Generic placeholder image

Current Nanomedicine

Editor-in-Chief

ISSN (Print): 2468-1873
ISSN (Online): 2468-1881

Research Article

Biogenic Synthesis and Characterization of Ethyl Ferulate Gold Nanoparticle and its Efficacy against Triple-Negative Breast Cancer Cells

Author(s): Jyothsna Unnikrishnan, Mangala Hegde, Aviral Kumar, Sosmitha Girisa, Priyadarshi Satpati* and Ajaikumar B. Kunnumakkara*

Volume 15, Issue 1, 2025

Published on: 06 February, 2024

Page: [80 - 94] Pages: 15

DOI: 10.2174/0124681873280022240130062923

Price: $65

Open Access Journals Promotions 2
Abstract

Background: Triple-Negative Breast Cancer (TNBC) presents a significant challenge due to its aggressive nature and lack of responsive hormone receptors, predominantly affecting younger premenopausal women. Ethyl ferulate (EF), a notable phytochemical, has demonstrated promising anti-cancer properties. This study aimed to enhance the efficacy of EF by synthesizing and characterizing ethyl ferulate gold nanoparticles (EF-AuNps) to passively target TNBC cells via the enhanced permeability and retention (EPR) effect.

Methods: We synthesized EF-AuNps using a direct reduction method and characterized the NPs by employing various techniques, including UV-visible spectroscopy, DLS, XRD, EDX, TEM, and FT-IR. The anti-proliferative activity against MDA-MB-231 cells was assessed using MTT and colony formation assays, alongside evaluating cell viability with PI-FACS and live/dead assays. Furthermore, a Western blot was performed to determine the mechanism of action of EFAuNps in TNBC cells.

Result: We successfully synthesized triangular EF-AuNps (<100nm) and observed a substantial inhibition of cell proliferation (IC50 18μg/ml). Compared to EF alone, EF-AuNps significantly enhanced cell death in TNBC cells, as confirmed by flow cytometry and viability assays. Besides, Western blot analysis verified that the expression of apoptotic-related signal proteins, such as survivin, caspase 3, and caspase 9, were modulated by EF-AuNps.

Conclusion: EF-AuNps showed higher anti-cancer efficacy than EF in the MDA-MB-231 cell line. These findings suggest the therapeutic potential of EF-AuNps for TNBC treatment, advocating for further preclinical and clinical investigations into this promising anti-cancer formulation.

Keywords: Gold nanoparticles, phytochemicals, ethyl ferulate, triple-negative breast cancer.

« Previous
Graphical Abstract
[1]
Sung H, Ferlay J, Siegel RL, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 2021; 71(3): 209-49.
[http://dx.doi.org/10.3322/caac.21660] [PMID: 33538338]
[2]
Kumar LD, Golani A, Kumar LD. EMT in breast cancer metastasis an interplay of microRNAs signaling pathways and circulating tumor cells. Front Biosci 2020; 25(5): 979-1010.
[http://dx.doi.org/10.2741/4844] [PMID: 32114421]
[3]
Thakur V, Kutty RV. Recent advances in nanotheranostics for triple negative breast cancer treatment. J Exp Clin Cancer Res 2019; 38(1): 430.
[http://dx.doi.org/10.1186/s13046-019-1443-1] [PMID: 31661003]
[4]
Shen M, Pan H, Chen Y, Xu YH, Yang W, Wu Z. A review of current progress in triple-negative breast cancer therapy. Open Med 2020; 15(1): 1143-9.
[http://dx.doi.org/10.1515/med-2020-0138] [PMID: 33336070]
[5]
Vagia E, Mahalingam D, Cristofanilli M. The landscape of targeted therapies in TNBC. Cancers 2020; 12(4): 916.
[http://dx.doi.org/10.3390/cancers12040916] [PMID: 32276534]
[6]
Thakur KK, Kumar A, Banik K, et al. Long noncoding RNAs in triple-negative breast cancer: A new frontier in the regulation of tumorigenesis. J Cell Physiol 2021; 236(12): 7938-65.
[http://dx.doi.org/10.1002/jcp.30463] [PMID: 34105151]
[7]
Jain V, Kumar H, Anod HV, et al. A review of nanotechnology-based approaches for breast cancer and triple-negative breast cancer. J Control Release 2020; 326: 628-47.
[http://dx.doi.org/10.1016/j.jconrel.2020.07.003] [PMID: 32653502]
[8]
Bergin ART, Loi S. Triple-negative breast cancer: Recent treatment advances. F1000 Res 2019; 8: 1342.
[http://dx.doi.org/10.12688/f1000research.18888.1] [PMID: 31448088]
[9]
Cao L, Niu Y. Triple negative breast cancer: Special histological types and emerging therapeutic methods. Cancer Biol Med 2020; 17(2): 293-306.
[http://dx.doi.org/10.20892/j.issn.2095-3941.2019.0465] [PMID: 32587770]
[10]
Ahmed SA, Parama D, Daimari E, et al. Rationalizing the therapeutic potential of apigenin against cancer. Life Sci 2021; 267: 118814.
[http://dx.doi.org/10.1016/j.lfs.2020.118814] [PMID: 33333052]
[11]
Amalraj A, Varma K, Jacob J, et al. A novel highly bioavailable curcumin formulation improves symptoms and diagnostic indicators in rheumatoid arthritis patients: A randomized, double-blind, placebo-controlled, two-dose, three-arm, and parallel-group study. J Med Food 2017; 20(10): 1022-30.
[http://dx.doi.org/10.1089/jmf.2017.3930] [PMID: 28850308]
[12]
Buhrmann C, Kunnumakkara AB, Kumar A, et al. Multitargeting effects of calebin A on malignancy of CRC cells in multicellular tumor microenvironment. Front Oncol 2021; 11: 650603.
[http://dx.doi.org/10.3389/fonc.2021.650603] [PMID: 34660256]
[13]
Daimary UD, Parama D, Rana V, et al. Emerging roles of cardamonin, a multitargeted nutraceutical in the prevention and treatment of chronic diseases. Curr Res Pharmacol Drug Discov 2021; 2: 100008.
[http://dx.doi.org/10.1016/j.crphar.2020.100008] [PMID: 34909644]
[14]
Girisa S, Shabnam B, Monisha J, et al. Potential of zerumbone as an anti-cancer agent. Molecules 2019; 24(4): 734.
[http://dx.doi.org/10.3390/molecules24040734] [PMID: 30781671]
[15]
Gupta SC, Prasad S, Tyagi AK, Kunnumakkara AB, Aggarwal BB. Neem (Azadirachta indica): An indian traditional panacea with modern molecular basis. Phytomedicine 2017; 34: 14-20.
[http://dx.doi.org/10.1016/j.phymed.2017.07.001] [PMID: 28899496]
[16]
Kunnumakkara AB, Bordoloi D, Padmavathi G, et al. Curcumin, the golden nutraceutical: Multitargeting for multiple chronic diseases. Br J Pharmacol 2017; 174(11): 1325-48.
[http://dx.doi.org/10.1111/bph.13621] [PMID: 27638428]
[17]
Roy NK, Parama D, Banik K, et al. An update on pharmacological potential of boswellic acids against chronic diseases. Int J Mol Sci 2019; 20(17): 4101.
[http://dx.doi.org/10.3390/ijms20174101] [PMID: 31443458]
[18]
Girisa S, Kumar A, Rana V, et al. From simple mouth cavities to complex oral mucosal disorders-curcuminoids as a promising therapeutic approach. ACS Pharmacol Transl Sci 2021; 4(2): 647-65.
[http://dx.doi.org/10.1021/acsptsci.1c00017] [PMID: 33860191]
[19]
Kumar A, Harsha C, Parama D, et al. Current clinical developments in curcumin-based therapeutics for cancer and chronic diseases. Phytother Res 2021; 35(12): 6768-801.
[http://dx.doi.org/10.1002/ptr.7264] [PMID: 34498308]
[20]
Verma E, Kumar A, Devi Daimary U, et al. Potential of baicalein in the prevention and treatment of cancer: A scientometric analyses based review. J Funct Foods 2021; 86: 104660.
[http://dx.doi.org/10.1016/j.jff.2021.104660]
[21]
Kunnumakkara AB, Rana V, Parama D, et al. COVID-19, cytokines, inflammation, and spices: How are they related? Life Sci 2021; 284: 119201.
[http://dx.doi.org/10.1016/j.lfs.2021.119201] [PMID: 33607159]
[22]
Girisa S, Saikia Q, Bordoloi D, et al. Xanthohumol from Hop: Hope for cancer prevention and treatment. IUBMB Life 2021; 73(8): 1016-44.
[http://dx.doi.org/10.1002/iub.2522] [PMID: 34170599]
[23]
Choudhury B, Kandimalla R, Bharali R, et al. Anticancer activity of Garcinia morella on T-cell murine lymphoma via apoptotic induction. Front Pharmacol 2016; 7: 3.
[http://dx.doi.org/10.3389/fphar.2016.00003] [PMID: 26858645]
[24]
Nair A, Amalraj A, Jacob J, Kunnumakkara AB, Gopi S. Non-curcuminoids from turmeric and their potential in cancer therapy and anticancer drug delivery formulations. Biomolecules 2019; 9(1): 13.
[http://dx.doi.org/10.3390/biom9010013] [PMID: 30609771]
[25]
Choi R, Kim BH, Naowaboot J, et al. Effects of ferulic acid on diabetic nephropathy in a rat model of type 2 diabetes. Exp Mol Med 2011; 43(12): 676-83.
[http://dx.doi.org/10.3858/emm.2011.43.12.078] [PMID: 21975281]
[26]
Mancuso C, Santangelo R. Ferulic acid: Pharmacological and toxicological aspects. Food Chem Toxicol 2014; 65: 185-95.
[http://dx.doi.org/10.1016/j.fct.2013.12.024] [PMID: 24373826]
[27]
Piazzon A, Vrhovsek U, Masuero D, Mattivi F, Mandoj F, Nardini M. Antioxidant activity of phenolic acids and their metabolites: Synthesis and antioxidant properties of the sulfate derivatives of ferulic and caffeic acids and of the acyl glucuronide of ferulic acid. J Agric Food Chem 2012; 60(50): 12312-23.
[http://dx.doi.org/10.1021/jf304076z] [PMID: 23157164]
[28]
Cunha FVM, Coelho AG, Azevedo P, da Silva AAJ, Oliveira FA, Nunes LCC. Systematic review and technological prospection: Ethyl ferulate, a phenylpropanoid with antioxidant and neuroprotective actions. Expert Opin Ther Pat 2019; 29(2): 73-83.
[http://dx.doi.org/10.1080/13543776.2019.1568410]
[29]
Cunha FVM, do Nascimento Caldas Trindade G, da Silva Azevedo PS, et al. Ethyl ferulate/β-cyclodextrin inclusion complex inhibits edema formation. Mater Sci Eng C 2020; 115: 111057.
[http://dx.doi.org/10.1016/j.msec.2020.111057] [PMID: 32600687]
[30]
Kaikini AA, Muke S, Peshattiwar V, Bagle S, Dighe V, Sathaye S. Ethyl ferulate, a lipophilic phenylpropanoid, prevents diabetes-associated renal injury in rats by amelioration of hyperglycemia-induced oxidative stress via activation of nuclear factor erythroid 2-related factor 2. J Food Biochem 2021; 45(4): e13607.
[http://dx.doi.org/10.1111/jfbc.13607] [PMID: 33587296]
[31]
Chen X, Wu X, Liu G, et al. Identification of ethyl ferulate from rubus corchorifolius L.F. leaves and its inhibitory effects on HepG2 liver cancer cells. Curr Dev Nutr 2021; 5(Suppl. 2): 305.
[http://dx.doi.org/10.1093/cdn/nzab037_015]
[32]
Xie J, Yang Z, Zhou C, Zhu J, Lee RJ, Teng L. Nanotechnology for the delivery of phytochemicals in cancer therapy. Biotechnol Adv 2016; 34(4): 343-53.
[http://dx.doi.org/10.1016/j.biotechadv.2016.04.002] [PMID: 27071534]
[33]
Chaturvedi VK, Singh A, Singh VK, Singh MP. Cancer nanotechnology: A new revolution for cancer diagnosis and therapy. Curr Drug Metab 2019; 20(6): 416-29.
[http://dx.doi.org/10.2174/1389200219666180918111528] [PMID: 30227814]
[34]
Shi J, Kantoff PW, Wooster R, Farokhzad OC. Cancer nanomedicine: Progress, challenges and opportunities. Nat Rev Cancer 2017; 17(1): 20-37.
[http://dx.doi.org/10.1038/nrc.2016.108] [PMID: 27834398]
[35]
Ding Z, Sigdel K, Yang L, et al. Nanotechnology-based drug delivery systems for enhanced diagnosis and therapy of oral cancer. J Mater Chem B Mater Biol Med 2020; 8(38): 8781-93.
[http://dx.doi.org/10.1039/D0TB00957A] [PMID: 33026383]
[36]
Kourani K, Jain P, Kumar A, et al. Inulin coated Mn3O4 nanocuboids coupled with RNA interference reverse intestinal tumorigenesis in Apc knockout murine colon cancer models. Nanomedicine 2022; 40: 102504.
[http://dx.doi.org/10.1016/j.nano.2021.102504] [PMID: 34890821]
[37]
Kumar A, Singam A, Swaminathan G, et al. Combinatorial therapy using RNAi and curcumin nano-architectures regresses tumors in breast and colon cancer models. Nanoscale 2022; 14(2): 492-505.
[http://dx.doi.org/10.1039/D1NR04411G] [PMID: 34913453]
[38]
Swaminathan G, Shigna A, Kumar A, Byroju VV, Durgempudi VR, Dinesh Kumar L. RNA interference and nanotechnology: A promising alliance for next generation cancer therapeutics. Front Nanotechnol 2021; 3: 694838.
[http://dx.doi.org/10.3389/fnano.2021.694838]
[39]
Lee KX, Shameli K, Yew YP, et al. Recent Developments in the facile bio-synthesis of gold nanoparticles (AuNPs) and their biomedical applications. Int J Nanomedicine 2020; 15: 275-300.
[http://dx.doi.org/10.1016/j.addr.2018.07.007] [PMID: 30009886]
[40]
Lee J, Chatterjee DK, Lee MH, Krishnan S. Gold nanoparticles in breast cancer treatment: Promise and potential pitfalls. Cancer Lett 2014; 347(1): 46-53.
[http://dx.doi.org/10.1016/j.canlet.2014.02.006] [PMID: 24556077]
[41]
Chen D, Ganesh S, Wang W, Amiji M. Protein corona-enabled systemic delivery and targeting of nanoparticles. AAPS J 2020; 22(4): 83.
[http://dx.doi.org/10.1002/anie.200700465] [PMID: 17591736]
[42]
Connor EE, Mwamuka J, Gole A, Murphy CJ, Wyatt MD. Gold nanoparticles are taken up by human cells but do not cause acute cytotoxicity. Small 2005; 1(3): 325-7.
[http://dx.doi.org/10.1002/smll.200400093] [PMID: 17193451]
[43]
Jain S, Hirst DG, O’Sullivan JM. Gold nanoparticles as novel agents for cancer therapy. Br J Radiol 2012; 85(1010): 101-13.
[http://dx.doi.org/10.1259/bjr/59448833] [PMID: 22010024]
[44]
Lim ZZJ, Li JEJ, Ng CT, Yung LYL, Bay BH. Gold nanoparticles in cancer therapy. Acta Pharmacol Sin 2011; 32(8): 983-90.
[http://dx.doi.org/10.1038/aps.2011.82] [PMID: 21743485]
[45]
Long NN, Kiem CD, Doanh SC, et al. Synthesis and optical properties of colloidal gold nanoparticles. J Phys: Conf Series 2009.
[46]
Shaabani E, Amini SM, Kharrazi S, Tajerian R. Curcumin coated gold nanoparticles: Synthesis, characterization, cytotoxicity, antioxidant activity and its comparison with citrate coated gold nanoparticles. Nanomed J 2017; 4(2): 115-25.
[47]
Singh DK, Jagannathan R, Khandelwal P, Abraham PM, Poddar P. In situ synthesis and surface functionalization of gold nanoparticles with curcumin and their antioxidant properties: An experimental and density functional theory investigation. Nanoscale 2013; 5(5): 1882-93.
[http://dx.doi.org/10.1039/c2nr33776b] [PMID: 23348618]
[48]
Khaleel Basha S, Govindaraju K, Manikandan R, Ahn JS, Bae EY, Singaravelu G. Phytochemical mediated gold nanoparticles and their PTP 1B inhibitory activity. Colloids Surf B Biointerfaces 2010; 75(2): 405-9.
[http://dx.doi.org/10.1016/j.colsurfb.2009.09.008] [PMID: 19815393]
[49]
Das RK, Gogoi N, Bora U. Green synthesis of gold nanoparticles using Nyctanthes arbortristis flower extract. Bioprocess Biosyst Eng 2011; 34(5): 615-9.
[http://dx.doi.org/10.1007/s00449-010-0510-y] [PMID: 21229266]
[50]
Alkilany AM, Murphy CJ. Toxicity and cellular uptake of gold nanoparticles: What we have learned so far? J Nanopart Res 2010; 12(7): 2313-33.
[http://dx.doi.org/10.1007/s11051-010-9911-8] [PMID: 21170131]
[51]
Eustis S, El-Sayed MA. Why gold nanoparticles are more precious than pretty gold: Noble metal surface plasmon resonance and its enhancement of the radiative and nonradiative properties of nanocrystals of different shapes. Chem Soc Rev 2006; 35(3): 209-17.
[http://dx.doi.org/10.1039/B514191E] [PMID: 16505915]
[52]
Kelly KL, Coronado E, Zhao LL, Schatz GC. The optical properties of metal nanoparticles: The influence of size, shape, and dielectric environment. ACS Publications 2003; pp. 668-77.
[53]
Bordoloi D, Banik K, Vikkurthi R, et al. Inflection of Akt/mTOR/STAT-3 cascade in TNF-α induced protein 8 mediated human lung carcinogenesis. Life Sci 2020; 262: 118475.
[http://dx.doi.org/10.1016/j.lfs.2020.118475] [PMID: 32976884]
[54]
Aswathy M, Banik K, Parama D, et al. Exploring the cytotoxic effects of the extracts and bioactive triterpenoids from dillenia indica against oral squamous cell carcinoma: A scientific interpretation and validation of indigenous knowledge. ACS Pharmacol Transl Sci 2021; 4(2): 834-47.
[http://dx.doi.org/10.1021/acsptsci.1c00011] [PMID: 33860206]
[55]
Juibari MM, Yeganeh LP, Abbasalizadeh S, et al. Investigation of a hot-spring extremophilic Ureibacillus thermosphaericus strain Thermo-BF for extracellular biosynthesis of functionalized Gold nanoparticles. Bionanoscience 2015; 5(4): 233-41.
[http://dx.doi.org/10.1007/s12668-015-0185-6]
[56]
Meena Kumari M, Philip D. Facile one-pot synthesis of gold and silver nanocatalysts using edible coconut oil. Spectrochim Acta A Mol Biomol Spectrosc 2013; 111: 154-60.
[http://dx.doi.org/10.1016/j.saa.2013.03.076] [PMID: 23624042]
[57]
Kasthuri J, Veerapandian S, Rajendiran N. Biological synthesis of silver and gold nanoparticles using apiin as reducing agent. Colloids Surf B Biointerfaces 2009; 68(1): 55-60.
[http://dx.doi.org/10.1016/j.colsurfb.2008.09.021] [PMID: 18977643]
[58]
Sreelakshmi C, Goel N, Datta KKR, Addlagatta A, Ummanni R, Reddy BVS. Green synthesis of curcumin capped gold nanoparticles and evaluation of their cytotoxicity. Nanosci Nanotechnol Lett 2013; 5(12): 1258-65.
[http://dx.doi.org/10.1166/nnl.2013.1678]
[59]
Thakur KK, Bordoloi D, Kunnumakkara AB. Alarming burden of triple-negative breast cancer in India. Clin Breast Cancer 2018; 18(3): e393-9.
[http://dx.doi.org/10.1016/j.clbc.2017.07.013] [PMID: 28801156]
[60]
Kunnumakkara AB, Nair AS, Ahn KS, et al. Gossypin, a pentahydroxy glucosyl flavone, inhibits the transforming growth factor beta-activated kinase-1-mediated NF-κB activation pathway, leading to potentiation of apoptosis, suppression of invasion, and abrogation of osteoclastogenesis. Blood 2007; 109(12): 5112-21.
[http://dx.doi.org/10.1182/blood-2007-01-067256] [PMID: 17332240]
[61]
Padmavathi G, Roy NK, Bordoloi D, et al. Butein in health and disease: A comprehensive review. Phytomedicine 2017; 25: 118-27.
[http://dx.doi.org/10.1016/j.phymed.2016.12.002] [PMID: 28190465]
[62]
Padmavathi G, Rathnakaram SR, Monisha J, Bordoloi D, Roy NK, Kunnumakkara AB. Potential of butein, a tetrahydroxychalcone to obliterate cancer. Phytomedicine 2015; 22(13): 1163-71.
[http://dx.doi.org/10.1016/j.phymed.2015.08.015] [PMID: 26598915]
[63]
Kunnumakkara AB, Banik K, Bordoloi D, et al. Googling the Guggul (Commiphora and Boswellia) for prevention of chronic diseases. Front Pharmacol 2018; 9: 686.
[http://dx.doi.org/10.3389/fphar.2018.00686] [PMID: 30127736]
[64]
Singh YP, Girisa S, Banik K, et al. Potential application of zerumbone in the prevention and therapy of chronic human diseases. J Funct Foods 2019; 53: 248-58.
[http://dx.doi.org/10.1016/j.jff.2018.12.020]
[65]
Babu B, Jayram H, Nair M, Ajaikumar K, Padikkala J. Free radical scavenging, antitumor and anticarcinogenic activity of gossypin. J Experim Clin Cancer Res 2003; 22(4): 581-9.
[66]
Monisha J, Padmavathi G, Roy NK, et al. NF-κB blockers gifted by mother nature: Prospectives in cancer cell chemosensitization. Curr Pharm Des 2016; 22(27): 4173-200.
[http://dx.doi.org/10.2174/1381612822666160609110231] [PMID: 27291284]
[67]
Banik K, Ranaware AM, Harsha C, et al. Piceatannol: A natural stilbene for the prevention and treatment of cancer. Pharmacol Res 2020; 153: 104635.
[http://dx.doi.org/10.1016/j.phrs.2020.104635] [PMID: 31926274]
[68]
Henamayee S, Banik K, Sailo BL, et al. Therapeutic emergence of rhein as a potential anticancer drug: A review of its molecular targets and anticancer properties. Molecules 2020; 25(10): 2278.
[http://dx.doi.org/10.3390/molecules25102278] [PMID: 32408623]
[69]
Khatoon E, Banik K, Harsha C, Sailo BL, Thakur KK, Khwairakpam AD, Eds. Phytochemicals in cancer cell chemosensitization: Current knowledge and future perspectives. Seminars in Cancer Biology. Elsevier 2020.
[70]
Parama D, Boruah M, Yachna K, et al. Diosgenin, a steroidal saponin, and its analogs: Effective therapies against different chronic diseases. Life Sci 2020; 260: 118182.
[http://dx.doi.org/10.1016/j.lfs.2020.118182] [PMID: 32781063]
[71]
Muralimanoharan SB, Kunnumakkara AB, Shylesh B, et al. Butanol fraction containing berberine or related compound from nexrutine® inhibits NFκB signaling and induces apoptosis in prostate cancer cells. Prostate 2009; 69(5): 494-504.
[http://dx.doi.org/10.1002/pros.20899] [PMID: 19107816]
[72]
Bordoloi D, Roy NK, Monisha J, Padmavathi G, Kunnumakkara AB. Multi-targeted agents in cancer cell chemosensitization: What we learnt from curcumin thus far. Recent Pat Anticancer Drug Discov 2016; 11(1): 67-97.
[http://dx.doi.org/10.2174/1574892810666151020101706] [PMID: 26537958]
[73]
Bordoloi D, Monisha J, Roy NK, et al. An investigation on the therapeutic potential of butein, a tretrahydroxychalcone against human oral squamous cell carcinoma. Asian Pac J Cancer Prev 2019; 20(11): 3437-46.
[http://dx.doi.org/10.31557/APJCP.2019.20.11.3437] [PMID: 31759370]
[74]
Bishayee K, Paul A, Ghosh S, et al. Condurango-glycoside-A fraction of Gonolobus condurango induces DNA damage associated senescence and apoptosis via ROS-dependent p53 signalling pathway in HeLa cells. Mol Cell Biochem 2013; 382(1-2): 173-83.
[http://dx.doi.org/10.1007/s11010-013-1732-5] [PMID: 23807740]
[75]
Patra S, Pradhan B, Nayak R, et al. Apoptosis and autophagy modulating dietary phytochemicals in cancer therapeutics: Current evidences and future perspectives. Phytother Res 2021; 35(8): 4194-214.
[http://dx.doi.org/10.1002/ptr.7082] [PMID: 33749909]
[76]
Saha SK, Sikdar S, Mukherjee A, Bhadra K, Boujedaini N, Khuda-Bukhsh AR. Ethanolic extract of the Goldenseal, Hydrastis canadensis, has demonstrable chemopreventive effects on HeLa cells in vitro: Drug-DNA interaction with calf thymus DNA as target. Environ Toxicol Pharmacol 2013; 36(1): 202-14.
[http://dx.doi.org/10.1016/j.etap.2013.03.023] [PMID: 23628949]
[77]
Sikdar S, Mukherjee A, Ghosh S, Khuda-Bukhsh AR. Condurango glycoside-rich components stimulate DNA damage-induced cell cycle arrest and ROS-mediated caspase-3 dependent apoptosis through inhibition of cell-proliferation in lung cancer, in vitro and in vivo. Environ Toxicol Pharmacol 2014; 37(1): 300-14.
[http://dx.doi.org/10.1016/j.etap.2013.12.004] [PMID: 24384279]
[78]
Bordoloi D, Kunnumakkara AB. The potential of curcumin: A multitargeting agent in cancer cell chemosensitization. Role of nutraceuticals in cancer chemosensitization. Elsevier 2018; pp. 31-60.
[79]
Korkina L, Kostyuk V, De Luca C, Pastore S. Plant phenylpropanoids as emerging anti-inflammatory agents. Mini Rev Med Chem 2011; 11(10): 823-35.
[http://dx.doi.org/10.2174/138955711796575489] [PMID: 21762105]
[80]
Kfoury M, Landy D, Auezova L, Greige-Gerges H, Fourmentin S. Effect of cyclodextrin complexation on phenylpropanoids’ solubility and antioxidant activity. Beilstein J Org Chem 2014; 10: 2322-31.
[http://dx.doi.org/10.3762/bjoc.10.241] [PMID: 25298799]
[81]
Ashajyothi C, Chandrakanth RK. Biological synthesis and characterization of gold nanoparticles from Enterococcus faecalis. J Bionanoscience 2014; 8(4): 255-9.
[http://dx.doi.org/10.1038/nmat1152] [PMID: 15208703]
[82]
Prathna TC, Chandrasekaran N, Raichur AM, Mukherjee A. Biomimetic synthesis of silver nanoparticles by Citrus limon (lemon) aqueous extract and theoretical prediction of particle size. Colloids Surf B Biointerfaces 2011; 82(1): 152-9.
[http://dx.doi.org/10.1016/j.colsurfb.2010.08.036] [PMID: 20833002]
[83]
Sujitha MV, Kannan S. Green synthesis of gold nanoparticles using Citrus fruits (Citrus limon, Citrus reticulata and Citrus sinensis) aqueous extract and its characterization. Spectrochim Acta A Mol Biomol Spectrosc 2013; 102: 15-23.
[http://dx.doi.org/10.1016/j.saa.2012.09.042] [PMID: 23211617]
[84]
Cho TJ, Hackley VA. Assessing the chemical and colloidal stability of functionalized gold nanoparticles. NIST Special Publication 2018; 1200: 26.
[http://dx.doi.org/10.6028/NIST.SP.1200-26]
[85]
Krishnamurthy S, Esterle A, Sharma NC, Sahi SV. Yucca-derived synthesis of gold nanomaterial and their catalytic potential. Nanoscale Res Lett 2014; 9(1): 627.
[http://dx.doi.org/10.1186/1556-276X-9-627] [PMID: 25489281]
[86]
Mittal RD, Jaiswal PK, Goel A. Survivin: A molecular biomarker in cancer. Indian J Med Res 2015; 141(4): 389-97.
[http://dx.doi.org/10.4103/0971-5916.159250] [PMID: 26112839]
[87]
Chen X, Wu X, Liu G, et al. Structure analysis of ethyl ferulate from Rubus corchorifolius L.f. leaves and its inhibitory effects on HepG2 liver cancer cells. Food Biosci 2022; 45: 101340.
[http://dx.doi.org/10.1016/j.fbio.2021.101340]
[88]
El-Senduny FF, Altouhamy M, Zayed G, et al. Azadiradione-loaded liposomes with improved bioavailability and anticancer efficacy against triple negative breast cancer. J Drug Deliv Sci Technol 2021; 65: 102665.
[http://dx.doi.org/10.1016/j.jddst.2021.102665]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy