Generic placeholder image

Current Pharmaceutical Design

Editor-in-Chief

ISSN (Print): 1381-6128
ISSN (Online): 1873-4286

Review Article

2,5-Diketopiperazines (DKPs): Promising Scaffolds for Anticancer Agents

Author(s): Shaimaa S. Goher, Wessam S. Abdrabo, Giri Babu Veerakanellore and Bahaa Elgendy*

Volume 30, Issue 8, 2024

Published on: 09 February, 2024

Page: [597 - 623] Pages: 27

DOI: 10.2174/0113816128291798240201112916

Price: $65

Abstract

2,5-Diketopiperazine (2,5-DKP) derivatives represent a family of secondary metabolites widely produced by bacteria, fungi, plants, animals, and marine organisms. Many natural products with DKP scaffolds exhibited various pharmacological activities such as antiviral, antifungal, antibacterial, and antitumor. 2,5-DKPs are recognized as privileged structures in medicinal chemistry, and compounds that incorporate the 2,5-DKP scaffold have been extensively investigated for their anticancer properties. This review is a thorough update on the anti-cancer activity of natural and synthesized 2,5-DKPs from 1997 to 2022. We have explored various aspects of 2,5-DKPs modifications and summarized their structure-activity relationships (SARs) to gain insight into their anticancer activities. We have also highlighted the novel approaches to enhance the specificity and pharmacokinetics of 2,5-DKP-based anticancer agents.

Keywords: 2, 5-Diketopiperazines (2, 5-DKPs), natural products, natural alkaloids, marine fungus, anticancer activities, pharmacological activities.

[1]
Borthwick AD. 2,5-Diketopiperazines: Synthesis, reactions, medicinal chemistry, and bioactive natural products. Chem Rev 2012; 112(7): 3641-716.
[http://dx.doi.org/10.1021/cr200398y] [PMID: 22575049]
[2]
Huang R, Zhou X, Xu T, Yang X, Liu Y. Diketopiperazines from marine organisms. Chem Biodivers 2010; 7(12): 2809-29.
[http://dx.doi.org/10.1002/cbdv.200900211] [PMID: 21161995]
[3]
Martins MB, Carvalho I. Diketopiperazines: Biological activity and synthesis. Tetrahedron 2007; 63(40): 9923-32.
[http://dx.doi.org/10.1016/j.tet.2007.04.105]
[4]
Greve H, Mohamed IE, Pontius A, Kehraus S, Gross H, König GM. Fungal metabolites: Structural diversity as incentive for anticancer drug development. Phytochem Rev 2010; 9(4): 537-45.
[http://dx.doi.org/10.1007/s11101-010-9198-5]
[5]
Mahar KM, Enslin MB, Gress A, Amrine-Madsen H, Cooper M. Single‐ and multiple‐day dosing studies to investigate high‐dose pharmacokinetics of epelsiban and its metabolite, gsk2395448, in healthy female volunteers. Clin Pharmacol Drug Dev 2018; 7(1): 33-43.
[http://dx.doi.org/10.1002/cpdd.363] [PMID: 28556598]
[6]
Grundmann A, Li SM. Overproduction, purification and characterization of FtmPT1, a brevianamide F prenyltransferase from Aspergillus fumigatus. Microbiology (Reading) 2005; 151(7): 2199-207.
[http://dx.doi.org/10.1099/mic.0.27962-0] [PMID: 16000710]
[7]
Gresser U, Gleiter CH. Erectile dysfunction: Comparison of efficacy and side effects of the PDE-5 inhibitors sildenafil, vardenafil and tadalafil-review of the literature. Eur J Med Res 2002; 7(10): 435-46.
[PMID: 12435622]
[8]
Dinsmore CJ, Beshore DC. Recent advances in the synthesis of diketopiperazines. Tetrahedron 2002; 58(17): 3297-312.
[http://dx.doi.org/10.1016/S0040-4020(02)00239-9]
[9]
Gong X, Yang XX, Wang DX. A new route for the synthesis of N-substituted diketopiperazine derivatives. Chin Chem Lett 2006; 17(4): 469.
[10]
Nicholson B, Lloyd GK, Miller BR, et al. NPI-2358 is a tubulin-depolymerizing agent: In-vitro evidence for activity as a tumor vascular-disrupting agent. Anticancer Drugs 2006; 17(1): 25-31.
[http://dx.doi.org/10.1097/01.cad.0000182745.01612.8a] [PMID: 16317287]
[11]
Bertelsen LB, Shen YY, Nielsen T, et al. Vascular effects of plinabulin (NPI-2358) and the influence on tumour response when given alone or combined with radiation. Int J Radiat Biol 2011; 87(11): 1126-34.
[http://dx.doi.org/10.3109/09553002.2011.605418] [PMID: 21815749]
[12]
Poster DS, Penta J, Marsoni S, Bruno S, Macdonald JS. Bis-diketopiperazine derivatives in clinical oncology: ICRF-159. Cancer Clin Trials 1980; 3(4): 315-20.
[PMID: 7000389]
[13]
Chen X, Chen X, Steimbach RR, et al. Novel 2, 5-diketopiperazine derivatives as potent selective histone deacetylase 6 inhibitors: Rational design, synthesis and antiproliferative activity. Eur J Med Chem 2020; 187: 111950.
[http://dx.doi.org/10.1016/j.ejmech.2019.111950] [PMID: 31865013]
[14]
Gaulton A, Hersey A, Nowotka M, et al. The ChEMBL database in 2017. Nucleic Acids Res 2017; 45(D1): D945-54.
[http://dx.doi.org/10.1093/nar/gkw1074] [PMID: 27899562]
[15]
Davies M, Nowotka M, Papadatos G, et al. ChEMBL web services: Streamlining access to drug discovery data and utilities. Nucleic Acids Res 2015; 43(W1): W612-20.
[http://dx.doi.org/10.1093/nar/gkv352] [PMID: 25883136]
[16]
McKinney W. Data Structures for Statistical Computing in Python Proc 9th Python Sci Con 1: 56-61.
[http://dx.doi.org/10.25080/Majora-92bf1922-00a]
[17]
Harris CR, Millman KJ, van der Walt SJ, et al. Array programming with NumPy. Nature 2020; 585(7825): 357-62.
[http://dx.doi.org/10.1038/s41586-020-2649-2] [PMID: 32939066]
[18]
Hunter JD. Matplotlib: A 2D graphics environment. Comput Sci Eng 2007; 9(3): 90-5.
[http://dx.doi.org/10.1109/MCSE.2007.55]
[19]
Waskom M. Seaborn: Statistical data visualization. J Open Source Softw 2021; 6(60): 3021.
[http://dx.doi.org/10.21105/joss.03021]
[20]
van Rossum G. Python tutorial, technical report CS-R9526. Cent Voor Wiskd En Inform 1995.
[21]
Kluyver T, Ragan-Kelley B, Pérez F, et al. Jupyter Notebooks-a publishing format for reproducible computational workflows, Position. Power Acad Publ Play Agents Agendas - Proc 20th Int Conf Electron Publ ELPUB 2016; 87-90.
[http://dx.doi.org/10.3233/978-1-61499-649-1-87]
[22]
Zhang Q, Li S, Chen Y, et al. New diketopiperazine derivatives from a deep-sea-derived Nocardiopsis alba SCSIO 03039. J Antibiot 2013; 66(1): 31-6.
[http://dx.doi.org/10.1038/ja.2012.88] [PMID: 23093033]
[23]
Hartung A, Seufert F, Berges C, Gessner V, Holzgrabe U. One-pot Ugi/Aza-Michael synthesis of highly substituted 2,5-diketopiperazines with anti-proliferative properties. Molecules 2012; 17(12): 14685-99.
[http://dx.doi.org/10.3390/molecules171214685] [PMID: 23519247]
[24]
Purushotham M, Paul B. Iodinated diketopiperazines: Synthesis and biological evaluation of iodinated analogues of cyclo(L‐Tyrosine‐L‐Tyrosine) Peptides. ChemistrySelect 2022; 7(16): e202201120.
[http://dx.doi.org/10.1002/slct.202201120]
[25]
Kanoh K, Kohno S, Asari T, et al. (−)-Phenylahistin: A new mammalian cell cycle inhibitor produced by Aspergillus ustus. Bioorg Med Chem Lett 1997; 7(22): 2847-52.
[http://dx.doi.org/10.1016/S0960-894X(97)10104-4]
[26]
Kanoh K, Kohno S, Katada J, Takahashi J, Uno I. (-)-Phenylahistin arrests cells in mitosis by inhibiting tubulin polymerization. J Antibiot 1999; 52(2): 134-41.
[http://dx.doi.org/10.7164/antibiotics.52.134] [PMID: 10344567]
[27]
Tian Z, Chu Y, Wang H, Zhong L, Deng M, Li W. Biological activity and interaction mechanism of the diketopiperazine derivatives as tubulin polymerization inhibitors. RSC Advances 2018; 8(2): 1055-64.
[http://dx.doi.org/10.1039/C7RA12173C] [PMID: 35538960]
[28]
Ding Z, Li F, Zhong C, et al. Structure-based design and synthesis of novel furan-diketopiperazine-type derivatives as potent microtubule inhibitors for treating cancer. Bioorg Med Chem 2020; 28(10): 115435.
[http://dx.doi.org/10.1016/j.bmc.2020.115435] [PMID: 32278711]
[29]
Singh AV, Bandi M, Raje N, et al. A novel vascular disrupting agent plinabulin triggers JNK-mediated apoptosis and inhibits angiogenesis in multiple myeloma cells. Blood 2011; 117(21): 5692-700.
[http://dx.doi.org/10.1182/blood-2010-12-323857] [PMID: 21454451]
[30]
Yamazaki Y, Sumikura M, Masuda Y, et al. Synthesis and structure-activity relationships of benzophenone-bearing diketopiperazine-type anti-microtubule agents. Bioorg Med Chem 2012; 20(14): 4279-89.
[http://dx.doi.org/10.1016/j.bmc.2012.05.059] [PMID: 22727370]
[31]
Honda-Uezono A, Kaida A, Michi Y, et al. Unusual expression of red fluorescence at M phase induced by anti-microtubule agents in HeLa cells expressing the fluorescent ubiquitination-based cell cycle indicator (Fucci). Biochem Biophys Res Commun 2012; 428(2): 224-9.
[http://dx.doi.org/10.1016/j.bbrc.2012.10.014] [PMID: 23063846]
[32]
Fu Z, Hou Y, Ji C, et al. Design, synthesis and biological evaluation of anti-pancreatic cancer activity of plinabulin derivatives based on the co-crystal structure. Bioorg Med Chem 2018; 26(8): 2061-72.
[http://dx.doi.org/10.1016/j.bmc.2018.03.005] [PMID: 29571653]
[33]
Ma M, Zhao J, Cheng H, et al. In vitro and in vivo pharmacokinetic and pharmacodynamic study of MBRI-001, a deuterium-substituted plinabulin derivative as a potent anti-cancer agent. Bioorg Med Chem 2018; 26(16): 4687-92.
[http://dx.doi.org/10.1016/j.bmc.2018.08.009] [PMID: 30119994]
[34]
Ding Z, Cheng H, Wang S, et al. Development of MBRI-001, a deuterium-substituted plinabulin derivative as a potent anti-cancer agent. Bioorg Med Chem Lett 2017; 27(6): 1416-9.
[http://dx.doi.org/10.1016/j.bmcl.2017.01.096] [PMID: 28228362]
[35]
Yamazaki Y, Tanaka K, Nicholson B, et al. Synthesis and structure-activity relationship study of antimicrotubule agents phenylahistin derivatives with a didehydropiperazine-2,5-dione structure. J Med Chem 2012; 55(3): 1056-71.
[http://dx.doi.org/10.1021/jm2009088] [PMID: 22185476]
[36]
Deng M, Li L, Zhao J, Yuan S, Li W. Antitumor activity of the microtubule inhibitor MBRI-001 against human hepatocellular carcinoma as monotherapy or in combination with sorafenib. Cancer Chemother Pharmacol 2018; 81(5): 853-62.
[http://dx.doi.org/10.1007/s00280-018-3547-2] [PMID: 29532153]
[37]
Wang Y, Zhang H, Gigant B, et al. Structures of a diverse set of colchicine binding site inhibitors in complex with tubulin provide a rationale for drug discovery. FEBS J 2016; 283(1): 102-11.
[http://dx.doi.org/10.1111/febs.13555] [PMID: 26462166]
[38]
Chinh PT, Tham PT, Quynh DH, et al. Synthesis and cytotoxic activity of several novel n-alkyl-plinabulin derivatives with aryl group moieties. Nat Prod Commun 2021; 16(4): 1934578X2110100.
[http://dx.doi.org/10.1177/1934578X211010040]
[39]
Sodeoka M, Dodo K, Teng Y, et al. Synthesis and biological activities of chaetocin and its derivatives. Pure Appl Chem 2012; 84(6): 1369-78.
[http://dx.doi.org/10.1351/PAC-CON-11-10-31]
[40]
Gardiner DM, Waring P, Howlett BJ. The epipolythiodioxopiperazine (ETP) class of fungal toxins: Distribution, mode of action, functions and biosynthesis. Microbiology 2005; 151(4): 1021-32.
[http://dx.doi.org/10.1099/mic.0.27847-0] [PMID: 15817772]
[41]
Waring P, Eichner RD, Müllbacher A. The chemistry and biology of the immunomodulating agent gliotoxin and related epipolythiodioxopiperazines. Med Res Rev 1988; 8(4): 499-524.
[http://dx.doi.org/10.1002/med.2610080404] [PMID: 2461498]
[42]
Hauser D, Weber HP, Sigg HP. Isolierung und strukturaufklärung von chaetocin. Helv Chim Acta 1970; 53(5): 1061-73.
[http://dx.doi.org/10.1002/hlca.19700530521] [PMID: 5448218]
[43]
Boyer N, Morrison KC, Kim J, Hergenrother PJ, Movassaghi M. Synthesis and anticancer activity of epipolythiodiketopiperazine alkaloids. Chem Sci 2013; 4(4): 1646-57.
[http://dx.doi.org/10.1039/c3sc50174d] [PMID: 23914293]
[44]
Tibodeau JD, Benson LM, Isham CR, Owen WG, Bible KC. The anticancer agent chaetocin is a competitive substrate and inhibitor of thioredoxin reductase. Antioxid Redox Signal 2009; 11(5): 1097-106.
[http://dx.doi.org/10.1089/ars.2008.2318] [PMID: 18999987]
[45]
Isham CR, Tibodeau JD, Jin W, Xu R, Timm MM, Bible KC. Chaetocin: A promising new antimyeloma agent with in vitro and in vivo activity mediated via imposition of oxidative stress. Blood 2007; 109(6): 2579-88.
[http://dx.doi.org/10.1182/blood-2006-07-027326] [PMID: 17090648]
[46]
Lai Y-S, Chen J-Y, Tsai H-J, Chen T-Y, Hung W-C. The SUV39H1 inhibitor chaetocin induces differentiation and shows synergistic cytotoxicity with other epigenetic drugs in acute myeloid leukemia cells. Blood Cancer J 2015; 5(5): e313.
[http://dx.doi.org/10.1038/bcj.2015.37] [PMID: 25978433]
[47]
Song X, Zhao Z, Qi X, et al. Identification of epipolythiodioxopiperazines HDN-1 and chaetocin as novel inhibitor of heat shock protein 90. Oncotarget 2015; 6(7): 5263-74.
[http://dx.doi.org/10.18632/oncotarget.3029] [PMID: 25742791]
[48]
Lee MC, Kuo YY, Chou WC, Hou HA, Hsiao M, Tien HF. Gfi-1 is the transcriptional repressor of SOCS1 in acute myeloid leukemia cells. J Leukoc Biol 2013; 95(1): 105-15.
[http://dx.doi.org/10.1189/jlb.0912475] [PMID: 24018353]
[49]
Tran HTT, Kim HN, Lee IK, et al. Improved therapeutic effect against leukemia by a combination of the histone methyltransferase inhibitor chaetocin and the histone deacetylase inhibitor trichostatin A. J Korean Med Sci 2013; 28(2): 237-46.
[http://dx.doi.org/10.3346/jkms.2013.28.2.237] [PMID: 23400519]
[50]
Jung H-J, Seo I, Casciello F, et al. The anticancer effect of chaetocin is enhanced by inhibition of autophagy. Cell Death Dis 2016; 7(2): e2098-8.
[http://dx.doi.org/10.1038/cddis.2016.15] [PMID: 26890137]
[51]
Han X, Han Y, Zheng Y, et al. Chaetocin induces apoptosis in human melanoma cells through the generation of reactive oxygen species and the intrinsic mitochondrial pathway, and exerts its anti-tumor activity in vivo. PLoS One 2017; 12(4): e0175950.
[http://dx.doi.org/10.1371/journal.pone.0175950] [PMID: 28419143]
[52]
Teng Y, Iuchi K, Iwasa E, et al. Unnatural enantiomer of chaetocin shows strong apoptosis-inducing activity through caspase-8/caspase-3 activation. Bioorg Med Chem Lett 2010; 20(17): 5085-8.
[http://dx.doi.org/10.1016/j.bmcl.2010.07.032] [PMID: 20675131]
[53]
Isham CR, Tibodeau JD, Bossou AR, Merchan JR, Bible KC. The anticancer effects of chaetocin are independent of programmed cell death and hypoxia, and are associated with inhibition of endothelial cell proliferation. Br J Cancer 2012; 106(2): 314-23.
[http://dx.doi.org/10.1038/bjc.2011.522] [PMID: 22187030]
[54]
Fujishiro S, Dodo K, Iwasa E, et al. Epidithiodiketopiperazine as a pharmacophore for protein lysine methyltransferase G9a inhibitors: Reducing cytotoxicity by structural simplification. Bioorg Med Chem Lett 2013; 23(3): 733-6.
[http://dx.doi.org/10.1016/j.bmcl.2012.11.087] [PMID: 23266120]
[55]
Du L, Robles AJ, King JB, Mooberry SL, Cichewicz RH. Cytotoxic dimeric epipolythiodiketopiperazines from the ascomycetous fungus Preussia typharum. J Nat Prod 2014; 77(6): 1459-66.
[http://dx.doi.org/10.1021/np5002253] [PMID: 24893224]
[56]
Takahashi C, Minoura K, Yamada T, et al. Potent cytotoxic metabolites from a Leptosphaeria species. Structure determination and conformational analysis. Tetrahedron 1995; 51(12): 3483-98.
[http://dx.doi.org/10.1016/0040-4020(95)00102-E]
[57]
Yanagihara M, Sasaki-Takahashi N, Sugahara T, et al. Leptosins isolated from marine fungus Leptoshaeria species inhibit DNA topoisomerases I and/or II and induce apoptosis by inactivation of Akt/protein kinase B. Cancer Sci 2005; 96(11): 816-24.
[http://dx.doi.org/10.1111/j.1349-7006.2005.00117.x] [PMID: 16271076]
[58]
Minato H, Matsumoto M, Katayama T, Verticillin A. Verticillin A, a new antibiotic from Verticillium sp. J Chem Soc D 1971; 44-45(1): 44.
[http://dx.doi.org/10.1039/c29710000044]
[59]
Minato H, Matsumoto M, Katayama T. Studies on the metabolites of Verticillium sp. structures of verticillins A, B, and C. J Chem Soc, Perkin Trans 1 1973; 17: 1819-25.
[http://dx.doi.org/10.1039/p19730001819] [PMID: 4796650]
[60]
Katagiri K, Sato K, Hayakawa S, Matsushima T, Minato H. Verticillin A, a new antibiotic from Verticillium sp. J Antibiot 1970; 23(8): 420-2.
[http://dx.doi.org/10.7164/antibiotics.23.420] [PMID: 5465723]
[61]
Paschall AV, Liu K. Epigenetic regulation of apoptosis and cell cycle regulatory genes in human colon carcinoma cells. Genom Data 2015; 5: 189-91.
[http://dx.doi.org/10.1016/j.gdata.2015.05.043] [PMID: 26309812]
[62]
Chu M, Truumees I, Rothofsky ML, et al. Inhibition of c-fos proto-oncogene induction by Sch 52900 and Sch 52901, novel diketopiperazine produced by Gliocladium sp. J Antibiot 1995; 48(12): 1440-5.
[http://dx.doi.org/10.7164/antibiotics.48.1440] [PMID: 8557601]
[63]
Joshi BK, Gloer JB, Wicklow DT. New verticillin and glisoprenin analogues from Gliocladium catenulatum, a mycoparasite of Aspergillus flavus sclerotia. J Nat Prod 1999; 62(5): 730-3.
[http://dx.doi.org/10.1021/np980530x] [PMID: 10346956]
[64]
Dong JY, He HP, Shen YM, Zhang KQ. Nematicidal epipolysulfanyldioxopiperazines from Gliocladium roseum. J Nat Prod 2005; 68(10): 1510-3.
[http://dx.doi.org/10.1021/np0502241] [PMID: 16252916]
[65]
Son BW, Jensen PR, Kauffman CA, Fenical W. New cytotoxic epidithiodioxopiperazines related to verticillin A from a marine isolate of the fungus Penicillium. Nat Prod Lett 1999; 13(3): 213-22.
[http://dx.doi.org/10.1080/10575639908048788]
[66]
Figueroa M, Graf TN, Ayers S, et al. Cytotoxic epipolythiodioxopiperazine alkaloids from filamentous fungi of the Bionectriaceae. J Antibiot 2012; 65(11): 559-64.
[http://dx.doi.org/10.1038/ja.2012.69] [PMID: 22968289]
[67]
Amrine CSM, Raja HA, Darveaux BA, Pearce CJ, Oberlies NH. Media studies to enhance the production of verticillins facilitated by in situ chemical analysis. J Ind Microbiol Biotechnol 2018; 45(12): 1053-65.
[http://dx.doi.org/10.1007/s10295-018-2083-8] [PMID: 30259213]
[68]
Baumann M, Dieskau AP, Loertscher BM, et al. Tricyclic analogues of epidithiodioxopiperazine alkaloids with promising in vitro and in vivo antitumor activity. Chem Sci 2015; 6(8): 4451-7.
[http://dx.doi.org/10.1039/C5SC01536G] [PMID: 26301062]
[69]
Liu F, Liu Q, Yang D, et al. Verticillin A overcomes apoptosis resistance in human colon carcinoma through DNA methylation-dependent upregulation of BNIP3. Cancer Res 2011; 71(21): 6807-16.
[http://dx.doi.org/10.1158/0008-5472.CAN-11-1575] [PMID: 21911457]
[70]
Feiyan L, Ping W, Kebin L. Verticillin a inhibition of histone methyltransferases. US Patent 20140161785A1, 2014.
[71]
Chen Y, Zhang YX, Li MH, et al. Antiangiogenic activity of 11,11′-dideoxyverticillin, a natural product isolated from the fungus Shiraia bambusicola. Biochem Biophys Res Commun 2005; 329(4): 1334-42.
[http://dx.doi.org/10.1016/j.bbrc.2005.02.115] [PMID: 15766573]
[72]
He P, Che Y, He Q, Chen Y, Ding J. G226, a novel epipolythiodioxopiperazine derivative, induces autophagy and caspase-dependent apoptosis in human breast cancer cells in vitro. Acta Pharmacol Sin 2014; 35(8): 1055-64.
[http://dx.doi.org/10.1038/aps.2014.47] [PMID: 25066322]
[73]
Niu S, Yuan D, Jiang X, Che Y. 11′-Deoxyverticillin A (C42) promotes autophagy through K-Ras/GSK3 signaling pathway in HCT116 cells. Protein Cell 2014; 5(12): 945-9.
[http://dx.doi.org/10.1007/s13238-014-0099-z] [PMID: 25261996]
[74]
Zhang YX, Chen Y, Guo XN, et al. 11,11′-Dideoxy-verticillin: A natural compound possessing growth factor receptor tyrosine kinase-inhibitory effect with anti-tumor activity. Anticancer Drugs 2005; 16(5): 515-24.
[http://dx.doi.org/10.1097/00001813-200506000-00007] [PMID: 15846117]
[75]
Zhang N, Chen Y, Jiang R, et al. PARP and RIP 1 are required for autophagy induced by 11′-deoxyverticillin A, which precedes caspase-dependent apoptosis. Autophagy 2011; 7(6): 598-612.
[http://dx.doi.org/10.4161/auto.7.6.15103] [PMID: 21460625]
[76]
He P, Zhang J, Che Y, He Q, Chen Y, Ding J. G226, a new epipolythiodioxopiperazine derivative, triggers DNA damage and apoptosis in human cancer cells in vitro via ROS generation. Acta Pharmacol Sin 2014; 35(12): 1546-55.
[http://dx.doi.org/10.1038/aps.2014.105] [PMID: 25468822]
[77]
Amrine CSM, Huntsman AC, Doyle MG, et al. Semisynthetic derivatives of the verticillin class of natural products through acylation of the c11 hydroxy group. ACS Med Chem Lett 2021; 12(4): 625-30.
[http://dx.doi.org/10.1021/acsmedchemlett.1c00024] [PMID: 33859802]
[78]
Glister GA, Williams TI. Production of gliotoxin by Aspergillus fumigatus mut. helvola yuill. Nature 1944; 153(3891): 651-1.
[http://dx.doi.org/10.1038/153651a0]
[79]
Nguyen VT, Lee J, Qian ZJ, et al. Gliotoxin isolated from marine fungus Aspergillus sp. induces apoptosis of human cervical cancer and chondrosarcoma cells. Mar Drugs 2013; 12(1): 69-87.
[http://dx.doi.org/10.3390/md12010069] [PMID: 24368570]
[80]
Wilkinson S, Spilsbury JF. Gliotoxin from Aspergillus chevalieri (Mangin) thom et church. Nature 1965; 206(4984): 619-9.
[http://dx.doi.org/10.1038/206619a0] [PMID: 5832836]
[81]
Beecham AF, Fridrichsons J, Mathieson AM. The structure and absolute configuration of gliotoxin and the absolute configuration of sporidesmin. Tetrahedron Lett 1966; 7(27): 3131-8.
[http://dx.doi.org/10.1016/S0040-4039(01)99927-7] [PMID: 5955875]
[82]
Johnson JR, Bruce WF, Dutcher JD. Gliotoxin, the antibiotic principle of Gliocladium fimbriatum. i. production, physical and biological properties. J Am Chem Soc 1943; 65(10): 2005-9.
[http://dx.doi.org/10.1021/ja01250a051]
[83]
Park YH, Stack JP, Kenerley CM. Production of gliotoxin by Gliocladium virens as a function of source and concentration of carbon and nitrogen. Mycol Res 1991; 95(10): 1242-8.
[http://dx.doi.org/10.1016/S0953-7562(09)80018-X]
[84]
Park YH, Park CM. Selective isolation and enumeration of Gliocladium virens and G. roseum from soil. Plant Dis 1992; 76(3): 230-5.
[http://dx.doi.org/10.1094/PD-76-0230]
[85]
Anitha R, Murugesan K. Production of gliotoxin on natural substrates Bytrichoderma virens. J Basic Microbiol 2005; 45(1): 12-9.
[http://dx.doi.org/10.1002/jobm.200410451] [PMID: 15678558]
[86]
W. R. E. O.H, The isolation of a toxic substance from the culture fiItrate of Trichoderma. Phytopathology 1936; 26: 1068-70.
[87]
Wright JM. J.M. wright, the production of antibiotics in soil. Ann Appl Biol 1954; 41(2): 280-9.
[http://dx.doi.org/10.1111/j.1744-7348.1954.tb01121.x]
[88]
Suhadolnik RJ. Gliotoxin. In: Gottlieb D, Shaw PD, Eds. Biosynthesis, Springer Berlin Heidelberg, Berlin. Heidelberg 1967; 29-31.
[http://dx.doi.org/10.1007/978-3-662-38441-1_4]
[89]
Mull RP, Townley RW, Scholz CR. Production of gliotoxin and a second active isolate by Penicillium obscurum biourge. J Am Chem Soc 1945; 67(9): 1626-7.
[http://dx.doi.org/10.1021/ja01225a518]
[90]
Liang WL, Le X, Li HJ, et al. Exploring the chemodiversity and biological activities of the secondary metabolites from the marine fungus Neosartorya pseudofischeri. Mar Drugs 2014; 12(11): 5657-76.
[http://dx.doi.org/10.3390/md12115657] [PMID: 25421322]
[91]
Kaouadji M, Steiman R, Seigle-Murandi F, Krivobok S, Sage L. Gliotoxin: Uncommon 1H couplings and revised 1H- and 13C-NMR assignments. J Nat Prod 1990; 53(3): 717-9.
[http://dx.doi.org/10.1021/np50069a032]
[92]
Bracken A, Raistrick H. Studies in the biochemistry of micro-organisms. Biochem J 1947; 41(4): 569-75.
[http://dx.doi.org/10.1042/bj0410569]
[93]
Johnson JR, Kidwai AR, Warner JS. Gliotoxin. XI. A related antibiotic from Penicillium terlikowski: Gliotoxin monoacetate. J Am Chem Soc 1953; 75(9): 2110-2.
[http://dx.doi.org/10.1021/ja01105a026]
[94]
Sun Y, Takada K, Takemoto Y, et al. Gliotoxin analogues from a marine-derived fungus, Penicillium sp., and their cytotoxic and histone methyltransferase inhibitory activities. J Nat Prod 2012; 75(1): 111-4.
[http://dx.doi.org/10.1021/np200740e] [PMID: 22148349]
[95]
Pahl HL, Krauss B, Schulze-Osthoff K, et al. The immunosuppressive fungal metabolite gliotoxin specifically inhibits transcription factor NF-kappaB. J Exp Med 1996; 183(4): 1829-40.
[http://dx.doi.org/10.1084/jem.183.4.1829] [PMID: 8666939]
[96]
Coleman JJ, Ghosh S, Okoli I, Mylonakis E. Antifungal activity of microbial secondary metabolites. PLoS One 2011; 6(9): e25321.
[http://dx.doi.org/10.1371/journal.pone.0025321] [PMID: 21966496]
[97]
Hubmann W, Sieghart R. Tumor treatment with gliotoxin derivatives. 2011. Available from: https://patents.google.com/patent/ US7981878B2/en (Accessed August 4, 2023).
[98]
Vigushin DM, Mirsaidi N, Brooke G, et al. Gliotoxin is a dual inhibitor of farnesyltransferase and geranylgeranyltransferase I with antitumor activity against breast cancer in vivo. Med Oncol 2004; 21(1): 21-30.
[http://dx.doi.org/10.1385/MO:21:1:21] [PMID: 15034210]
[99]
Baust H, Schoke A, Brey A, et al. Evidence for radiosensitizing by gliotoxin in HL-60 cells: Implications for a role of NF-κB independent mechanisms. Oncogene 2003; 22(54): 8786-96.
[http://dx.doi.org/10.1038/sj.onc.1206969] [PMID: 14647473]
[100]
Nieminen SM, Mäki-Paakkanen J, Hirvonen MR, Roponen M, von Wright A. Genotoxicity of gliotoxin, a secondary metabolite of Aspergillus fumigatus, in a battery of short-term test systems. Mutat Res Genet Toxicol Environ Mutagen 2002; 520(1-2): 161-70.
[http://dx.doi.org/10.1016/S1383-5718(02)00202-4] [PMID: 12297156]
[101]
Svahn KS, Göransson U, El-Seedi H, et al. Antimicrobial activity of filamentous fungi isolated from highly antibiotic-contaminated river sediment. Infect Ecol Epidemiol 2012; 2(1): 11591.
[http://dx.doi.org/10.3402/iee.v2i0.11591] [PMID: 22957125]
[102]
Larin NM, Copping MP, Herbst-Laier RH, Roberts B, Wenham RBM. Antiviral activity of gliotoxin. Chemotherapy 1965; 10(1): 12-23.
[http://dx.doi.org/10.1159/000220389] [PMID: 4285752]
[103]
Rightsel WA, Schneider HG, Sloan BJ, et al. Antiviral activity of gliotoxin and gliotoxin acetate. Nature 1964; 204(4965): 1333-4.
[http://dx.doi.org/10.1038/2041333b0] [PMID: 14254440]
[104]
Ye W, Liu T, Zhang W, Zhang W. The toxic mechanism of gliotoxins and biosynthetic strategies for toxicity prevention. Int J Mol Sci 2021; 22: 13510.
[http://dx.doi.org/10.3390/ijms222413510] [PMID: 34948306]
[105]
Scharf DH, Heinekamp T, Remme N, Hortschansky P, Brakhage AA, Hertweck C. Biosynthesis and function of gliotoxin in Aspergillus fumigatus. Appl Microbiol Biotechnol 2012; 93(2): 467-72.
[http://dx.doi.org/10.1007/s00253-011-3689-1] [PMID: 22094977]
[106]
Chen J, Wang C, Lan W, et al. Gliotoxin inhibits proliferation and induces apoptosis in colorectal cancer cells. Mar Drugs 2015; 13(10): 6259-73.
[http://dx.doi.org/10.3390/md13106259] [PMID: 26445050]
[107]
Wang Y, Li ZL, Bai J, et al. 2,5-diketopiperazines from the marine-derived fungus Aspergillus fumigatus YK-7. Chem Biodivers 2012; 9(2): 385-93.
[http://dx.doi.org/10.1002/cbdv.201100061] [PMID: 22344914]
[108]
Park HB, Kim YJ, Park JS, et al. Glionitrin B, a cancer invasion inhibitory diketopiperazine produced by microbial coculture. J Nat Prod 2011; 74(10): 2309-12.
[http://dx.doi.org/10.1021/np200563x] [PMID: 21954885]
[109]
Orfali RS, Aly AH, Ebrahim W, et al. Pretrichodermamide C and N-methylpretrichodermamide B, two new cytotoxic epidithiodiketopiperazines from hyper saline lake derived Penicillium sp. Phytochem Lett 2015; 11: 168-72.
[http://dx.doi.org/10.1016/j.phytol.2014.12.010]
[110]
Zhou Y, Debbab A, Mándi A, et al. Alkaloids from the sponge‐associated fungus Aspergillus sp. Eur J Org Chem 2013; 2013(5): 894-906.
[http://dx.doi.org/10.1002/ejoc.201201220]
[111]
Wang FZ, Huang Z, Shi XF, et al. Cytotoxic indole diketopiperazines from the deep sea-derived fungus Acrostalagmus luteoalbus SCSIO F457. Bioorg Med Chem Lett 2012; 22(23): 7265-7.
[http://dx.doi.org/10.1016/j.bmcl.2012.08.115] [PMID: 23079524]
[112]
Adams TC, Payette JN, Cheah JH, Movassaghi M. Concise total synthesis of (+)-luteoalbusins A and B. Org Lett 2015; 17(17): 4268-71.
[http://dx.doi.org/10.1021/acs.orglett.5b02059] [PMID: 26336940]
[113]
Seya H, Nakajima S, Kawai K, Udagawa S. Structure and absolute configuration of emestrin, a new macrocyclic epidithiodioxopiperazine from Emericell striata. J Chem Soc Chem Commun 1985; 10: 657-8.
[http://dx.doi.org/10.1039/c39850000657]
[114]
Onodera H, Hasegawa A, Tsumagari N, Nakai R, Ogawa T, Kanda Y. MPC1001 and its analogues: New antitumor agents from the fungus Cladorrhinum species. Org Lett 2004; 6(22): 4101-4.
[http://dx.doi.org/10.1021/ol048202d] [PMID: 15496109]
[115]
Nursid M, Namirah I, Cahyana AH, Fajarningsih ND, Chasanah E, Emestrin B. Epipolythiodioxypiperazine from marine derived fungus Emericella nidulans. J Med Bioeng 2015; 4(6): 441-5.
[http://dx.doi.org/10.12720/jomb.4.6.441-445]
[116]
Seya H, Nozawa K, Nakajima S, Kawai K, Udagawa S. Studies on fungal products. Part 8. Isolation and structure of emestrin, a novel antifungal macrocyclic epidithiodioxopiperazine from Emericella striata. X-Ray molecular structure of emestrin. J Chem Soc, Perkin Trans 1 1986; 109-16.
[http://dx.doi.org/10.1039/p19860000109]
[117]
Lipson EJ, Vincent JG, Loyo M, et al. A cytotoxic epitetrathiodioxopiperizine and emericellenes A-E, five sesterterpenoids from Emericella sp. AST0036, a fungal endophyte of Astragalus lentiginosus. J Nat Prod 2014; 76: 1-20.
[http://dx.doi.org/10.1158/2326-6066.CIR-13-0034.PD-L1]
[118]
Xu Y, Espinosa-Artiles P, Liu MX, Arnold AE, Gunatilaka AAL, Secoemestrin D. Secoemestrin D, a cytotoxic epitetrathiodioxopiperizine, and emericellenes A-E, five sesterterpenoids from Emericella sp. AST0036, a fungal endophyte of Astragalus lentiginosus1. J Nat Prod 2013; 76(12): 2330-6.
[http://dx.doi.org/10.1021/np400762k] [PMID: 24251417]
[119]
Dong S, Indukuri K, Clive DLJ, Gao JM. Synthesis of models of the BC ring systems of MPC1001 and MPC1001F. Chem Commun 2016; 52(53): 8271-4.
[http://dx.doi.org/10.1039/C6CC04169H] [PMID: 27284641]
[120]
Kong F, Wang Y, Liu P, Dong T, Zhu W. Thiodiketopiperazines from the marine-derived fungus Phoma sp. OUCMDZ-1847. J Nat Prod 2014; 77(1): 132-7.
[http://dx.doi.org/10.1021/np400802d] [PMID: 24370114]
[121]
Cai J, Wang X, Yang Z, et al. Thiodiketopiperazines and alkane derivatives produced by the mangrove sediment-derived fungus Penicillium ludwigii SCSIO 41408. Front Microbiol 2022; 13: 857041.
[http://dx.doi.org/10.3389/fmicb.2022.857041] [PMID: 35418953]
[122]
Hegde VR, Dai P, Patel M, Das PR, Puar MS. Novel thiodiketopiperazine fungal metabolites as epidermal growth factor receptor antagonists. Tetrahedron Lett 1997; 38(6): 911-4.
[http://dx.doi.org/10.1016/S0040-4039(96)02457-4]
[123]
Scharf DH, Remme N, Habel A, et al. A dedicated glutathione S-transferase mediates carbon-sulfur bond formation in gliotoxin biosynthesis. J Am Chem Soc 2011; 133(32): 12322-5.
[http://dx.doi.org/10.1021/ja201311d] [PMID: 21749092]
[124]
Chi LP, Li XM, Li L, Li X, Wang BG. Cytotoxic thiodiketopiperazine derivatives from the deep sea-derived fungus Epicoccum nigrum SD-388. Mar Drugs 2020; 18(3): 160.
[http://dx.doi.org/10.3390/md18030160] [PMID: 32183021]
[125]
Yamada T, Kogure H, Kataoka M, Kikuchi T, Hirano T. Halosmysin A, a novel 14-membered macrodiolide isolated from the marine-algae-derived fungus Halosphaeriaceae sp. Mar Drugs 2020; 18(6): 320.
[http://dx.doi.org/10.3390/md18060320] [PMID: 32570727]
[126]
Yamada T, Yoshida K, Kikuchi T, Hirano T. Isolation and structure elucidation of new cytotoxic macrolides halosmysins b and c from the fungus Halosphaeriaceae sp. associated with a marine alga. Mar Drugs 2022; 20(4): 226.
[http://dx.doi.org/10.3390/md20040226] [PMID: 35447898]
[127]
Wen H, Liu X, Zhang Q, et al. Three new indole diketopiperazine alkaloids from Aspergillus ochraceus. Chem Biodivers 2018; 15(4): e1700550.
[http://dx.doi.org/10.1002/cbdv.201700550] [PMID: 29479805]
[128]
Peng J, Gao H, Li J, et al. Prenylated indole diketopiperazines from the marine-derived fungus Aspergillus versicolor. J Org Chem 2014; 79(17): 7895-904.
[http://dx.doi.org/10.1021/jo5010179] [PMID: 25089636]
[129]
Gao H, Zhu T, Li D, Gu Q, Liu W. Prenylated indole diketopiperazine alkaloids from a mangrove rhizosphere soil derived fungus Aspergillus effuses H1-1. Arch Pharm Res 2013; 36(8): 952-6.
[http://dx.doi.org/10.1007/s12272-013-0107-5] [PMID: 23539310]
[130]
Dossena A, Marchelli R, Pochini A. New metabolites of Aspergillus amstelodami related to the biogenesis of neoechinulin. J Chem Soc Chem Commun 1974; 771-772(19): 771.
[http://dx.doi.org/10.1039/c39740000771]
[131]
Li Y, Li X, Kang JS, Choi HD, Son BW. New radical scavenging and ultraviolet-A protecting prenylated dioxopiperazine alkaloid related to isoechinulin A from a marine isolate of the fungus Aspergillus. J Antibiot 2004; 57(5): 337-40.
[http://dx.doi.org/10.7164/antibiotics.57.337] [PMID: 15303494]
[132]
Wang XN, Tan RX, Liu JK. Xylactam, a new nitrogen-containing compound from the fruiting bodies of ascomycete Xylaria euglossa. J Antibiot 2005; 58(4): 268-70.
[http://dx.doi.org/10.1038/ja.2005.31] [PMID: 15981413]
[133]
Wijesekara I, Li YX, Vo TS, Van Ta Q, Ngo DH, Kim SK. Induction of apoptosis in human cervical carcinoma HeLa cells by neoechinulin A from marine-derived fungus Microsporum sp. Process Biochem 2013; 48(1): 68-72.
[http://dx.doi.org/10.1016/j.procbio.2012.11.012]
[134]
Kobayashi S, Kuramochi K, Aoki T, et al. Synthesis of neoechinulin A and derivatives. Synthesis 2008; 2008(23): 3810-8.
[http://dx.doi.org/10.1055/s-0028-1083634] [PMID: 19043251]
[135]
Pettit GR, Hogan F, Xu JP, et al. Antineoplastic agents. 536. New sources of naturally occurring cancer cell growth inhibitors from marine organisms, terrestrial plants, and microorganisms(1a,). J Nat Prod 2008; 71(3): 438-44.
[http://dx.doi.org/10.1021/np700738k] [PMID: 18327911]
[136]
Wang S, Li XM, Teuscher F, et al. Chaetopyranin, a benzaldehyde derivative, and other related metabolites from Chaetomium globosum, an endophytic fungus derived from the marine red alga Polysiphonia urceolata. J Nat Prod 2006; 69(11): 1622-5.
[http://dx.doi.org/10.1021/np060248n] [PMID: 17125234]
[137]
Yagi R, Doi M. Isolation of an antioxidative substance produced by Aspergillus repens. Biosci Biotechnol Biochem 1999; 63: 932-3.
[http://dx.doi.org/10.1271/bbb.63.932] [PMID: 27385574]
[138]
Kuramochi K, Ohnishi K, Fujieda S, et al. Synthesis and biological activities of neoechinulin A derivatives: New aspects of structure-activity relationships for neoechinulin A. Chem Pharm Bull 2008; 56(12): 1738-43.
[http://dx.doi.org/10.1248/cpb.56.1738] [PMID: 19043251]
[139]
Kimoto K, Aoki T, Shibata Y, et al. Structure-activity relationships of neoechinulin A analogues with cytoprotection against peroxynitrite-induced PC12 cell death. J Antibiot 2007; 60(10): 614-21.
[http://dx.doi.org/10.1038/ja.2007.79] [PMID: 17965477]
[140]
Li Y, Li X, Kim SK, et al. Golmaenone, a new diketopiperazine alkaloid from the marine-derived fungus Aspergillus sp. Chem Pharm Bull 2004; 52(3): 375-6.
[http://dx.doi.org/10.1248/cpb.52.375] [PMID: 14993767]
[141]
Miller JD, Sun M, Gilyan A, Roy J, Rand TG. Inflammation-associated gene transcription and expression in mouse lungs induced by low molecular weight compounds from fungi from the built environment. Chem Biol Interact 2010; 183(1): 113-24.
[http://dx.doi.org/10.1016/j.cbi.2009.09.023] [PMID: 19818335]
[142]
Dewapriya P, Li YX, Himaya SWA, Pangestuti R, Kim SK. Neoechinulin A suppresses amyloid-β oligomer-induced microglia activation and thereby protects PC-12 cells from inflammation-mediated toxicity. Neurotoxicology 2013; 35: 30-40.
[http://dx.doi.org/10.1016/j.neuro.2012.12.004] [PMID: 23261590]
[143]
Li H, Sun W, Deng M, et al. Asperversiamides, linearly fused prenylated indole alkaloids from the marine-derived fungus Aspergillus versicolor. J Org Chem 2018; 83(15): 8483-92.
[http://dx.doi.org/10.1021/acs.joc.8b01087] [PMID: 30016097]
[144]
Maruyama K, Ohuchi T, Yoshida K, Shibata Y, Sugawara F, Arai T. Protective properties of neoechinulin A against SIN-1-induced neuronal cell death. J Biochem 2004; 136(1): 81-7.
[http://dx.doi.org/10.1093/jb/mvh103] [PMID: 15269243]
[145]
Kajimura Y, Aoki T, Kuramochi K, et al. Neoechinulin A protects PC12 cells against MPP+-induced cytotoxicity. J Antibiot 2008; 61(5): 330-3.
[http://dx.doi.org/10.1038/ja.2008.48] [PMID: 18654001]
[146]
Zheng ZZ, Shan WG, Wang SL, Ying YM, Ma LF, Zhan ZJ. Three new prenylated diketopiperazines from Neosartorya fischeri. Helv Chim Acta 2014; 97(7): 1020-6.
[http://dx.doi.org/10.1002/hlca.201300416]
[147]
Saraiva NN, Rodrigues BSF, Jimenez PC, et al. Cytotoxic compounds from the marine-derived fungus Aspergillus sp. recovered from the sediments of the Brazilian coast. Nat Prod Res 2015; 29(16): 1545-50.
[http://dx.doi.org/10.1080/14786419.2014.987772] [PMID: 25532964]
[148]
Gatti G, Cardillo R, Fuganti C, Ghiringhelli D. Structure determination of two extractives from Aspergillus amstelodami by nuclear magnetic resonance spectroscopy. J Chem Soc Chem Commun 1976; 435-436(12): 435.
[http://dx.doi.org/10.1039/c39760000435]
[149]
Zhu JQ, Fan SR, Wei X, et al. Synthesis and biological evaluation of marine natural product, Cryptoechinuline D derivatives as novel antiangiogenic agents. Bioorg Med Chem Lett 2022; 65: 128717.
[http://dx.doi.org/10.1016/j.bmcl.2022.128717] [PMID: 35390450]
[150]
Lv D, Xia J, Guan X, et al. Indole diketopiperazine alkaloids isolated from the marine-derived fungus Aspergillus chevalieri MCCC M23426. Front Microbiol 2022; 13: 950857.
[http://dx.doi.org/10.3389/fmicb.2022.950857] [PMID: 35875553]
[151]
Gong G, Qi J, Lv Y, et al. Discovery of 1,3-Disubstituted 2,5-diketopiperazine derivatives as potent class I HDACs inhibitors. Chem Pharm Bull 2020; 68(5): 466-72.
[http://dx.doi.org/10.1248/cpb.c20-00056] [PMID: 32378544]
[152]
Wang F, Sarotti AM, Jiang G, et al. Waikikiamides A-C: Complex diketopiperazine dimer and diketopiperazine-polyketide hybrids from a hawaiian marine fungal strain Aspergillus sp. FM242. Org Lett 2020; 22(11): 4408-12.
[http://dx.doi.org/10.1021/acs.orglett.0c01411] [PMID: 32433885]
[153]
Wang N, Dong Y, Yang Y, et al. Penicimutanin C, a new alkaloidal compound, isolated from a neomycin‐resistant mutant 3‐f‐31of Penicillium purpurogenum G59. Chem Biodivers 2020; 17(7): e2000241.
[http://dx.doi.org/10.1002/cbdv.202000241] [PMID: 32385896]
[154]
Marchini M, Mingozzi M, Colombo R, et al. Cyclic RGD peptidomimetics containing bifunctional diketopiperazine scaffolds as new potent integrin ligands. Chemistry 2012; 18(20): 6195-207.
[http://dx.doi.org/10.1002/chem.201200457] [PMID: 22517378]
[155]
Fanelli R, Schembri L, Piarulli U, et al. Effects of a novel cyclic RGD peptidomimetic on cell proliferation, migration and angiogenic activity in human endothelial cells. Vasc Cell 2014; 6(1): 11.
[http://dx.doi.org/10.1186/2045-824X-6-11] [PMID: 25053992]
[156]
Hood JD, Cheresh DA. Role of integrins in cell invasion and migration. Nat Rev Cancer 2002; 2(2): 91-100.
[http://dx.doi.org/10.1038/nrc727] [PMID: 12635172]
[157]
Panzeri S, Zanella S, Arosio D, et al. Cyclic isoDGR and RGD peptidomimetics containing bifunctional diketopiperazine scaffolds are integrin antagonists. Chemistry 2015; 21(16): 6265-71.
[http://dx.doi.org/10.1002/chem.201406567] [PMID: 25761230]
[158]
Avraamides CJ, Garmy-Susini B, Varner JA. Integrins in angiogenesis and lymphangiogenesis. Nat Rev Cancer 2008; 8(8): 604-17.
[http://dx.doi.org/10.1038/nrc2353] [PMID: 18497750]
[159]
Auzzas L, Zanardi F, Battistini L, et al. Targeting alphavbeta3 integrin: Design and applications of mono- and multifunctional RGD-based peptides and semipeptides. Curr Med Chem 2010; 17(13): 1255-99.
[http://dx.doi.org/10.2174/092986710790936301] [PMID: 20166941]
[160]
Mingozzi M, Manzoni L, Arosio D, et al. Synthesis and biological evaluation of dual action cyclo-RGD/SMAC mimetic conjugates targeting αvβ3/αvβ5 integrins and IAP proteins. Org Biomol Chem 2014; 12(20): 3288-302.
[http://dx.doi.org/10.1039/C4OB00207E] [PMID: 24737345]
[161]
Zanella S, Angerani S, Pina A, et al. Tumor targeting with an iso DGR-drug conjugate. Chemistry 2017; 23(33): 7910-4.
[http://dx.doi.org/10.1002/chem.201701844] [PMID: 28449309]
[162]
Dal Corso A, Caruso M, Belvisi L, et al. Synthesis and biological evaluation of RGD peptidomimetic-paclitaxel conjugates bearing lysosomally cleavable linkers. Chemistry 2015; 21(18): 6921-9.
[http://dx.doi.org/10.1002/chem.201500158] [PMID: 25784522]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy