; Chiu, P.C.; Liao, I.H.; Lo, C.C.; Chen, Y.; Hsieh, Y.H.; Chang, T.C.; Yen, C.P.; Chen, Y.Y.; Chen, T.W.W.; Chen, L.Y.; Wu, C.S.; Egly, J.M.; Chu, H.P.C. XPF activates break-induced telomere synthesis. Nat. Commun., 2022, 13(1), 5781.
[http://dx.doi.org/10.1038/s41467-022-33428-0] [PMID: 36184605]
[63]
Vannier, J.B.; Depeiges, A.; White, C.; Gallego, M.E. Two roles for Rad50 in telomere maintenance. EMBO J., 2006, 25(19), 4577-4585.
[http://dx.doi.org/10.1038/sj.emboj.7601345] [PMID: 16990794]
[64]
Wu, Y.; Xiao, S.; Zhu, X.D. MRE11–RAD50–NBS1 and ATM function as co-mediators of TRF1 in telomere length control. Nat. Struct. Mol. Biol., 2007, 14(9), 832-840.
[http://dx.doi.org/10.1038/nsmb1286] [PMID: 17694070]
[65]
Aghi, M.K.; Liu, T.C.; Rabkin, S.; Martuza, R.L. Hypoxia enhances the replication of oncolytic herpes simplex virus. Mol. Ther., 2009, 17(1), 51-56.
[http://dx.doi.org/10.1038/mt.2008.232] [PMID: 18957963]
[66]
Sgubin, D.; Wakimoto, H.; Kanai, R.; Rabkin, S.D.; Martuza, R.L. Oncolytic herpes simplex virus counteracts the hypoxia-induced modulation of glioblastoma stem-like cells. Stem Cells Transl. Med., 2012, 1(4), 322-332.
[http://dx.doi.org/10.5966/sctm.2011-0035] [PMID: 23197811]
[67]
Deng, Z.; Kim, E.T.; Vladimirova, O.; Dheekollu, J.; Wang, Z.; Newhart, A.; Liu, D.; Myers, J.L.; Hensley, S.E.; Moffat, J.; Janicki, S.M.; Fraser, N.W.; Knipe, D.M.; Weitzman, M.D.; Lieberman, P.M. HSV-1 remodels host telomeres to facilitate viral replication. Cell Rep., 2014, 9(6), 2263-2278.
[http://dx.doi.org/10.1016/j.celrep.2014.11.019] [PMID: 25497088]
[68]
Kim, Y.D.; Jang, S.J.; Lim, E.J.; Ha, J.S.; Shivakumar, S.B.; Jeong, G.J.; Rho, G.J.; Jeon, B.G. Induction of telomere shortening and cellular apoptosis by sodium meta-arsenite in human cancer cell lines. Anim. Cells Syst., 2017, 21(4), 241-254.
[http://dx.doi.org/10.1080/19768354.2017.1342691] [PMID: 30460075]
[69]
Fischer, P.M. The use of CDK inhibitors in oncology: A pharmaceutical perspective. Cell Cycle, 2004, 3(6), 740-744.
[http://dx.doi.org/10.4161/cc.3.6.937] [PMID: 15118410]
[70]
Shervington, A.; Patel, R.; Lu, C.; Cruickshanks, N.; Lea, R.; Roberts, G.; Dawson, T.; Shervington, L. Telomerase subunits expression variation between biopsy samples and cell lines derived from malignant glioma. Brain Res., 2007, 1134(1), 45-52.
[http://dx.doi.org/10.1016/j.brainres.2006.11.093] [PMID: 17196947]
[71]
Miao, F.; Chu, K.; Chen, H.; Zhang, M.; Shi, P.; Bai, J.; You, Y. Increased DKC1 expression in glioma and its significance in tumor cell proliferation, migration and invasion. Invest. New Drugs, 2019, 37(6), 1177-1186.
[http://dx.doi.org/10.1007/s10637-019-00748-w] [PMID: 30847721]
[72]
Bhari, V.K.; Kumar, D.; Kumar, S.; Mishra, R. Shelterin complex gene: Prognosis and therapeutic vulnerability in cancer. Biochem. Biophys. Rep., 2021, 26, 100937.
[http://dx.doi.org/10.1016/j.bbrep.2021.100937] [PMID: 33553693]
[73]
Liu, Y.; Snow, B.E.; Hande, M.P.; Baerlocher, G.; Kickhoefer, V.A.; Yeung, D.; Wakeham, A.; Itie, A.; Siderovski, D.P.; Lansdorp, P.M.; Robinson, M.O.; Harrington, L. Telomerase-associated protein TEP1 is not essential for telomerase activity or telomere length maintenance in vivo. Mol. Cell. Biol., 2000, 20(21), 8178-8184.
[http://dx.doi.org/10.1128/MCB.20.21.8178-8184.2000] [PMID: 11027287]
[74]
Bhattacharyya, S.; Sandy, A.; Groden, J. Unwinding protein complexes in ALTernative telomere maintenance. J. Cell. Biochem., 2010, 109(1), 7-15.
[http://dx.doi.org/10.1002/jcb.22388] [PMID: 19911388]
[75]
Kickhoefer, V.A.; Siva, A.C.; Kedersha, N.L.; Inman, E.M.; Ruland, C.; Streuli, M.; Rome, L.H. The 193-kD vault protein, VPARP, is a novel poly(ADP-ribose) polymerase. J. Cell Biol., 1999, 146(5), 917-928.
[http://dx.doi.org/10.1083/jcb.146.5.917] [PMID: 10477748]
[76]
Bai, Y.; Lathia, J.D.; Zhang, P.; Flavahan, W.; Rich, J.N.; Mattson, M.P. Molecular targeting of TRF2 suppresses the growth and tumorigenesis of glioblastoma stem cells. Glia, 2014, 62(10), 1687-1698.
[http://dx.doi.org/10.1002/glia.22708] [PMID: 24909307]
[77]
Fagagna, F.D.A.D.; Reaper, P.M.; Clay-Farrace, L.; Fiegler, H.; Carr, P.; Von Zglinicki, T.; Jackson, S.P. A DNA damage checkpoint response in telomere-initiated senescence. Nature, 2003, 426(6963), 194-198.
[http://dx.doi.org/10.1038/nature02118]
[78]
Denchi, E.L.; de Lange, T. Protection of telomeres through independent control of ATM and ATR by TRF2 and POT1. Nature, 2007, 448(7157), 1068-1071.
[http://dx.doi.org/10.1038/nature06065] [PMID: 17687332]
[79]
Smogorzewska, A.; de Lange, T. Different telomere damage signaling pathways in human and mouse cells. EMBO J., 2002, 21(16), 4338-4348.
[http://dx.doi.org/10.1093/emboj/cdf433] [PMID: 12169636]
[80]
Sun, C.; Wang, Z.; Song, W.; Chen, B.; Zhang, J.; Dai, X.; Wang, L.; Wu, J.; Lan, Q.; Huang, Q.; Dong, J. Alteration of DNA damage signaling pathway profile in radiation-treated glioblastoma stem-like cells. Oncol. Lett., 2015, 10(3), 1769-1774.
[http://dx.doi.org/10.3892/ol.2015.3411] [PMID: 26622748]
[81]
Gatei, M.; Jakob, B.; Chen, P.; Kijas, A.W.; Becherel, O.J.; Gueven, N.; Birrell, G.; Lee, J.H.; Paull, T.T.; Lerenthal, Y.; Fazry, S.; Taucher-Scholz, G.; Kalb, R.; Schindler, D.; Waltes, R.; Dörk, T.; Lavin, M.F. ATM protein-dependent phosphorylation of Rad50 protein regulates DNA repair and cell cycle control. J. Biol. Chem., 2011, 286(36), 31542-31556.
[http://dx.doi.org/10.1074/jbc.M111.258152] [PMID: 21757780]
[82]
Machida, K.; McNamara, G.; Cheng, K.T.H.; Huang, J.; Wang, C.H.; Comai, L.; Ou, J.H.J.; Lai, M.M.C. Hepatitis C virus inhibits DNA damage repair through reactive oxygen and nitrogen species and by interfering with the ATM-NBS1/Mre11/Rad50 DNA repair pathway in monocytes and hepatocytes. J. Immunol., 2010, 185(11), 6985-6998.
[http://dx.doi.org/10.4049/jimmunol.1000618] [PMID: 20974981]
[83]
Kuroda, S.; Fujiwara, T.; Shirakawa, Y.; Yamasaki, Y.; Yano, S.; Uno, F.; Tazawa, H.; Hashimoto, Y.; Watanabe, Y.; Noma, K.; Urata, Y.; Kagawa, S.; Fujiwara, T. Telomerase-dependent oncolytic adenovirus sensitizes human cancer cells to ionizing radiation via inhibition of DNA repair machinery. Cancer Res., 2010, 70(22), 9339-9348.
[http://dx.doi.org/10.1158/0008-5472.CAN-10-2333] [PMID: 21045143]
[84]
Cong, Y.S.; Wright, W.E.; Shay, J.W. Human telomerase and its regulation. Microbiol. Mol. Biol. Rev., 2002, 66(3), 407-425.
[http://dx.doi.org/10.1128/MMBR.66.3.407-425.2002] [PMID: 12208997]
[85]
Fairall, L.; Chapman, L.; Moss, H.; de Lange, T.; Rhodes, D. Structure of the TRFH dimerization domain of the human telomeric proteins TRF1 and TRF2. Mol. Cell, 2001, 8(2), 351-361.
[http://dx.doi.org/10.1016/S1097-2765(01)00321-5] [PMID: 11545737]
[86]
Lei, M.; Podell, E.R.; Cech, T.R. Structure of human POT1 bound to telomeric single-stranded DNA provides a model for chromosome end-protection. Nat. Struct. Mol. Biol., 2004, 11(12), 1223-1229.
[http://dx.doi.org/10.1038/nsmb867] [PMID: 15558049]
[87]
Ye, J.Z.S.; Donigian, J.R.; van Overbeek, M.; Loayza, D.; Luo, Y.; Krutchinsky, A.N.; Chait, B.T.; de Lange, T. TIN2 binds TRF1 and TRF2 simultaneously and stabilizes the TRF2 complex on telomeres. J. Biol. Chem., 2004, 279(45), 47264-47271.
[http://dx.doi.org/10.1074/jbc.M409047200] [PMID: 15316005]
[88]
Palm, W.; de Lange, T. How shelterin protects mammalian telomeres. Annu. Rev. Genet., 2008, 42(1), 301-334.
[http://dx.doi.org/10.1146/annurev.genet.41.110306.130350] [PMID: 18680434]
[89]
Herrmann, M.; Pusceddu, I.; März, W.; Herrmann, W. Telomere biology and age-related diseases. Clin. Chem. Lab. Med., 2018, 56(8), 1210-1222.
[http://dx.doi.org/10.1515/cclm-2017-0870] [PMID: 29494336]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy