Generic placeholder image

Current Neuropharmacology

Editor-in-Chief

ISSN (Print): 1570-159X
ISSN (Online): 1875-6190

Review Article

Metabolic Reprogramming in Gliocyte Post-cerebral Ischemia/ Reperfusion: From Pathophysiology to Therapeutic Potential

Author(s): Lipeng Gong, Junjie Liang, Letian Xie, Zhanwei Zhang*, Zhigang Mei* and Wenli Zhang*

Volume 22, Issue 10, 2024

Published on: 09 February, 2024

Page: [1672 - 1696] Pages: 25

DOI: 10.2174/1570159X22666240131121032

Price: $65

Abstract

Ischemic stroke is a leading cause of disability and death worldwide. However, the clinical efficacy of recanalization therapy as a preferred option is significantly hindered by reperfusion injury. The transformation between different phenotypes of gliocytes is closely associated with cerebral ischemia/ reperfusion injury (CI/RI). Moreover, gliocyte polarization induces metabolic reprogramming, which refers to the shift in gliocyte phenotype and the overall transformation of the metabolic network to compensate for energy demand and building block requirements during CI/RI caused by hypoxia, energy deficiency, and oxidative stress. Within microglia, the pro-inflammatory phenotype exhibits upregulated glycolysis, pentose phosphate pathway, fatty acid synthesis, and glutamine synthesis, whereas the anti-inflammatory phenotype demonstrates enhanced mitochondrial oxidative phosphorylation and fatty acid oxidation. Reactive astrocytes display increased glycolysis but impaired glycogenolysis and reduced glutamate uptake after CI/RI. There is mounting evidence suggesting that manipulation of energy metabolism homeostasis can induce microglial cells and astrocytes to switch from neurotoxic to neuroprotective phenotypes. A comprehensive understanding of underlying mechanisms and manipulation strategies targeting metabolic pathways could potentially enable gliocytes to be reprogrammed toward beneficial functions while opening new therapeutic avenues for CI/RI treatment. This review provides an overview of current insights into metabolic reprogramming mechanisms in microglia and astrocytes within the pathophysiological context of CI/RI, along with potential pharmacological targets. Herein, we emphasize the potential of metabolic reprogramming of gliocytes as a therapeutic target for CI/RI and aim to offer a novel perspective in the treatment of CI/RI.

Keywords: Ischemic stroke, cerebral ischemia/reperfusion injury, metabolic reprogramming, gliocyte, pathophysiology, oxidative stress.

Graphical Abstract
[1]
Katan, M.; Luft, A. Global burden of stroke. Semin. Neurol., 2018, 38(2), 208-211.
[http://dx.doi.org/10.1055/s-0038-1649503] [PMID: 29791947]
[2]
Lin, L.; Wang, X.; Yu, Z. Ischemia-reperfusion injury in the brain: Mechanisms and potential therapeutic strategies. Biochem. Pharmacol., 2016, 5(4), 213.
[http://dx.doi.org/10.4172/2167-0501.1000213] [PMID: 29888120]
[3]
Rabinstein, A.A. Update on treatment of acute ischemic stroke. Continuum (Minneap. Minn.), 2020, 26(2), 268-286.
[http://dx.doi.org/10.1212/CON.0000000000000840] [PMID: 32224752]
[4]
Powers, W.J.; Rabinstein, A.A.; Ackerson, T.; Adeoye, O.M.; Bambakidis, N.C.; Becker, K.; Biller, J.; Brown, M.; Demaerschalk, B.M.; Hoh, B.; Jauch, E.C.; Kidwell, C.S.; Leslie-Mazwi, T.M.; Ovbiagele, B.; Scott, P.A.; Sheth, K.N.; Southerland, A.M.; Summers, D.V.; Tirschwell, D.L. Guidelines for the early management of patients with acute ischemic stroke: 2019 update to the 2018 guidelines for the early management of acute ischemic stroke: A guideline for healthcare professionals from the american heart association/american stroke association. Stroke, 2019, 50(12), e344-e418.
[http://dx.doi.org/10.1161/STR.0000000000000211] [PMID: 31662037]
[5]
Jurcau, A.; Ardelean, I.A. Molecular pathophysiological mechanisms of ischemia/reperfusion injuries after recanalization therapy for acute ischemic stroke. J. Integr. Neurosci., 2021, 20(3), 727-744.
[http://dx.doi.org/10.31083/j.jin2003078] [PMID: 34645107]
[6]
Luo, X.L.; Liu, S.Y.; Wang, L.J.; Zhang, Q.Y.; Xu, P.; Pan, L.L.; Hu, J.F. A tetramethoxychalcone from Chloranthus henryi suppresses lipopolysaccharide-induced inflammatory responses in BV2 microglia. Eur. J. Pharmacol., 2016, 774, 135-143.
[http://dx.doi.org/10.1016/j.ejphar.2016.02.013] [PMID: 26852953]
[7]
Skirving, D.J.; Dan, N.G. A 20-year review of percutaneous balloon compression of the trigeminal ganglion. J. Neurosurg., 2001, 94(6), 913-917.
[http://dx.doi.org/10.3171/jns.2001.94.6.0913] [PMID: 11409519]
[8]
Sieweke, M.H.; Allen, J.E. Beyond stem cells: Self-renewal of differentiated macrophages. Science, 2013, 342(6161), 1242974.
[http://dx.doi.org/10.1126/science.1242974] [PMID: 24264994]
[9]
Liddelow, S.A.; Guttenplan, K.A.; Clarke, L.E.; Bennett, F.C.; Bohlen, C.J.; Schirmer, L.; Bennett, M.L.; Münch, A.E.; Chung, W.S.; Peterson, T.C.; Wilton, D.K.; Frouin, A.; Napier, B.A.; Panicker, N.; Kumar, M.; Buckwalter, M.S.; Rowitch, D.H.; Dawson, V.L.; Dawson, T.M.; Stevens, B.; Barres, B.A. Neurotoxic reactive astrocytes are induced by activated microglia. Nature, 2017, 541(7638), 481-487.
[http://dx.doi.org/10.1038/nature21029] [PMID: 28099414]
[10]
Xu, S.; Lu, J.; Shao, A.; Zhang, J.H.; Zhang, J. Glial cells: Role of the immune response in ischemic stroke. Front. Immunol., 2020, 11, 294.
[http://dx.doi.org/10.3389/fimmu.2020.00294] [PMID: 32174916]
[11]
Cheng, X.; Yang, Y.L.; Li, W.H.; Liu, M.; Zhang, S.S.; Wang, Y.H.; Du, G.H. Dynamic alterations of brain injury, functional recovery, and metabolites profile after cerebral ischemia/reperfusion in rats contributes to potential biomarkers. J. Mol. Neurosci., 2020, 70(5), 667-676.
[http://dx.doi.org/10.1007/s12031-019-01474-x] [PMID: 31907865]
[12]
Shen, L.; Gan, Q.; Yang, Y.; Reis, C.; Zhang, Z.; Xu, S.; Zhang, T.; Sun, C. Mitophagy in cerebral ischemia and ischemia/reperfusion injury. Front. Aging Neurosci., 2021, 13, 687246.
[http://dx.doi.org/10.3389/fnagi.2021.687246] [PMID: 34168551]
[13]
Lauro, C.; Limatola, C. Metabolic reprograming of microglia in the regulation of the innate inflammatory response. Front. Immunol., 2020, 11, 493.
[http://dx.doi.org/10.3389/fimmu.2020.00493] [PMID: 32265936]
[14]
Sofroniew, M.V. Astrocyte reactivity: Subtypes, states, and functions in cns innate immunity. Trends Immunol., 2020, 41(9), 758-770.
[http://dx.doi.org/10.1016/j.it.2020.07.004] [PMID: 32819810]
[15]
Ghosh, S.; Castillo, E.; Frias, E.S.; Swanson, R.A. Bioenergetic regulation of microglia. Glia, 2018, 66(6), 1200-1212.
[http://dx.doi.org/10.1002/glia.23271] [PMID: 29219210]
[16]
Hu, X.; Li, P.; Guo, Y.; Wang, H.; Leak, R.K.; Chen, S.; Gao, Y.; Chen, J. Microglia/macrophage polarization dynamics reveal novel mechanism of injury expansion after focal cerebral ischemia. Stroke, 2012, 43(11), 3063-3070.
[http://dx.doi.org/10.1161/STROKEAHA.112.659656] [PMID: 22933588]
[17]
Mogensen, T.H. Pathogen recognition and inflammatory signaling in innate immune defenses. Clin. Microbiol. Rev., 2009, 22(2), 240-273.
[http://dx.doi.org/10.1128/CMR.00046-08] [PMID: 19366914]
[18]
Falkowska, A.; Gutowska, I.; Goschorska, M.; Nowacki, P.; Chlubek, D.; Baranowska-Bosiacka, I. Energy metabolism of the brain, including the cooperation between astrocytes and neurons, especially in the context of glycogen metabolism. Int. J. Mol. Sci., 2015, 16(11), 25959-25981.
[http://dx.doi.org/10.3390/ijms161125939] [PMID: 26528968]
[19]
Borbor, M.; Yin, D.; Brockmeier, U.; Wang, C.; Doeckel, M.; Pillath-Eilers, M.; Kaltwasser, B.; Hermann, D.M.; Dzyubenko, E. Neurotoxicity of ischemic astrocytes involves STAT3 ‐mediated metabolic switching and depends on glycogen usage. Glia, 2023, 71(6), 1553-1569.
[http://dx.doi.org/10.1002/glia.24357] [PMID: 36810803]
[20]
Cai, Y.; Guo, H.; Fan, Z.; Zhang, X.; Wu, D.; Tang, W.; Gu, T.; Wang, S.; Yin, A.; Tao, L.; Ji, X.; Dong, H.; Li, Y.; Xiong, L. Glycogenolysis is crucial for astrocytic glycogen accumulation and brain damage after reperfusion in ischemic stroke. iScience, 2020, 23(5), 101136.
[http://dx.doi.org/10.1016/j.isci.2020.101136] [PMID: 32446205]
[21]
Yang, S.; Qin, C.; Hu, Z.W.; Zhou, L.Q.; Yu, H.H.; Chen, M.; Bosco, D.B.; Wang, W.; Wu, L.J.; Tian, D.S. Microglia reprogram metabolic profiles for phenotype and function changes in central nervous system. Neurobiol. Dis., 2021, 152, 105290.
[http://dx.doi.org/10.1016/j.nbd.2021.105290] [PMID: 33556540]
[22]
Pearce, E.L.; Pearce, E.J. Metabolic pathways in immune cell activation and quiescence. Immunity, 2013, 38(4), 633-643.
[http://dx.doi.org/10.1016/j.immuni.2013.04.005] [PMID: 23601682]
[23]
Lynch, M.A. Can the emerging field of immunometabolism provide insights into neuroinflammation? Prog. Neurobiol., 2020, 184, 101719.
[http://dx.doi.org/10.1016/j.pneurobio.2019.101719] [PMID: 31704314]
[24]
Bruce, K.D.; Gorkhali, S.; Given, K.; Coates, A.M.; Boyle, K.E.; Macklin, W.B.; Eckel, R.H. Lipoprotein lipase is a feature of alternatively-activated microglia and may facilitate lipid uptake in the cns during demyelination. Front. Mol. Neurosci., 2018, 11, 57.
[http://dx.doi.org/10.3389/fnmol.2018.00057] [PMID: 29599706]
[25]
Peruzzotti-Jametti, L.; Pluchino, S. Targeting mitochondrial metabolism in neuroinflammation: Towards a therapy for progressive multiple sclerosis. Trends Mol. Med., 2018, 24(10), 838-855.
[http://dx.doi.org/10.1016/j.molmed.2018.07.007] [PMID: 30100517]
[26]
Wang, L.; Pavlou, S.; Du, X.; Bhuckory, M.; Xu, H.; Chen, M. Glucose transporter 1 critically controls microglial activation through facilitating glycolysis. Mol. Neurodegener., 2019, 14(1), 2.
[http://dx.doi.org/10.1186/s13024-019-0305-9] [PMID: 30634998]
[27]
Zhang, Y.; Chen, K.; Sloan, S.A.; Bennett, M.L.; Scholze, A.R.; O’Keeffe, S.; Phatnani, H.P.; Guarnieri, P.; Caneda, C.; Ruderisch, N.; Deng, S.; Liddelow, S.A.; Zhang, C.; Daneman, R.; Maniatis, T.; Barres, B.A.; Wu, J.Q. An RNA-sequencing transcriptome and splicing database of glia, neurons, and vascular cells of the cerebral cortex. J. Neurosci., 2014, 34(36), 11929-11947.
[http://dx.doi.org/10.1523/JNEUROSCI.1860-14.2014] [PMID: 25186741]
[28]
Kelly, B.; O’Neill, L.A.J. Metabolic reprogramming in macrophages and dendritic cells in innate immunity. Cell Res., 2015, 25(7), 771-784.
[http://dx.doi.org/10.1038/cr.2015.68] [PMID: 26045163]
[29]
Van den Bossche, J.; Baardman, J.; Otto, N.A.; van der Velden, S.; Neele, A.E.; van den Berg, S.M.; Luque-Martin, R.; Chen, H.J.; Boshuizen, M.C.S.; Ahmed, M.; Hoeksema, M.A.; de Vos, A.F.; de Winther, M.P.J. Mitochondrial dysfunction prevents repolarization of inflammatory macrophages. Cell Rep., 2016, 17(3), 684-696.
[http://dx.doi.org/10.1016/j.celrep.2016.09.008] [PMID: 27732846]
[30]
Mills, E.L.; Kelly, B.; Logan, A.; Costa, A.S.H.; Varma, M.; Bryant, C.E.; Tourlomousis, P.; Däbritz, J.H.M.; Gottlieb, E.; Latorre, I.; Corr, S.C.; McManus, G.; Ryan, D.; Jacobs, H.T.; Szibor, M.; Xavier, R.J.; Braun, T.; Frezza, C.; Murphy, M.P.; O’Neill, L.A. Succinate dehydrogenase supports metabolic repurposing of mitochondria to drive inflammatory macrophages. Cell, 2016, 167(2), 457-470.e13.
[http://dx.doi.org/10.1016/j.cell.2016.08.064] [PMID: 27667687]
[31]
Klimaszewska-Łata, J.; Gul-Hinc, S.; Bielarczyk, H.; Ronowska, A.; Zyśk, M.; Grużewska, K.; Pawełczyk, T.; Szutowicz, A. Differential effects of lipopolysaccharide on energy metabolism in murine microglial N9 and cholinergic SN 56 neuronal cells. J. Neurochem., 2015, 133(2), 284-297.
[http://dx.doi.org/10.1111/jnc.12979] [PMID: 25345568]
[32]
Bolanos, J.; García-Nogales, P.; Almeida, A. Provoking neuroprotection by peroxynitrite. Curr. Pharm. Des., 2004, 10(8), 867-877.
[http://dx.doi.org/10.2174/1381612043452910] [PMID: 15032690]
[33]
West, A.P.; Brodsky, I.E.; Rahner, C.; Woo, D.K.; Erdjument-Bromage, H.; Tempst, P.; Walsh, M.C.; Choi, Y.; Shadel, G.S.; Ghosh, S. TLR signalling augments macrophage bactericidal activity through mitochondrial ROS. Nature, 2011, 472(7344), 476-480.
[http://dx.doi.org/10.1038/nature09973] [PMID: 21525932]
[34]
Zhang, Z-B.; Feng, X.; Li, M.; Tan, L-L.; Jiang, X-L.; Xu, L-X.; Li, G.; Feng, C-X.; Ding, X.; Sun, B.; Qin, Z-H. TP53-induced glycolysis and apoptosis regulator alleviates hypoxia/ischemia-induced microglial pyroptosis and ischemic brain damage. Neural Regen. Res., 2021, 16(6), 1037-1043.
[http://dx.doi.org/10.4103/1673-5374.300453] [PMID: 33269748]
[35]
Hu, Y.; Mai, W.; Chen, L.; Cao, K.; Zhang, B.; Zhang, Z.; Liu, Y.; Lou, H.; Duan, S.; Gao, Z. mTOR‐mediated metabolic reprogramming shapes distinct microglia functions in response to lipopolysaccharide and ATP. Glia, 2020, 68(5), 1031-1045.
[http://dx.doi.org/10.1002/glia.23760] [PMID: 31793691]
[36]
He, C.; Zhou, C.; Kennedy, B.K. The yeast replicative aging model. Biochim. Biophys. Acta Mol. Basis Dis., 2018, 1864(9), 2690-2696.
[http://dx.doi.org/10.1016/j.bbadis.2018.02.023] [PMID: 29524633]
[37]
Hardie, D.G. AMP-activated/SNF1 protein kinases: Conserved guardians of cellular energy. Nat. Rev. Mol. Cell Biol., 2007, 8(10), 774-785.
[http://dx.doi.org/10.1038/nrm2249] [PMID: 17712357]
[38]
Baik, S.H.; Kang, S.; Lee, W.; Choi, H.; Chung, S.; Kim, J.I.; Mook-Jung, I. A breakdown in metabolic reprogramming causes microglia dysfunction in alzheimer’s disease. Cell Metab., 2019, 30(3), 493-507.e6.
[http://dx.doi.org/10.1016/j.cmet.2019.06.005] [PMID: 31257151]
[39]
Cheng, S.C.; Quintin, J.; Cramer, R.A.; Shepardson, K.M.; Saeed, S.; Kumar, V.; Giamarellos-Bourboulis, E.J.; Martens, J.H.A.; Rao, N.A.; Aghajanirefah, A.; Manjeri, G.R.; Li, Y.; Ifrim, D.C.; Arts, R.J.W.; van der Veer, B.M.J.W.; Deen, P.M.T.; Logie, C.; O’Neill, L.A.; Willems, P.; van de Veerdonk, F.L.; van der Meer, J.W.M.; Ng, A.; Joosten, L.A.B.; Wijmenga, C.; Stunnenberg, H.G.; Xavier, R.J.; Netea, M.G. mTOR- and HIF-1α–mediated aerobic glycolysis as metabolic basis for trained immunity. Science, 2014, 345(6204), 1250684.
[http://dx.doi.org/10.1126/science.1250684] [PMID: 25258083]
[40]
Denko, N.C. Hypoxia, HIF1 and glucose metabolism in the solid tumour. Nat. Rev. Cancer, 2008, 8(9), 705-713.
[http://dx.doi.org/10.1038/nrc2468] [PMID: 19143055]
[41]
Gimeno-Bayón, J.; López-López, A.; Rodríguez, M.J.; Mahy, N. Glucose pathways adaptation supports acquisition of activated microglia phenotype. J. Neurosci. Res., 2014, 92(6), 723-731.
[http://dx.doi.org/10.1002/jnr.23356] [PMID: 24510633]
[42]
Yalcin, A.; Clem, B.F.; Imbert-Fernandez, Y.; Ozcan, S.C.; Peker, S.; O’Neal, J.; Klarer, A.C.; Clem, A.L.; Telang, S.; Chesney, J. 6-Phosphofructo-2-kinase (PFKFB3) promotes cell cycle progression and suppresses apoptosis via Cdk1-mediated phosphorylation of p27. Cell Death Dis., 2014, 5(7), e1337.
[http://dx.doi.org/10.1038/cddis.2014.292] [PMID: 25032860]
[43]
Ros, S.; Schulze, A. Balancing glycolytic flux: the role of 6-phosphofructo-2-kinase/fructose 2,6-bisphosphatases in cancer metabolism. Cancer Metab., 2013, 1(1), 8.
[http://dx.doi.org/10.1186/2049-3002-1-8] [PMID: 24280138]
[44]
Holland, R.; McIntosh, A.L.; Finucane, O.M.; Mela, V.; Rubio-Araiz, A.; Timmons, G.; McCarthy, S.A.; Gun’ko, Y.K.; Lynch, M.A. Inflammatory microglia are glycolytic and iron retentive and typify the microglia in APP/PS1 mice. Brain Behav. Immun., 2018, 68, 183-196.
[http://dx.doi.org/10.1016/j.bbi.2017.10.017] [PMID: 29061364]
[45]
Rubio-Araiz, A.; Finucane, O.M.; Keogh, S.; Lynch, M.A. Anti-TLR2 antibody triggers oxidative phosphorylation in microglia and increases phagocytosis of β-amyloid. J. Neuroinflammation, 2018, 15(1), 247.
[http://dx.doi.org/10.1186/s12974-018-1281-7] [PMID: 30170611]
[46]
McIntosh, A.; Mela, V.; Harty, C.; Minogue, A.M.; Costello, D.A.; Kerskens, C.; Lynch, M.A. Iron accumulation in microglia triggers a cascade of events that leads to altered metabolism and compromised function in APP/PS1 mice. Brain Pathol., 2019, 29(5), 606-621.
[http://dx.doi.org/10.1111/bpa.12704] [PMID: 30661261]
[47]
Finucane, O.M.; Sugrue, J.; Rubio-Araiz, A.; Guillot-Sestier, M.V.; Lynch, M.A. The NLRP3 inflammasome modulates glycolysis by increasing PFKFB3 in an IL-1β-dependent manner in macrophages. Sci. Rep., 2019, 9(1), 4034.
[http://dx.doi.org/10.1038/s41598-019-40619-1] [PMID: 30858427]
[48]
Nair, S.; Sobotka, K.S.; Joshi, P.; Gressens, P.; Fleiss, B.; Thornton, C.; Mallard, C.; Hagberg, H. Lipopolysaccharide‐induced alteration of mitochondrial morphology induces a metabolic shift in microglia modulating the inflammatory response in vitro and in vivo. Glia, 2019, 67(6), 1047-1061.
[http://dx.doi.org/10.1002/glia.23587] [PMID: 30637805]
[49]
Qiao, H.; He, X.; Zhang, Q.; Yuan, H.; Wang, D.; Li, L.; Hui, Y.; Wu, Z.; Li, W.; Zhang, N. Alpha-synuclein induces microglial migration via PKM2-dependent glycolysis. Int. J. Biol. Macromol., 2019, 129, 601-607.
[http://dx.doi.org/10.1016/j.ijbiomac.2019.02.029] [PMID: 30738168]
[50]
Jha, A.K.; Huang, S.C.C.; Sergushichev, A.; Lampropoulou, V.; Ivanova, Y.; Loginicheva, E.; Chmielewski, K.; Stewart, K.M.; Ashall, J.; Everts, B.; Pearce, E.J.; Driggers, E.M.; Artyomov, M.N. Network integration of parallel metabolic and transcriptional data reveals metabolic modules that regulate macrophage polarization. Immunity, 2015, 42(3), 419-430.
[http://dx.doi.org/10.1016/j.immuni.2015.02.005] [PMID: 25786174]
[51]
Mehla, K.; Singh, P.K. Metabolic regulation of macrophage polarization in cancer. Trends Cancer, 2019, 5(12), 822-834.
[http://dx.doi.org/10.1016/j.trecan.2019.10.007] [PMID: 31813459]
[52]
Bernier, L.P.; York, E.M.; Kamyabi, A.; Choi, H.B.; Weilinger, N.L.; MacVicar, B.A. Microglial metabolic flexibility supports immune surveillance of the brain parenchyma. Nat. Commun., 2020, 11(1), 1559.
[http://dx.doi.org/10.1038/s41467-020-15267-z] [PMID: 32214088]
[53]
Kaushik, D.K.; Yong, V.W. Metabolic needs of brain‐infiltrating leukocytes and microglia in multiple sclerosis. J. Neurochem., 2021, 158(1), 14-24.
[http://dx.doi.org/10.1111/jnc.15206] [PMID: 33025576]
[54]
Sun, H.N.; Kim, S.U.; Lee, M.S.; Kim, S.K.; Kim, J.M.; Yim, M.; Yu, D.Y.; Lee, D.S. Nicotinamide adenine dinucleotide phosphate (NADPH) oxidase-dependent activation of phosphoinositide 3-kinase and p38 mitogen-activated protein kinase signal pathways is required for lipopolysaccharide-induced microglial phagocytosis. Biol. Pharm. Bull., 2008, 31(9), 1711-1715.
[http://dx.doi.org/10.1248/bpb.31.1711] [PMID: 18758064]
[55]
Zhai, L.; Ruan, S.; Wang, J.; Guan, Q.; Zha, L. NADPH oxidase 4 regulate the glycolytic metabolic reprogramming of microglial cells to promote M1 polarization. J. Biochem. Mol. Toxicol., 2023, 37(5), e23318.
[http://dx.doi.org/10.1002/jbt.23318] [PMID: 36762617]
[56]
Tu, D.; Gao, Y.; Yang, R.; Guan, T.; Hong, J.S.; Gao, H.M. The pentose phosphate pathway regulates chronic neuroinflammation and dopaminergic neurodegeneration. J. Neuroinflammation, 2019, 16(1), 255.
[http://dx.doi.org/10.1186/s12974-019-1659-1] [PMID: 31805953]
[57]
Mela, V.; Mota, B.C.; Milner, M.; McGinley, A.; Mills, K.H.G.; Kelly, Á.M.; Lynch, M.A. Exercise-induced re-programming of age-related metabolic changes in microglia is accompanied by a reduction in senescent cells. Brain Behav. Immun., 2020, 87, 413-428.
[http://dx.doi.org/10.1016/j.bbi.2020.01.012] [PMID: 31978523]
[58]
Orihuela, R.; McPherson, C.A.; Harry, G.J. Microglial M1/M2 polarization and metabolic states. Br. J. Pharmacol., 2016, 173(4), 649-665.
[http://dx.doi.org/10.1111/bph.13139] [PMID: 25800044]
[59]
Haschemi, A.; Kosma, P.; Gille, L.; Evans, C.R.; Burant, C.F.; Starkl, P.; Knapp, B.; Haas, R.; Schmid, J.A.; Jandl, C.; Amir, S.; Lubec, G.; Park, J.; Esterbauer, H.; Bilban, M.; Brizuela, L.; Pospisilik, J.A.; Otterbein, L.E.; Wagner, O. The sedoheptulose kinase CARKL directs macrophage polarization through control of glucose metabolism. Cell Metab., 2012, 15(6), 813-826.
[http://dx.doi.org/10.1016/j.cmet.2012.04.023] [PMID: 22682222]
[60]
Chausse, B.; Lewen, A.; Poschet, G.; Kann, O. Selective inhibition of mitochondrial respiratory complexes controls the transition of microglia into a neurotoxic phenotype in situ. Brain Behav. Immun., 2020, 88, 802-814.
[http://dx.doi.org/10.1016/j.bbi.2020.05.052] [PMID: 32446944]
[61]
Mills, E.L.; Ryan, D.G.; Prag, H.A.; Dikovskaya, D.; Menon, D.; Zaslona, Z.; Jedrychowski, M.P.; Costa, A.S.H.; Higgins, M.; Hams, E.; Szpyt, J.; Runtsch, M.C.; King, M.S.; McGouran, J.F.; Fischer, R.; Kessler, B.M.; McGettrick, A.F.; Hughes, M.M.; Carroll, R.G.; Booty, L.M.; Knatko, E.V.; Meakin, P.J.; Ashford, M.L.J.; Modis, L.K.; Brunori, G.; Sévin, D.C.; Fallon, P.G.; Caldwell, S.T.; Kunji, E.R.S.; Chouchani, E.T.; Frezza, C.; Dinkova-Kostova, A.T.; Hartley, R.C.; Murphy, M.P.; O’Neill, L.A. Itaconate is an anti-inflammatory metabolite that activates Nrf2 via alkylation of KEAP1. Nature, 2018, 556(7699), 113-117.
[http://dx.doi.org/10.1038/nature25986] [PMID: 29590092]
[62]
Cordes, T.; Wallace, M.; Michelucci, A.; Divakaruni, A.S.; Sapcariu, S.C.; Sousa, C.; Koseki, H.; Cabrales, P.; Murphy, A.N.; Hiller, K.; Metallo, C.M. Immunoresponsive gene 1 and itaconate inhibit succinate dehydrogenase to modulate intracellular succinate levels. J. Biol. Chem., 2016, 291(27), 14274-14284.
[http://dx.doi.org/10.1074/jbc.M115.685792] [PMID: 27189937]
[63]
Kuo, P.C.; Weng, W.T.; Scofield, B.A.; Paraiso, H.C.; Brown, D.A.; Wang, P.Y.; Yu, I.C.; Yen, J.H. Dimethyl itaconate, an itaconate derivative, exhibits immunomodulatory effects on neuroinflammation in experimental autoimmune encephalomyelitis. J. Neuroinflammation, 2020, 17(1), 138.
[http://dx.doi.org/10.1186/s12974-020-01768-7] [PMID: 32349768]
[64]
Kuo, P.C.; Weng, W.T.; Scofield, B.A.; Furnas, D.; Paraiso, H.C.; Yu, I.C.; Yen, J.H. Immunoresponsive gene 1 modulates the severity of brain injury in cerebral ischaemia. Brain Commun., 2021, 3(3), fcab187.
[http://dx.doi.org/10.1093/braincomms/fcab187] [PMID: 34557667]
[65]
Bao, M.W.; Cai, Z.; Zhang, X.J.; Li, L.; Liu, X.; Wan, N.; Hu, G.; Wan, F.; Zhang, R.; Zhu, X.; Xia, H.; Li, H. Dickkopf-3 protects against cardiac dysfunction and ventricular remodelling following myocardial infarction. Basic Res. Cardiol., 2015, 110(3), 25.
[http://dx.doi.org/10.1007/s00395-015-0481-x] [PMID: 25840773]
[66]
Caffo, M.; Fusco, R.; Siracusa, R.; Caruso, G.; Barresi, V.; Di Paola, R.; Cuzzocrea, S.; Germanò, A.F.; Cardali, S.M. Molecular investigation of DKK3 in cerebral ischemic/reperfusion injury. Biomedicines, 2023, 11(3), 815.
[http://dx.doi.org/10.3390/biomedicines11030815] [PMID: 36979794]
[67]
Xu, Y.; Nowrangi, D.; Liang, H.; Wang, T.; Yu, L.; Lu, T.; Lu, Z.; Zhang, J.H.; Luo, B.; Tang, J. DKK3 attenuates JNK and AP-1 induced inflammation via Kremen-1 and DVL-1 in mice following intracerebral hemorrhage. J. Neuroinflammation, 2020, 17(1), 130.
[http://dx.doi.org/10.1186/s12974-020-01794-5] [PMID: 32331523]
[68]
Zhang, L.Q.; Gao, S.J.; Sun, J.; Li, D.Y.; Wu, J.Y.; Song, F.H.; Liu, D.Q.; Zhou, Y.Q.; Mei, W. DKK3 ameliorates neuropathic pain via inhibiting ASK-1/JNK/p-38-mediated microglia polarization and neuroinflammation. J. Neuroinflammation, 2022, 19(1), 129.
[http://dx.doi.org/10.1186/s12974-022-02495-x] [PMID: 35658977]
[69]
Geng, J.; Zhang, Y.; Li, S.; Li, S.; Wang, J.; Wang, H.; Aa, J.; Wang, G. Metabolomic profiling reveals that reprogramming of cerebral glucose metabolism is involved in ischemic preconditioning-induced neuroprotection in a rodent model of ischemic stroke. J. Proteome Res., 2019, 18(1), 57-68.
[PMID: 30362349]
[70]
Ito, M.; Aswendt, M.; Lee, A.G.; Ishizaka, S.; Cao, Z.; Wang, E.H.; Levy, S.L.; Smerin, D.L.; McNab, J.A.; Zeineh, M.; Leuze, C.; Goubran, M.; Cheng, M.Y.; Steinberg, G.K. RNA-sequencing analysis revealed a distinct motor cortex transcriptome in spontaneously recovered mice after stroke. Stroke, 2018, 49(9), 2191-2199.
[http://dx.doi.org/10.1161/STROKEAHA.118.021508] [PMID: 30354987]
[71]
Li, Y.; Lu, B.; Sheng, L.; Zhu, Z.; Sun, H.; Zhou, Y.; Yang, Y.; Xue, D.; Chen, W.; Tian, X.; Du, Y.; Yan, M.; Zhu, W.; Xing, F.; Li, K.; Lin, S.; Qiu, P.; Su, X.; Huang, Y.; Yan, G.; Yin, W. Hexokinase 2‐dependent hyperglycolysis driving microglial activation contributes to ischemic brain injury. J. Neurochem., 2018, 144(2), 186-200.
[http://dx.doi.org/10.1111/jnc.14267] [PMID: 29205357]
[72]
Ma, W.; Wu, Q.; Wang, S.; Wang, H.; Ye, J.; Sun, H.; Feng, Z.; He, W.; Chu, S.; Zhang, Z.; Chen, N. A breakdown of metabolic reprogramming in microglia induced by CKLF1 exacerbates immune tolerance in ischemic stroke. J. Neuroinflammation, 2023, 20(1), 97.
[http://dx.doi.org/10.1186/s12974-023-02779-w] [PMID: 37098609]
[73]
Michelakis, E.D.; Webster, L.; Mackey, J.R. Dichloroacetate (DCA) as a potential metabolic-targeting therapy for cancer. Br. J. Cancer, 2008, 99(7), 989-994.
[http://dx.doi.org/10.1038/sj.bjc.6604554] [PMID: 18766181]
[74]
Hong, D.K.; Kho, A.R.; Choi, B.Y.; Lee, S.H.; Jeong, J.H.; Lee, S.H.; Park, K.H.; Park, J.B.; Suh, S.W. Combined treatment with dichloroacetic acid and pyruvate reduces hippocampal neuronal death after transient cerebral ischemia. Front. Neurol., 2018, 9, 137.
[http://dx.doi.org/10.3389/fneur.2018.00137] [PMID: 29593636]
[75]
Cheng, J.; Zhang, R.; Xu, Z.; Ke, Y.; Sun, R.; Yang, H.; Zhang, X.; Zhen, X.; Zheng, L.T. Early glycolytic reprogramming controls microglial inflammatory activation. J. Neuroinflammation, 2021, 18(1), 129.
[http://dx.doi.org/10.1186/s12974-021-02187-y] [PMID: 34107997]
[76]
Guo, C.; Ludvik, A.E.; Arlotto, M.E.; Hayes, M.G.; Armstrong, L.L.; Scholtens, D.M.; Brown, C.D.; Newgard, C.B.; Becker, T.C.; Layden, B.T.; Lowe, W.L.; Reddy, T.E. Coordinated regulatory variation associated with gestational hyperglycaemia regulates expression of the novel hexokinase HKDC1. Nat. Commun., 2015, 6(1), 6069.
[http://dx.doi.org/10.1038/ncomms7069] [PMID: 25648650]
[77]
Lauro, C.; Catalano, M.; Trettel, F.; Limatola, C. Fractalkine in the nervous system: neuroprotective or neurotoxic molecule? Ann. N. Y. Acad. Sci., 2015, 1351(1), 141-148.
[http://dx.doi.org/10.1111/nyas.12805] [PMID: 26084002]
[78]
Lauro, C.; Chece, G.; Monaco, L.; Antonangeli, F.; Peruzzi, G.; Rinaldo, S.; Paone, A.; Cutruzzolà, F.; Limatola, C. Fractalkine modulates microglia metabolism in brain ischemia. Front. Cell. Neurosci., 2019, 13, 414.
[http://dx.doi.org/10.3389/fncel.2019.00414] [PMID: 31607865]
[79]
Cipriani, R.; Villa, P.; Chece, G.; Lauro, C.; Paladini, A.; Micotti, E.; Perego, C.; De Simoni, M.G.; Fredholm, B.B.; Eusebi, F.; Limatola, C. CX3CL1 is neuroprotective in permanent focal cerebral ischemia in rodents. J. Neurosci., 2011, 31(45), 16327-16335.
[http://dx.doi.org/10.1523/JNEUROSCI.3611-11.2011] [PMID: 22072684]
[80]
Shen, H.; Pei, H.; Zhai, L.; Guan, Q.; Wang, G. Salvianolic acid C improves cerebral ischemia reperfusion injury through suppressing microglial cell M1 polarization and promoting cerebral angiogenesis. Int. Immunopharmacol., 2022, 110, 109021.
[http://dx.doi.org/10.1016/j.intimp.2022.109021] [PMID: 35810493]
[81]
Song, S.; Yu, L.; Hasan, M.N.; Paruchuri, S.S.; Mullett, S.J.; Sullivan, M.L.G.; Fiesler, V.M.; Young, C.B.; Stolz, D.B.; Wendell, S.G.; Sun, D. Elevated microglial oxidative phosphorylation and phagocytosis stimulate post-stroke brain remodeling and cognitive function recovery in mice. Commun. Biol., 2022, 5(1), 35.
[http://dx.doi.org/10.1038/s42003-021-02984-4] [PMID: 35017668]
[82]
Jin, W.N.; Shi, S.X.Y.; Li, Z.; Li, M.; Wood, K.; Gonzales, R.J.; Liu, Q. Depletion of microglia exacerbates postischemic inflammation and brain injury. J. Cereb. Blood Flow Metab., 2017, 37(6), 2224-2236.
[http://dx.doi.org/10.1177/0271678X17694185] [PMID: 28273719]
[83]
Gomes, A.S.; Ramos, H.; Soares, J.; Saraiva, L. p53 and glucose metabolism: An orchestra to be directed in cancer therapy. Pharmacol. Res., 2018, 131, 75-86.
[http://dx.doi.org/10.1016/j.phrs.2018.03.015] [PMID: 29580896]
[84]
Bensaad, K.; Tsuruta, A.; Selak, M.A.; Vidal, M.N.C.; Nakano, K.; Bartrons, R.; Gottlieb, E.; Vousden, K.H. TIGAR, a p53-inducible regulator of glycolysis and apoptosis. Cell, 2006, 126(1), 107-120.
[http://dx.doi.org/10.1016/j.cell.2006.05.036] [PMID: 16839880]
[85]
Li, Q.Q.; Li, J.Y.; Zhou, M.; Qin, Z.H.; Sheng, R. Targeting neuroinflammation to treat cerebral ischemia - The role of TIGAR/NADPH axis. Neurochem. Int., 2021, 148, 105081.
[http://dx.doi.org/10.1016/j.neuint.2021.105081] [PMID: 34082063]
[86]
Herrero-Mendez, A.; Almeida, A.; Fernández, E.; Maestre, C.; Moncada, S.; Bolaños, J.P. The bioenergetic and antioxidant status of neurons is controlled by continuous degradation of a key glycolytic enzyme by APC/C–Cdh1. Nat. Cell Biol., 2009, 11(6), 747-752.
[http://dx.doi.org/10.1038/ncb1881] [PMID: 19448625]
[87]
Green, D.R.; Chipuk, J.E. p53 and Metabolism: Inside the TIGAR. Cell, 2006, 126(1), 30-32.
[http://dx.doi.org/10.1016/j.cell.2006.06.032] [PMID: 16839873]
[88]
Patra, K.C.; Hay, N. The pentose phosphate pathway and cancer. Trends Biochem. Sci., 2014, 39(8), 347-354.
[http://dx.doi.org/10.1016/j.tibs.2014.06.005] [PMID: 25037503]
[89]
Li, M.; Zhou, Z.P.; Sun, M.; Cao, L.; Chen, J.; Qin, Y.Y.; Gu, J.H.; Han, F.; Sheng, R.; Wu, J.C.; Ding, Y.; Qin, Z.H. Reduced nicotinamide adenine dinucleotide phosphate, a pentose phosphate pathway product, might be a novel drug candidate for ischemic stroke. Stroke, 2016, 47(1), 187-195.
[http://dx.doi.org/10.1161/STROKEAHA.115.009687] [PMID: 26564104]
[90]
Li, M.; Sun, M.; Cao, L.; Gu, J.; Ge, J.; Chen, J.; Han, R.; Qin, Y.Y.; Zhou, Z.P.; Ding, Y.; Qin, Z.H. A TIGAR-regulated metabolic pathway is critical for protection of brain ischemia. J. Neurosci., 2014, 34(22), 7458-7471.
[http://dx.doi.org/10.1523/JNEUROSCI.4655-13.2014] [PMID: 24872551]
[91]
Cao, L.; Zhang, D.; Chen, J.; Qin, Y.Y.; Sheng, R.; Feng, X.; Chen, Z.; Ding, Y.; Li, M.; Qin, Z.H. G6PD plays a neuroprotective role in brain ischemia through promoting pentose phosphate pathway. Free Radic. Biol. Med., 2017, 112, 433-444.
[http://dx.doi.org/10.1016/j.freeradbiomed.2017.08.011] [PMID: 28823591]
[92]
Hu, J.; Baydyuk, M.; Huang, J.K. Impact of amino acids on microglial activation and CNS remyelination. Curr. Opin. Pharmacol., 2022, 66, 102287.
[http://dx.doi.org/10.1016/j.coph.2022.102287] [PMID: 36067684]
[93]
Tannahill, G.M.; Curtis, A.M.; Adamik, J.; Palsson-McDermott, E.M.; McGettrick, A.F.; Goel, G.; Frezza, C.; Bernard, N.J.; Kelly, B.; Foley, N.H.; Zheng, L.; Gardet, A.; Tong, Z.; Jany, S.S.; Corr, S.C.; Haneklaus, M.; Caffrey, B.E.; Pierce, K.; Walmsley, S.; Beasley, F.C.; Cummins, E.; Nizet, V.; Whyte, M.; Taylor, C.T.; Lin, H.; Masters, S.L.; Gottlieb, E.; Kelly, V.P.; Clish, C.; Auron, P.E.; Xavier, R.J.; O’Neill, L.A.J. Succinate is an inflammatory signal that induces IL-1β through HIF-1α. Nature, 2013, 496(7444), 238-242.
[http://dx.doi.org/10.1038/nature11986] [PMID: 23535595]
[94]
Tretter, L.; Patocs, A.; Chinopoulos, C. Succinate, an intermediate in metabolism, signal transduction, ROS, hypoxia, and tumorigenesis. Biochim. Biophys. Acta Bioenerg., 2016, 1857(8), 1086-1101.
[http://dx.doi.org/10.1016/j.bbabio.2016.03.012] [PMID: 26971832]
[95]
Palsson-McDermott, E.M.; O’Neill, L.A.J. The Warburg effect then and now: From cancer to inflammatory diseases. BioEssays, 2013, 35(11), 965-973.
[http://dx.doi.org/10.1002/bies.201300084] [PMID: 24115022]
[96]
McKenna, M.C. The glutamate‐glutamine cycle is not stoichiometric: Fates of glutamate in brain. J. Neurosci. Res., 2007, 85(15), 3347-3358.
[http://dx.doi.org/10.1002/jnr.21444] [PMID: 17847118]
[97]
Tani, H.; Dulla, C.G.; Farzampour, Z.; Taylor-Weiner, A.; Huguenard, J.R.; Reimer, R.J. A local glutamate-glutamine cycle sustains synaptic excitatory transmitter release. Neuron, 2014, 81(4), 888-900.
[http://dx.doi.org/10.1016/j.neuron.2013.12.026] [PMID: 24559677]
[98]
Bak, L.K.; Schousboe, A.; Waagepetersen, H.S. The glutamate/GABA‐glutamine cycle: Aspects of transport, neurotransmitter homeostasis and ammonia transfer. J. Neurochem., 2006, 98(3), 641-653.
[http://dx.doi.org/10.1111/j.1471-4159.2006.03913.x] [PMID: 16787421]
[99]
Durán, R.V.; Oppliger, W.; Robitaille, A.M.; Heiserich, L.; Skendaj, R.; Gottlieb, E.; Hall, M.N. Glutaminolysis activates Rag-mTORC1 signaling. Mol. Cell, 2012, 47(3), 349-358.
[http://dx.doi.org/10.1016/j.molcel.2012.05.043] [PMID: 22749528]
[100]
Jewell, J.L.; Kim, Y.C.; Russell, R.C.; Yu, F.X.; Park, H.W.; Plouffe, S.W.; Tagliabracci, V.S.; Guan, K.L. Differential regulation of mTORC1 by leucine and glutamine. Science, 2015, 347(6218), 194-198.
[http://dx.doi.org/10.1126/science.1259472] [PMID: 25567907]
[101]
Madry, C.; Arancibia-Cárcamo, I.L.; Kyrargyri, V.; Chan, V.T.T.; Hamilton, N.B.; Attwell, D. Effects of the ecto-ATPase apyrase on microglial ramification and surveillance reflect cell depolarization, not ATP depletion. Proc. Natl. Acad. Sci., 2018, 115(7), E1608-E1617.
[http://dx.doi.org/10.1073/pnas.1715354115] [PMID: 29382767]
[102]
Vergen, J.; Hecht, C.; Zholudeva, L.V.; Marquardt, M.M.; Hallworth, R.; Nichols, M.G. Metabolic imaging using two-photon excited NADH intensity and fluorescence lifetime imaging. Microsc. Microanal., 2012, 18(4), 761-770.
[http://dx.doi.org/10.1017/S1431927612000529] [PMID: 22832200]
[103]
Palmieri, E.M.; Menga, A.; Lebrun, A.; Hooper, D.C.; Butterfield, D.A.; Mazzone, M.; Castegna, A. Blockade of glutamine synthetase enhances inflammatory response in microglial cells. Antioxid. Redox Signal., 2017, 26(8), 351-363.
[http://dx.doi.org/10.1089/ars.2016.6715] [PMID: 27758118]
[104]
Jayasooriya, R.G.P.T.; Molagoda, I.M.N.; Dilshara, M.G.; Choi, Y.H.; Kim, G.Y. Glutamine cooperatively upregulates lipopolysaccharide-induced nitric oxide production in BV2 microglial cells through the ERK and Nrf-2/HO-1 signaling pathway. Antioxidants, 2020, 9(6), 536.
[http://dx.doi.org/10.3390/antiox9060536] [PMID: 32575515]
[105]
Calabrese, V.; Mancuso, C.; Calvani, M.; Rizzarelli, E.; Butterfield, D.A.; Giuffrida Stella, A.M. Nitric oxide in the central nervous system: neuroprotection versus neurotoxicity. Nat. Rev. Neurosci., 2007, 8(10), 766-775.
[http://dx.doi.org/10.1038/nrn2214] [PMID: 17882254]
[106]
Džoljić, E.; Grbatinić, I.; Kostić, V. Why is nitric oxide important for our brain? Funct. Neurol., 2015, 30(3), 159-163.
[PMID: 26910176]
[107]
Rao, J.S.; Kellom, M.; Kim, H.W.; Rapoport, S.I.; Reese, E.A. Neuroinflammation and synaptic loss. Neurochem. Res., 2012, 37(5), 903-910.
[http://dx.doi.org/10.1007/s11064-012-0708-2] [PMID: 22311128]
[108]
Yuste, J.E.; Tarragon, E.; Campuzano, C.M.; Ros-Bernal, F. Implications of glial nitric oxide in neurodegenerative diseases. Front. Cell. Neurosci., 2015, 9, 322.
[http://dx.doi.org/10.3389/fncel.2015.00322] [PMID: 26347610]
[109]
Iadecola, C.; Alexander, M. Cerebral ischemia and inflammation. Curr. Opin. Neurol., 2001, 14(1), 89-94.
[http://dx.doi.org/10.1097/00019052-200102000-00014] [PMID: 11176223]
[110]
Paolocci, N.; Biondi, R.; Bettini, M.; Lee, C.I.; Berlowitz, C.O.; Rossi, R.; Xia, Y.; Ambrosio, G.; L’Abbate, A.; Kass, D.A.; Zweier, J.L. Oxygen radical-mediated reduction in basal and agonist-evoked NO release in isolated rat heart. J. Mol. Cell. Cardiol., 2001, 33(4), 671-679.
[http://dx.doi.org/10.1006/jmcc.2000.1334] [PMID: 11341236]
[111]
Albrecht, J.; Sidoryk-Węgrzynowicz, M.; Zielińska, M.; Aschner, M. Roles of glutamine in neurotransmission. Neuron Glia Biol., 2010, 6(4), 263-276.
[http://dx.doi.org/10.1017/S1740925X11000093] [PMID: 22018046]
[112]
Jurga, A.M.; Paleczna, M.; Kuter, K.Z. Overview of general and discriminating markers of differential microglia phenotypes. Front. Cell. Neurosci., 2020, 14, 198.
[http://dx.doi.org/10.3389/fncel.2020.00198] [PMID: 32848611]
[113]
Jobgen, W.S.; Fried, S.K.; Fu, W.J.; Meininger, C.J.; Wu, G. Regulatory role for the arginine–nitric oxide pathway in metabolism of energy substrates. J. Nutr. Biochem., 2006, 17(9), 571-588.
[http://dx.doi.org/10.1016/j.jnutbio.2005.12.001] [PMID: 16524713]
[114]
Mantovani, A.; Biswas, S.K.; Galdiero, M.R.; Sica, A.; Locati, M. Macrophage plasticity and polarization in tissue repair and remodelling. J. Pathol., 2013, 229(2), 176-185.
[http://dx.doi.org/10.1002/path.4133] [PMID: 23096265]
[115]
Calabrese, C.; Poppleton, H.; Kocak, M.; Hogg, T.L.; Fuller, C.; Hamner, B.; Oh, E.Y.; Gaber, M.W.; Finklestein, D.; Allen, M.; Frank, A.; Bayazitov, I.T.; Zakharenko, S.S.; Gajjar, A.; Davidoff, A.; Gilbertson, R.J. A perivascular niche for brain tumor stem cells. Cancer Cell, 2007, 11(1), 69-82.
[http://dx.doi.org/10.1016/j.ccr.2006.11.020] [PMID: 17222791]
[116]
Chen, S.F.; Pan, M.X.; Tang, J.C.; Cheng, J.; Zhao, D.; Zhang, Y.; Liao, H.B.; Liu, R.; Zhuang, Y.; Zhang, Z.F.; Chen, J.; Lei, R.X.; Li, S.F.; Li, H.T.; Wang, Z.F.; Wan, Q. Arginine is neuroprotective through suppressing HIF-1α/LDHA-mediated inflammatory response after cerebral ischemia/reperfusion injury. Mol. Brain, 2020, 13(1), 63.
[http://dx.doi.org/10.1186/s13041-020-00601-9] [PMID: 32321555]
[117]
Hsieh, K.F.; Shih, J.M.; Shih, Y.M.; Pai, M.H.; Yeh, S.L. Arginine administration increases circulating endothelial progenitor cells and attenuates tissue injury in a mouse model of hind limb ischemia/reperfusion. Nutrition, 2018, 55-56, 29-35.
[http://dx.doi.org/10.1016/j.nut.2018.02.019] [PMID: 29960153]
[118]
Zhao, D.; Chen, J.; Zhang, Y.; Liao, H.B.; Zhang, Z.F.; Zhuang, Y.; Pan, M.X.; Tang, J.C.; Liu, R.; Lei, Y.; Wang, S.; Qin, X.P.; Feng, Y.G.; Chen, Y.; Wan, Q. Glycine confers neuroprotection through PTEN/AKT signal pathway in experimental intracerebral hemorrhage. Biochem. Biophys. Res. Commun., 2018, 501(1), 85-91.
[http://dx.doi.org/10.1016/j.bbrc.2018.04.171] [PMID: 29698679]
[119]
Liu, R.; Liao, X.Y.; Pan, M.X.; Tang, J.C.; Chen, S.F.; Zhang, Y.; Lu, P.X.; Lu, L.J.; Zou, Y.Y.; Qin, X.P.; Bu, L.H.; Wan, Q. Glycine exhibits neuroprotective effects in ischemic stroke in rats through the inhibition of M1 microglial polarization via the NF-κB p65/Hif-1α signaling pathway. J. Immunol., 2019, 202(6), 1704-1714.
[http://dx.doi.org/10.4049/jimmunol.1801166] [PMID: 30710045]
[120]
Chen, S.; Dong, Z.; Cheng, M.; Zhao, Y.; Wang, M.; Sai, N.; Wang, X.; Liu, H.; Huang, G.; Zhang, X. Homocysteine exaggerates microglia activation and neuroinflammation through microglia localized STAT3 overactivation following ischemic stroke. J. Neuroinflammation, 2017, 14(1), 187.
[http://dx.doi.org/10.1186/s12974-017-0963-x] [PMID: 28923114]
[121]
De Simone, R.; Vissicchio, F.; Mingarelli, C.; De Nuccio, C.; Visentin, S.; Ajmone-Cat, M.A.; Minghetti, L. Branched-chain amino acids influence the immune properties of microglial cells and their responsiveness to pro-inflammatory signals. Biochim. Biophys. Acta Mol. Basis Dis., 2013, 1832(5), 650-659.
[http://dx.doi.org/10.1016/j.bbadis.2013.02.001] [PMID: 23402925]
[122]
Chi, O.Z.; Hunter, C.; Liu, X.; Weiss, H.R. Effects of exogenous excitatory amino acid neurotransmitters on blood-brain barrier disruption in focal cerebral ischemia. Neurochem. Res., 2009, 34(7), 1249-1254.
[http://dx.doi.org/10.1007/s11064-008-9902-7] [PMID: 19127429]
[123]
Lucas, D.R.; Newhouse, J.P. The toxic effect of sodium L-glutamate on the inner layers of the retina. Arch. Ophthalmol., 1957, 58(2), 193-201.
[http://dx.doi.org/10.1001/archopht.1957.00940010205006] [PMID: 13443577]
[124]
Gao, G.; Li, C.; Zhu, J.; Wang, Y.; Huang, Y.; Zhao, S.; Sheng, S.; Song, Y.; Ji, C.; Li, C.; Yang, X.; Ye, L.; Qi, X.; Zhang, Y.; Xia, X.; Zheng, J.C. Glutaminase 1 regulates neuroinflammation after cerebral ischemia through enhancing microglial activation and pro-inflammatory exosome release. Front. Immunol., 2020, 11, 161.
[http://dx.doi.org/10.3389/fimmu.2020.00161] [PMID: 32117296]
[125]
White, C.J.; Lee, J.; Choi, J.; Chu, T.; Scafidi, S.; Wolfgang, M.J. Determining the bioenergetic capacity for fatty acid oxidation in the mammalian nervous system. Mol. Cell. Biol., 2020, 40(10), e00037-e20.
[http://dx.doi.org/10.1128/MCB.00037-20] [PMID: 32123009]
[126]
Brown, G.C.; Neher, J.J. Microglial phagocytosis of live neurons. Nat. Rev. Neurosci., 2014, 15(4), 209-216.
[http://dx.doi.org/10.1038/nrn3710] [PMID: 24646669]
[127]
Gao, Y.; Vidal-Itriago, A.; Kalsbeek, M.J.; Layritz, C.; García-Cáceres, C.; Tom, R.Z.; Eichmann, T.O.; Vaz, F.M.; Houtkooper, R.H.; van der Wel, N.; Verhoeven, A.J.; Yan, J.; Kalsbeek, A.; Eckel, R.H.; Hofmann, S.M.; Yi, C.X. Lipoprotein lipase maintains microglial innate immunity in obesity. Cell Rep., 2017, 20(13), 3034-3042.
[http://dx.doi.org/10.1016/j.celrep.2017.09.008] [PMID: 28954222]
[128]
Mauerer, R.; Walczak, Y.; Langmann, T. Comprehensive mRNA profiling of lipid-related genes in microglia and macrophages using taqman arrays. Methods Mol. Biol., 2009, 580, 187-201.
[http://dx.doi.org/10.1007/978-1-60761-325-1_10] [PMID: 19784600]
[129]
Mecha, M.; Feliú, A.; Carrillo-Salinas, F.J.; Rueda-Zubiaurre, A.; Ortega-Gutiérrez, S.; de Sola, R.G.; Guaza, C. Endocannabinoids drive the acquisition of an alternative phenotype in microglia. Brain Behav. Immun., 2015, 49, 233-245.
[http://dx.doi.org/10.1016/j.bbi.2015.06.002] [PMID: 26086345]
[130]
Nadjar, A. Role of metabolic programming in the modulation of microglia phagocytosis by lipids. Prostaglandins Leukot. Essent. Fatty Acids, 2018, 135, 63-73.
[http://dx.doi.org/10.1016/j.plefa.2018.07.006] [PMID: 30103935]
[131]
Zhou, Y.; Song, W.M.; Andhey, P.S.; Swain, A.; Levy, T.; Miller, K.R.; Poliani, P.L.; Cominelli, M.; Grover, S.; Gilfillan, S.; Cella, M.; Ulland, T.K.; Zaitsev, K.; Miyashita, A.; Ikeuchi, T.; Sainouchi, M.; Kakita, A.; Bennett, D.A.; Schneider, J.A.; Nichols, M.R.; Beausoleil, S.A.; Ulrich, J.D.; Holtzman, D.M.; Artyomov, M.N.; Colonna, M. Human and mouse single-nucleus transcriptomics reveal TREM2-dependent and TREM2-independent cellular responses in Alzheimer’s disease. Nat. Med., 2020, 26(1), 131-142.
[http://dx.doi.org/10.1038/s41591-019-0695-9] [PMID: 31932797]
[132]
Keren-Shaul, H.; Spinrad, A.; Weiner, A.; Matcovitch-Natan, O.; Dvir-Szternfeld, R.; Ulland, T.K.; David, E.; Baruch, K.; Lara-Astaiso, D.; Toth, B.; Itzkovitz, S.; Colonna, M.; Schwartz, M.; Amit, I. A unique microglia type associated with restricting development of alzheimer’s disease. Cell, 2017, 169(7), 1276-1290.e17.
[http://dx.doi.org/10.1016/j.cell.2017.05.018] [PMID: 28602351]
[133]
Mudò, G.; Frinchi, M.; Nuzzo, D.; Scaduto, P.; Plescia, F.; Massenti, M.F.; Di Carlo, M.; Cannizzaro, C.; Cassata, G.; Cicero, L.; Ruscica, M.; Belluardo, N.; Grimaldi, L.M. Anti-inflammatory and cognitive effects of interferon-β1a (IFNβ1a) in a rat model of Alzheimer’s disease. J. Neuroinflammation, 2019, 16(1), 44.
[http://dx.doi.org/10.1186/s12974-019-1417-4] [PMID: 30777084]
[134]
Gill, E.L.; Raman, S.; Yost, R.A.; Garrett, T.J.; Vedam-Mai, V. L -carnitine inhibits lipopolysaccharide-induced nitric oxide production of SIM-A9 microglia cells. ACS Chem. Neurosci., 2018, 9(5), 901-905.
[http://dx.doi.org/10.1021/acschemneuro.7b00468] [PMID: 29370524]
[135]
Odegaard, J.I.; Ricardo-Gonzalez, R.R.; Goforth, M.H.; Morel, C.R.; Subramanian, V.; Mukundan, L.; Eagle, A.R.; Vats, D.; Brombacher, F.; Ferrante, A.W.; Chawla, A. Macrophage-specific PPARγ controls alternative activation and improves insulin resistance. Nature, 2007, 447(7148), 1116-1120.
[http://dx.doi.org/10.1038/nature05894] [PMID: 17515919]
[136]
Vats, D.; Mukundan, L.; Odegaard, J.I.; Zhang, L.; Smith, K.L.; Morel, C.R.; Greaves, D.R.; Murray, P.J.; Chawla, A.; Chawla, A. Oxidative metabolism and PGC-1β attenuate macrophage-mediated inflammation. Cell Metab., 2006, 4(1), 13-24.
[http://dx.doi.org/10.1016/j.cmet.2006.05.011] [PMID: 16814729]
[137]
Infantino, V.; Convertini, P.; Cucci, L.; Panaro, M.A.; Di Noia, M.A.; Calvello, R.; Palmieri, F.; Iacobazzi, V. The mitochondrial citrate carrier: A new player in inflammation. Biochem. J., 2011, 438(3), 433-436.
[http://dx.doi.org/10.1042/BJ20111275] [PMID: 21787310]
[138]
Laplante, M.; Sabatini, D.M. An emerging role of mTOR in lipid biosynthesis. Curr. Biol., 2009, 19(22), R1046-R1052.
[http://dx.doi.org/10.1016/j.cub.2009.09.058] [PMID: 19948145]
[139]
Gaber, T.; Strehl, C.; Buttgereit, F. Metabolic regulation of inflammation. Nat. Rev. Rheumatol., 2017, 13(5), 267-279.
[http://dx.doi.org/10.1038/nrrheum.2017.37] [PMID: 28331208]
[140]
Samokhvalov, V.; Ussher, J.R.; Fillmore, N.; Armstrong, I.K.G.; Keung, W.; Moroz, D.; Lopaschuk, D.G.; Seubert, J.; Lopaschuk, G.D. Inhibition of malonyl-CoA decarboxylase reduces the inflammatory response associated with insulin resistance. Am. J. Physiol. Endocrinol. Metab., 2012, 303(12), E1459-E1468.
[http://dx.doi.org/10.1152/ajpendo.00018.2012] [PMID: 23074239]
[141]
Foster, D.W. Malonyl-CoA: The regulator of fatty acid synthesis and oxidation. J. Clin. Invest., 2012, 122(6), 1958-1959.
[http://dx.doi.org/10.1172/JCI63967] [PMID: 22833869]
[142]
Wang, Z.; Liu, D.; Wang, F.; Liu, S.; Zhao, S.; Ling, E.A.; Hao, A. Saturated fatty acids activate microglia via Toll-like receptor 4/NF-κB signalling. Br. J. Nutr., 2012, 107(2), 229-241.
[http://dx.doi.org/10.1017/S0007114511002868] [PMID: 21733316]
[143]
Rapoport, S.I.; Chang, M.C.J.; Spector, A.A. Delivery and turnover of plasma-derived essential PUFAs in mammalian brain. J. Lipid Res., 2001, 42(5), 678-685.
[http://dx.doi.org/10.1016/S0022-2275(20)31629-1] [PMID: 11352974]
[144]
Chausse, B.; Kakimoto, P.A.; Caldeira-da-Silva, C.C.; Chaves-Filho, A.B.; Yoshinaga, M.Y.; da Silva, R.P.; Miyamoto, S.; Kowaltowski, A.J. Distinct metabolic patterns during microglial remodeling by oleate and palmitate. Biosci. Rep., 2019, 39(4), BSR20190072.
[http://dx.doi.org/10.1042/BSR20190072] [PMID: 30867255]
[145]
Feng, J.; Han, J.; Pearce, S.F.A.; Silverstein, R.L.; Gotto, A.M., Jr; Hajjar, D.P.; Nicholson, A.C. Induction of CD36 expression by oxidized LDL and IL-4 by a common signaling pathway dependent on protein kinase C and PPAR-γ. J. Lipid Res., 2000, 41(5), 688-696.
[http://dx.doi.org/10.1016/S0022-2275(20)32377-4] [PMID: 10787429]
[146]
Hernando, S.; Requejo, C.; Herran, E.; Ruiz-Ortega, J.A.; Morera-Herreras, T.; Lafuente, J.V.; Ugedo, L.; Gainza, E.; Pedraz, J.L.; Igartua, M.; Hernandez, R.M. Beneficial effects of n-3 polyunsaturated fatty acids administration in a partial lesion model of Parkinson’s disease: The role of glia and NRf2 regulation. Neurobiol. Dis., 2019, 121, 252-262.
[http://dx.doi.org/10.1016/j.nbd.2018.10.001] [PMID: 30296616]
[147]
Jump, D.B.; Clarke, S.D. Regulation of gene expression by dietary fat. Annu. Rev. Nutr., 1999, 19(1), 63-90.
[http://dx.doi.org/10.1146/annurev.nutr.19.1.63] [PMID: 10448517]
[148]
Jiang, X.; Pu, H.; Hu, X.; Wei, Z.; Hong, D.; Zhang, W.; Gao, Y.; Chen, J.; Shi, Y. A post-stroke therapeutic regimen with omega-3 polyunsaturated fatty acids that promotes white matter integrity and beneficial microglial responses after cerebral ischemia. Transl. Stroke Res., 2016, 7(6), 548-561.
[http://dx.doi.org/10.1007/s12975-016-0502-6] [PMID: 27714669]
[149]
Talamonti, E.; Sasso, V.; To, H.; Haslam, R.P.; Napier, J.A.; Ulfhake, B.; Pernold, K.; Asadi, A.; Hessa, T.; Jacobsson, A.; Chiurchiù, V.; Viscomi, M.T. Impairment of DHA synthesis alters the expression of neuronal plasticity markers and the brain inflammatory status in mice. FASEB J., 2020, 34(2), 2024-2040.
[http://dx.doi.org/10.1096/fj.201901890RR] [PMID: 31909582]
[150]
Chang, P.K.Y.; Khatchadourian, A.; McKinney, R.A.; Maysinger, D. Docosahexaenoic acid (DHA): A modulator of microglia activity and dendritic spine morphology. J. Neuroinflammation, 2015, 12(1), 34.
[http://dx.doi.org/10.1186/s12974-015-0244-5] [PMID: 25889069]
[151]
Fernandez, R.F.; Kim, S.Q.; Zhao, Y.; Foguth, R.M.; Weera, M.M.; Counihan, J.L.; Nomura, D.K.; Chester, J.A.; Cannon, J.R.; Ellis, J.M. Acyl-CoA synthetase 6 enriches the neuroprotective omega-3 fatty acid DHA in the brain. Proc. Natl. Acad. Sci., 2018, 115(49), 12525-12530.
[http://dx.doi.org/10.1073/pnas.1807958115] [PMID: 30401738]
[152]
Duffy, C.M.; Xu, H.; Nixon, J.P.; Bernlohr, D.A.; Butterick, T.A. Identification of a fatty acid binding protein4-UCP2 axis regulating microglial mediated neuroinflammation. Mol. Cell. Neurosci., 2017, 80, 52-57.
[http://dx.doi.org/10.1016/j.mcn.2017.02.004] [PMID: 28214555]
[153]
Duffy, C.M.; Yuan, C.; Wisdorf, L.E.; Billington, C.J.; Kotz, C.M.; Nixon, J.P.; Butterick, T.A. Role of orexin A signaling in dietary palmitic acid-activated microglial cells. Neurosci. Lett., 2015, 606, 140-144.
[http://dx.doi.org/10.1016/j.neulet.2015.08.033] [PMID: 26306651]
[154]
Button, E.B.; Mitchell, A.S.; Domingos, M.M.; Chung, J.H.J.; Bradley, R.M.; Hashemi, A.; Marvyn, P.M.; Patterson, A.C.; Stark, K.D.; Quadrilatero, J.; Duncan, R.E. Microglial cell activation increases saturated and decreases monounsaturated fatty acid content, but both lipid species are proinflammatory. Lipids, 2014, 49(4), 305-316.
[http://dx.doi.org/10.1007/s11745-014-3882-y] [PMID: 24473753]
[155]
Filipello, F.; Goldsbury, C.; You, S.F.; Locca, A.; Karch, C.M.; Piccio, L. Soluble TREM2: Innocent bystander or active player in neurological diseases? Neurobiol. Dis., 2022, 165, 105630.
[http://dx.doi.org/10.1016/j.nbd.2022.105630] [PMID: 35041990]
[156]
Ulland, T.K.; Song, W.M.; Huang, S.C.C.; Ulrich, J.D.; Sergushichev, A.; Beatty, W.L.; Loboda, A.A.; Zhou, Y.; Cairns, N.J.; Kambal, A.; Loginicheva, E.; Gilfillan, S.; Cella, M.; Virgin, H.W.; Unanue, E.R.; Wang, Y.; Artyomov, M.N.; Holtzman, D.M.; Colonna, M. TREM2 maintains microglial metabolic fitness in alzheimer’s disease. Cell, 2017, 170(4), 649-663.e13.
[http://dx.doi.org/10.1016/j.cell.2017.07.023] [PMID: 28802038]
[157]
Piers, T.M.; Cosker, K.; Mallach, A.; Johnson, G.T.; Guerreiro, R.; Hardy, J.; Pocock, J.M. A locked immunometabolic switch underlies TREM2 R47H loss of function in human iPSC‐derived microglia. FASEB J., 2020, 34(2), 2436-2450.
[http://dx.doi.org/10.1096/fj.201902447R] [PMID: 31907987]
[158]
Krasemann, S.; Madore, C.; Cialic, R.; Baufeld, C.; Calcagno, N.; El Fatimy, R.; Beckers, L.; O’Loughlin, E.; Xu, Y.; Fanek, Z.; Greco, D.J.; Smith, S.T.; Tweet, G.; Humulock, Z.; Zrzavy, T.; Conde-Sanroman, P.; Gacias, M.; Weng, Z.; Chen, H.; Tjon, E.; Mazaheri, F.; Hartmann, K.; Madi, A.; Ulrich, J.D.; Glatzel, M.; Worthmann, A.; Heeren, J.; Budnik, B.; Lemere, C.; Ikezu, T.; Heppner, F.L.; Litvak, V.; Holtzman, D.M.; Lassmann, H.; Weiner, H.L.; Ochando, J.; Haass, C.; Butovsky, O. The TREM2-APOE pathway drives the transcriptional phenotype of dysfunctional microglia in neurodegenerative diseases. Immunity, 2017, 47(3), 566-581.e9.
[http://dx.doi.org/10.1016/j.immuni.2017.08.008] [PMID: 28930663]
[159]
Dong, Y.; D’Mello, C.; Pinsky, W.; Lozinski, B.M.; Kaushik, D.K.; Ghorbani, S.; Moezzi, D.; Brown, D.; Melo, F.C.; Zandee, S.; Vo, T.; Prat, A.; Whitehead, S.N.; Yong, V.W. Oxidized phosphatidylcholines found in multiple sclerosis lesions mediate neurodegeneration and are neutralized by microglia. Nat. Neurosci., 2021, 24(4), 489-503.
[http://dx.doi.org/10.1038/s41593-021-00801-z] [PMID: 33603230]
[160]
Churchward, M.A.; Tchir, D.R.; Todd, K.G. Microglial function during glucose deprivation: Inflammatory and neuropsychiatric implications. Mol. Neurobiol., 2018, 55(2), 1477-1487.
[http://dx.doi.org/10.1007/s12035-017-0422-9] [PMID: 28176274]
[161]
Liao, B.; Geng, L.; Zhang, F.; Shu, L.; Wei, L.; Yeung, P.K.K.; Lam, K.S.L.; Chung, S.K.; Chang, J.; Vanhoutte, P.M.; Xu, A.; Wang, K.; Hoo, R.L.C. Adipocyte fatty acid-binding protein exacerbates cerebral ischaemia injury by disrupting the blood-brain barrier. Eur. Heart J., 2020, 41(33), 3169-3180.
[http://dx.doi.org/10.1093/eurheartj/ehaa207] [PMID: 32350521]
[162]
Loppi, S.H.; Tavera-Garcia, M.A.; Becktel, D.A.; Maiyo, B.K.; Johnson, K.E.; Nguyen, T.V.V.; Schnellmann, R.G.; Doyle, K.P. Increased fatty acid metabolism and decreased glycolysis are hallmarks of metabolic reprogramming within microglia in degenerating white matter during recovery from experimental stroke. J. Cereb. Blood Flow Metab., 2023, 43(7), 1099-1114.
[http://dx.doi.org/10.1177/0271678X231157298] [PMID: 36772984]
[163]
Wang, J.; Shi, Y.; Zhang, L.; Zhang, F.; Hu, X.; Zhang, W.; Leak, R.K.; Gao, Y.; Chen, L.; Chen, J. Omega-3 polyunsaturated fatty acids enhance cerebral angiogenesis and provide long-term protection after stroke. Neurobiol. Dis., 2014, 68, 91-103.
[http://dx.doi.org/10.1016/j.nbd.2014.04.014] [PMID: 24794156]
[164]
Zhang, M.; Wang, S.; Mao, L.; Leak, R.K.; Shi, Y.; Zhang, W.; Hu, X.; Sun, B.; Cao, G.; Gao, Y.; Xu, Y.; Chen, J.; Zhang, F. Omega-3 fatty acids protect the brain against ischemic injury by activating Nrf2 and upregulating heme oxygenase 1. J. Neurosci., 2014, 34(5), 1903-1915.
[http://dx.doi.org/10.1523/JNEUROSCI.4043-13.2014] [PMID: 24478369]
[165]
Orr, S.K.; Trépanier, M.O.; Bazinet, R.P. n-3 Polyunsaturated fatty acids in animal models with neuroinflammation. Prostaglandins Leukot. Essent. Fatty Acids, 2013, 88(1), 97-103.
[http://dx.doi.org/10.1016/j.plefa.2012.05.008] [PMID: 22770766]
[166]
Pu, H.; Jiang, X.; Hu, X.; Xia, J.; Hong, D.; Zhang, W.; Gao, Y.; Chen, J.; Shi, Y. Delayed docosahexaenoic acid treatment combined with dietary supplementation of omega-3 fatty acids promotes long-term neurovascular restoration after ischemic stroke. Transl. Stroke Res., 2016, 7(6), 521-534.
[http://dx.doi.org/10.1007/s12975-016-0498-y] [PMID: 27566736]
[167]
Bacarin, C.C.; Godinho, J.; de Oliveira, R.M.W.; Matsushita, M.; Gohara, A.K.; Cardozo-Filho, L.; Lima, J.C.; Previdelli, I.S.; Melo, S.R.; Ribeiro, M.H.D.M.; Milani, H. Postischemic fish oil treatment restores long-term retrograde memory and dendritic density: An analysis of the time window of efficacy. Behav. Brain Res., 2016, 311, 425-439.
[http://dx.doi.org/10.1016/j.bbr.2016.05.047] [PMID: 27235715]
[168]
Correia, B.C.; Mori, M.A.; Dias, F.F.E.; Valério, R.C.; Weffort de Oliveira, R.M.; Milani, H. Fish oil provides robust and sustained memory recovery after cerebral ischemia: Influence of treatment regimen. Physiol. Behav., 2013, 119, 61-71.
[http://dx.doi.org/10.1016/j.physbeh.2013.06.001] [PMID: 23770426]
[169]
Blondeau, N.; Nguemeni, C.; Debruyne, D.N.; Piens, M.; Wu, X.; Pan, H.; Hu, X.; Gandin, C.; Lipsky, R.H.; Plumier, J.C.; Marini, A.M.; Heurteaux, C. Subchronic alpha-linolenic acid treatment enhances brain plasticity and exerts an antidepressant effect: A versatile potential therapy for stroke. Neuropsychopharmacology, 2009, 34(12), 2548-2559.
[http://dx.doi.org/10.1038/npp.2009.84] [PMID: 19641487]
[170]
Miao, Z.; Schultzberg, M.; Wang, X.; Zhao, Y. Role of polyunsaturated fatty acids in ischemic stroke - A perspective of specialized pro-resolving mediators. Clin. Nutr., 2021, 40(5), 2974-2987.
[http://dx.doi.org/10.1016/j.clnu.2020.12.037] [PMID: 33509668]
[171]
Ren, Z.; Chen, L.; Wang, Y.; Wei, X.; Zeng, S.; Zheng, Y.; Gao, C.; Liu, H. Activation of the omega-3 fatty acid receptor GPR120 protects against focal cerebral ischemic injury by preventing inflammation and apoptosis in mice. J. Immunol., 2019, 202(3), 747-759.
[http://dx.doi.org/10.4049/jimmunol.1800637] [PMID: 30598514]
[172]
Zendedel, A.; Habib, P.; Dang, J.; Lammerding, L.; Hoffmann, S.; Beyer, C.; Slowik, A. Omega-3 polyunsaturated fatty acids ameliorate neuroinflammation and mitigate ischemic stroke damage through interactions with astrocytes and microglia. J. Neuroimmunol., 2015, 278, 200-211.
[http://dx.doi.org/10.1016/j.jneuroim.2014.11.007] [PMID: 25468770]
[173]
Fourrier, C.; Remus-Borel, J.; Greenhalgh, A.D.; Guichardant, M.; Bernoud-Hubac, N.; Lagarde, M.; Joffre, C.; Layé, S. Docosahexaenoic acid-containing choline phospholipid modulates LPS-induced neuroinflammation in vivo and in microglia in vitro. J. Neuroinflammation, 2017, 14(1), 170.
[http://dx.doi.org/10.1186/s12974-017-0939-x] [PMID: 28838312]
[174]
Zhang, W.; Wang, H.; Zhang, H.; Leak, R.K.; Shi, Y.; Hu, X.; Gao, Y.; Chen, J. Dietary supplementation with omega-3 polyunsaturated fatty acids robustly promotes neurovascular restorative dynamics and improves neurological functions after stroke. Exp. Neurol., 2015, 272, 170-180.
[http://dx.doi.org/10.1016/j.expneurol.2015.03.005] [PMID: 25771800]
[175]
Giaume, C.; McCarthy, K.D. Control of gap-junctional communication in astrocytic networks. Trends Neurosci., 1996, 19(8), 319-325.
[http://dx.doi.org/10.1016/0166-2236(96)10046-1] [PMID: 8843600]
[176]
Liddelow, S.A.; Barres, B.A. Reactive astrocytes: Production, function, and therapeutic potential. Immunity, 2017, 46(6), 957-967.
[http://dx.doi.org/10.1016/j.immuni.2017.06.006] [PMID: 28636962]
[177]
Basic Kes, V.; Simundic, A.M.; Nikolac, N.; Topic, E.; Demarin, V. Pro-inflammatory and anti-inflammatory cytokines in acute ischemic stroke and their relation to early neurological deficit and stroke outcome. Clin. Biochem., 2008, 41(16-17), 1330-1334.
[http://dx.doi.org/10.1016/j.clinbiochem.2008.08.080] [PMID: 18801351]
[178]
Zamanian, J.L.; Xu, L.; Foo, L.C.; Nouri, N.; Zhou, L.; Giffard, R.G.; Barres, B.A. Genomic analysis of reactive astrogliosis. J. Neurosci., 2012, 32(18), 6391-6410.
[http://dx.doi.org/10.1523/JNEUROSCI.6221-11.2012] [PMID: 22553043]
[179]
Rakers, C.; Schleif, M.; Blank, N.; Matušková, H.; Ulas, T.; Händler, K.; Torres, S.V.; Schumacher, T.; Tai, K.; Schultze, J.L.; Jackson, W.S.; Petzold, G.C. Stroke target identification guided by astrocyte transcriptome analysis. Glia, 2019, 67(4), 619-633.
[http://dx.doi.org/10.1002/glia.23544] [PMID: 30585358]
[180]
Pekny, M.; Wilhelmsson, U.; Pekna, M. The dual role of astrocyte activation and reactive gliosis. Neurosci. Lett., 2014, 565, 30-38.
[http://dx.doi.org/10.1016/j.neulet.2013.12.071] [PMID: 24406153]
[181]
Filous, A.R.; Silver, J. Targeting astrocytes in CNS injury and disease: A translational research approach. Prog. Neurobiol., 2016, 144, 173-187.
[http://dx.doi.org/10.1016/j.pneurobio.2016.03.009] [PMID: 27026202]
[182]
Liu, Z.; Chopp, M. Astrocytes, therapeutic targets for neuroprotection and neurorestoration in ischemic stroke. Prog. Neurobiol., 2016, 144, 103-120.
[http://dx.doi.org/10.1016/j.pneurobio.2015.09.008] [PMID: 26455456]
[183]
Takahashi, S. Neuroprotective function of high glycolytic activity in astrocytes: Common roles in stroke and neurodegenerative diseases. Int. J. Mol. Sci., 2021, 22(12), 6568.
[http://dx.doi.org/10.3390/ijms22126568] [PMID: 34207355]
[184]
Magistretti, P.J.; Allaman, I. Lactate in the brain: From metabolic end-product to signalling molecule. Nat. Rev. Neurosci., 2018, 19(4), 235-249.
[http://dx.doi.org/10.1038/nrn.2018.19] [PMID: 29515192]
[185]
Wiesinger, H.; Hamprecht, B.; Dringen, R. Metabolic pathways for glucose in astrocytes. Glia, 1997, 21(1), 22-34.
[http://dx.doi.org/10.1002/(SICI)1098-1136(199709)21:1<22::AID-GLIA3>3.0.CO;2-3] [PMID: 9298844]
[186]
Pellerin, L.; Magistretti, P.J. Glutamate uptake into astrocytes stimulates aerobic glycolysis: A mechanism coupling neuronal activity to glucose utilization. Proc. Natl. Acad. Sci., 1994, 91(22), 10625-10629.
[http://dx.doi.org/10.1073/pnas.91.22.10625] [PMID: 7938003]
[187]
Dienel, G.A. Lack of appropriate stoichiometry: Strong evidence against an energetically important astrocyte-neuron lactate shuttle in brain. J. Neurosci. Res., 2017, 95(11), 2103-2125.
[http://dx.doi.org/10.1002/jnr.24015] [PMID: 28151548]
[188]
Brown, A.M.; Sickmann, H.M.; Fosgerau, K.; Lund, T.M.; Schousboe, A.; Waagepetersen, H.S.; Ransom, B.R. Astrocyte glycogen metabolism is required for neural activity during aglycemia or intense stimulation in mouse white matter. J. Neurosci. Res., 2005, 79(1-2), 74-80.
[http://dx.doi.org/10.1002/jnr.20335] [PMID: 15578727]
[189]
Brown, A.M.; Ransom, B.R. Astrocyte glycogen and brain energy metabolism. Glia, 2007, 55(12), 1263-1271.
[http://dx.doi.org/10.1002/glia.20557] [PMID: 17659525]
[190]
Schurr, A.; Payne, R.S. Lactate, not pyruvate, is neuronal aerobic glycolysis end product: An in vitro electrophysiological study. Neuroscience, 2007, 147(3), 613-619.
[http://dx.doi.org/10.1016/j.neuroscience.2007.05.002] [PMID: 17560727]
[191]
Schurr, A.; Payne, R.S.; Miller, J.J.; Rigor, B.M. Brain lactate, not glucose, fuels the recovery of synaptic function from hypoxia upon reoxygenation: An in vitro study. Brain Res., 1997, 744(1), 105-111.
[http://dx.doi.org/10.1016/S0006-8993(96)01106-7] [PMID: 9030418]
[192]
Marcoux, J.; McArthur, D.A.; Miller, C.; Glenn, T.C.; Villablanca, P.; Martin, N.A.; Hovda, D.A.; Alger, J.R.; Vespa, P.M. Persistent metabolic crisis as measured by elevated cerebral microdialysis] lactate-pyruvate ratio predicts chronic frontal lobe brain atrophy] after traumatic brain injury. Crit. Care Med., 2008, 36(10), 2871-2877.
[http://dx.doi.org/10.1097/CCM.0b013e318186a4a0] [PMID: 18766106]
[193]
Guo, H.; Fan, Z.; Wang, S.; Ma, L.; Wang, J.; Yu, D.; Zhang, Z.; Wu, L.; Peng, Z.; Liu, W.; Hou, W.; Cai, Y. Astrocytic A1/A2 paradigm participates in glycogen mobilization mediated neuroprotection on reperfusion injury after ischemic stroke. J. Neuroinflammation, 2021, 18(1), 230.
[http://dx.doi.org/10.1186/s12974-021-02284-y] [PMID: 34645472]
[194]
Lv, Y.; Zhang, B.; Zhai, C.; Qiu, J.; Zhang, Y.; Yao, W.; Zhang, C. PFKFB3-mediated glycolysis is involved in reactive astrocyte proliferation after oxygen-glucose deprivation/reperfusion and is regulated by Cdh1. Neurochem. Int., 2015, 91, 26-33.
[http://dx.doi.org/10.1016/j.neuint.2015.10.006] [PMID: 26498254]
[195]
Rossi, D.J.; Brady, J.D.; Mohr, C. Astrocyte metabolism and signaling during brain ischemia. Nat. Neurosci., 2007, 10(11), 1377-1386.
[http://dx.doi.org/10.1038/nn2004] [PMID: 17965658]
[196]
Bak, L.K.; Walls, A.B.; Schousboe, A.; Waagepetersen, H.S. Astrocytic glycogen metabolism in the healthy and diseased brain. J. Biol. Chem., 2018, 293(19), 7108-7116.
[http://dx.doi.org/10.1074/jbc.R117.803239] [PMID: 29572349]
[197]
Zois, C.E.; Harris, A.L. Glycogen metabolism has a key role in the cancer microenvironment and provides new targets for cancer therapy. J. Mol. Med., 2016, 94(2), 137-154.
[http://dx.doi.org/10.1007/s00109-015-1377-9] [PMID: 26882899]
[198]
Ramagiri, S.; Taliyan, R. Remote limb ischemic post conditioning during early reperfusion alleviates cerebral ischemic reperfusion injury via GSK-3β/CREB/BDNF pathway. Eur. J. Pharmacol., 2017, 803, 84-93.
[http://dx.doi.org/10.1016/j.ejphar.2017.03.028] [PMID: 28341347]
[199]
Pederson, B.A. Structure and regulation of glycogen synthase in the brain. Adv. Neurobiol., 2019, 23, 83-123.
[http://dx.doi.org/10.1007/978-3-030-27480-1_3] [PMID: 31667806]
[200]
Xu, L.; Sun, H. Pharmacological manipulation of brain glycogenolysis as a therapeutic approach to cerebral ischemia. Mini Rev. Med. Chem., 2010, 10(12), 1188-1193.
[http://dx.doi.org/10.2174/1389557511009011188] [PMID: 20716050]
[201]
Guo, H.; Zhang, Z.; Gu, T.; Yu, D.; Shi, Y.; Gao, Z.; Wang, Z.; Liu, W.; Fan, Z.; Hou, W.; Wang, H.; Cai, Y. Astrocytic glycogen mobilization participates in salvianolic acid B-mediated neuroprotection against reperfusion injury after ischemic stroke. Exp. Neurol., 2022, 349, 113966.
[http://dx.doi.org/10.1016/j.expneurol.2021.113966] [PMID: 34973964]
[202]
Lo, E.H.; Dalkara, T.; Moskowitz, M.A. Mechanisms, challenges and opportunities in stroke. Nat. Rev. Neurosci., 2003, 4(5), 399-414.
[http://dx.doi.org/10.1038/nrn1106] [PMID: 12728267]
[203]
Takahashi, S. Treatment of acute ischemic stroke: Tissue clock and reperfusion. Masui, 2012, 61, S11-S22.
[PMID: 23513514]
[204]
Takahashi, S. Astroglial protective mechanisms against ROS under brain ischemia. Rinsho Shinkeigaku, 2011, 51(11), 1032-1035.
[http://dx.doi.org/10.5692/clinicalneurol.51.1032] [PMID: 22277470]
[205]
Iizumi, T.; Takahashi, S.; Mashima, K.; Minami, K.; Izawa, Y.; Abe, T.; Hishiki, T.; Suematsu, M.; Kajimura, M.; Suzuki, N. A possible role of microglia-derived nitric oxide by lipopolysaccharide in activation of astroglial pentose-phosphate pathway via the Keap1/Nrf2 system. J. Neuroinflammation, 2016, 13(1), 99.
[http://dx.doi.org/10.1186/s12974-016-0564-0] [PMID: 27143001]
[206]
Tang, B.L. Neuroprotection by glucose‐6‐phosphate dehydrogenase and the pentose phosphate pathway. J. Cell. Biochem., 2019, 120(9), 14285-14295.
[http://dx.doi.org/10.1002/jcb.29004] [PMID: 31127649]
[207]
Dwivedi, D.; Megha, K.; Mishra, R.; Mandal, P.K. Glutathione in brain: Overview of its conformations, functions, biochemical characteristics, quantitation and potential therapeutic role in brain disorders. Neurochem. Res., 2020, 45(7), 1461-1480.
[http://dx.doi.org/10.1007/s11064-020-03030-1] [PMID: 32297027]
[208]
Takahashi, S.; Izawa, Y.; Suzuki, N. Astrogliopathy as a loss of astroglial protective function against glycoxidative stress under hyperglycemia. Rinsho Shinkeigaku, 2012, 52(1), 41-51.
[http://dx.doi.org/10.5692/clinicalneurol.52.41] [PMID: 22260979]
[209]
Chen, J.; Zhang, D.M.; Feng, X.; Wang, J.; Qin, Y.Y.; Zhang, T.; Huang, Q.; Sheng, R.; Chen, Z.; Li, M.; Qin, Z.H. TIGAR inhibits ischemia/reperfusion-induced inflammatory response of astrocytes. Neuropharmacology, 2018, 131, 377-388.
[http://dx.doi.org/10.1016/j.neuropharm.2018.01.012] [PMID: 29331305]
[210]
Owjfard, M.; Karimi, F.; Mallahzadeh, A.; Nabavizadeh, S.A.; Namavar, M.R.; Saadi, M.I.; Hooshmandi, E.; Salehi, M.S.; Zafarmand, S.S.; Bayat, M.; Karimlou, S.; Borhani-Haghighi, A. Mechanism of action and therapeutic potential of dimethyl fumarate in ischemic stroke. J. Neurosci. Res., 2023, 101(9), 1433-1446.
[http://dx.doi.org/10.1002/jnr.25202] [PMID: 37183360]
[211]
Dodson, M.; de la Vega, M.R.; Cholanians, A.B.; Schmidlin, C.J.; Chapman, E.; Zhang, D.D. Modulating NRF2 in disease: Timing is everything. Annu. Rev. Pharmacol. Toxicol., 2019, 59(1), 555-575.
[http://dx.doi.org/10.1146/annurev-pharmtox-010818-021856] [PMID: 30256716]
[212]
Scuderi, S.A.; Ardizzone, A.; Paterniti, I.; Esposito, E.; Campolo, M. Antioxidant and anti-inflammatory effect of Nrf2 inducer dimethyl fumarate in neurodegenerative diseases. Antioxidants, 2020, 9(7), 630.
[http://dx.doi.org/10.3390/antiox9070630] [PMID: 32708926]
[213]
Kunze, R.; Urrutia, A.; Hoffmann, A.; Liu, H.; Helluy, X.; Pham, M.; Reischl, S.; Korff, T.; Marti, H.H. Dimethyl fumarate attenuates cerebral edema formation by protecting the blood–brain barrier integrity. Exp. Neurol., 2015, 266, 99-111.
[http://dx.doi.org/10.1016/j.expneurol.2015.02.022] [PMID: 25725349]
[214]
Lin-Holderer, J.; Li, L.; Gruneberg, D.; Marti, H.H.; Kunze, R. Fumaric acid esters promote neuronal survival upon ischemic stress through activation of the Nrf2 but not HIF-1 signaling pathway. Neuropharmacology, 2016, 105, 228-240.
[http://dx.doi.org/10.1016/j.neuropharm.2016.01.023] [PMID: 26801077]
[215]
Takahashi, S. Metabolic compartmentalization between astroglia and neurons in physiological and pathophysiological conditions of the neurovascular unit. Neuropathology, 2020, 40(2), 121-137.
[http://dx.doi.org/10.1111/neup.12639] [PMID: 32037635]
[216]
Sofroniew, M.V.; Vinters, H.V. Astrocytes: biology and pathology. Acta Neuropathol., 2010, 119(1), 7-35.
[http://dx.doi.org/10.1007/s00401-009-0619-8] [PMID: 20012068]
[217]
Curtis, D.R.; Johnston, G.A. Amino acid transmitters in the mammalian central nervous system. Ergeb. Physiol., 1974, 69(0), 97-188.
[PMID: 4151806]
[218]
Lai, T.W.; Zhang, S.; Wang, Y.T. Excitotoxicity and stroke: Identifying novel targets for neuroprotection. Prog. Neurobiol., 2014, 115, 157-188.
[http://dx.doi.org/10.1016/j.pneurobio.2013.11.006] [PMID: 24361499]
[219]
Anderson, C.M.; Swanson, R.A. Astrocyte glutamate transport: Review of properties, regulation, and physiological functions. Glia, 2000, 32(1), 1-14.
[http://dx.doi.org/10.1002/1098-1136(200010)32:1<1:AID-GLIA10>3.0.CO;2-W] [PMID: 10975906]
[220]
Chisholm, N.C.; Henderson, M.L.; Selvamani, A.; Park, M.J.; Dindot, S.; Miranda, R.C.; Sohrabji, F. Histone methylation patterns in astrocytes are influenced by age following ischemia. Epigenetics, 2015, 10(2), 142-152.
[http://dx.doi.org/10.1080/15592294.2014.1001219] [PMID: 25565250]
[221]
Yamada, T.; Kawahara, K.; Kosugi, T.; Tanaka, M. Nitric oxide produced during sublethal ischemia is crucial for the preconditioning-induced down-regulation of glutamate transporter GLT-1 in neuron/astrocyte co-cultures. Neurochem. Res., 2006, 31(1), 49-56.
[http://dx.doi.org/10.1007/s11064-005-9077-4] [PMID: 16474996]
[222]
Sibson, N.R.; Dhankhar, A.; Mason, G.F.; Rothman, D.L.; Behar, K.L.; Shulman, R.G. Stoichiometric coupling of brain glucose metabolism and glutamatergic neuronal activity. Proc. Natl. Acad. Sci., 1998, 95(1), 316-321.
[http://dx.doi.org/10.1073/pnas.95.1.316] [PMID: 9419373]
[223]
McKenna, M.C. Glutamate pays its own way in astrocytes. Front. Endocrinol., 2013, 4, 191.
[http://dx.doi.org/10.3389/fendo.2013.00191] [PMID: 24379804]
[224]
Rose, C.R.; Ziemens, D.; Untiet, V.; Fahlke, C. Molecular and cellular physiology of sodium-dependent glutamate transporters. Brain Res. Bull., 2018, 136, 3-16.
[http://dx.doi.org/10.1016/j.brainresbull.2016.12.013] [PMID: 28040508]
[225]
Koyama, Y.; Kimura, Y.; Hashimoto, H.; Matsuda, T.; Baba, A. L-lactate inhibits L-cystine/L-glutamate exchange transport and decreases glutathione content in rat cultured astrocytes. J. Neurosci. Res., 2000, 59(5), 685-691.
[http://dx.doi.org/10.1002/(SICI)1097-4547(20000301)59:5<685:AID-JNR12>3.0.CO;2-Z] [PMID: 10686597]
[226]
Shashidharan, P.; Wittenberg, I.; Plaitakis, A. Molecular cloning of human brain glutamate/aspartate transporter II. Biochim. Biophys. Acta Biomembr., 1994, 1191(2), 393-396.
[http://dx.doi.org/10.1016/0005-2736(94)90192-9] [PMID: 8172925]
[227]
Storck, T.; Schulte, S.; Hofmann, K.; Stoffel, W. Structure, expression, and functional analysis of a Na(+)-dependent glutamate/aspartate transporter from rat brain. Proc. Natl. Acad. Sci., 1992, 89(22), 10955-10959.
[http://dx.doi.org/10.1073/pnas.89.22.10955] [PMID: 1279699]
[228]
Pines, G.; Danbolt, N.C.; Bjørås, M.; Zhang, Y.; Bendahan, A.; Eide, L.; Koepsell, H.; Storm-Mathisen, J.; Seeberg, E.; Kanner, B.I. Cloning and expression of a rat brain L-glutamate transporter. Nature, 1992, 360(6403), 464-467.
[http://dx.doi.org/10.1038/360464a0] [PMID: 1448170]
[229]
Bergles, D.E.; Jahr, C.E. Glial contribution to glutamate uptake at Schaffer collateral-commissural synapses in the hippocampus. J. Neurosci., 1998, 18(19), 7709-7716.
[http://dx.doi.org/10.1523/JNEUROSCI.18-19-07709.1998] [PMID: 9742141]
[230]
Bröer, S.; Brookes, N. Transfer of glutamine between astrocytes and neurons. J. Neurochem., 2001, 77(3), 705-719.
[http://dx.doi.org/10.1046/j.1471-4159.2001.00322.x] [PMID: 11331400]
[231]
Bröer, A.; Albers, A.; Setiawan, I.; Edwards, R.H.; Chaudhry, F.A.; Lang, F.; Wagner, C.A.; Bröer, S. Regulation of the glutamine transporter SN1 by extracellular pH and intracellular sodium ions. J. Physiol., 2002, 539(1), 3-14.
[http://dx.doi.org/10.1113/jphysiol.2001.013303] [PMID: 11850497]
[232]
McKenna, M.C.; Stridh, M.H.; McNair, L.F.; Sonnewald, U.; Waagepetersen, H.S.; Schousboe, A. Glutamate oxidation in astrocytes: Roles of glutamate dehydrogenase and aminotransferases. J. Neurosci. Res., 2016, 94(12), 1561-1571.
[http://dx.doi.org/10.1002/jnr.23908] [PMID: 27629247]
[233]
McKenna, M.C.; Sonnewald, U.; Huang, X.; Stevenson, J.; Zielke, H.R. Exogenous glutamate concentration regulates the metabolic fate of glutamate in astrocytes. J. Neurochem., 1996, 66(1), 386-393.
[http://dx.doi.org/10.1046/j.1471-4159.1996.66010386.x] [PMID: 8522979]
[234]
Shen, Y.; He, P.; Fan, Y.; Zhang, J.; Yan, H.; Hu, W.; Ohtsu, H.; Chen, Z. Carnosine protects against permanent cerebral ischemia in histidine decarboxylase knockout mice by reducing glutamate excitotoxicity. Free Radic. Biol. Med., 2010, 48(5), 727-735.
[http://dx.doi.org/10.1016/j.freeradbiomed.2009.12.021] [PMID: 20043985]
[235]
Ouyang, Y.B.; Voloboueva, L.A.; Xu, L.J.; Giffard, R.G. Selective dysfunction of hippocampal CA1 astrocytes contributes to delayed neuronal damage after transient forebrain ischemia. J. Neurosci., 2007, 27(16), 4253-4260.
[http://dx.doi.org/10.1523/JNEUROSCI.0211-07.2007] [PMID: 17442809]
[236]
Chu, K.; Lee, S.T.; Sinn, D.I.; Ko, S.Y.; Kim, E.H.; Kim, J.M.; Kim, S.J.; Park, D.K.; Jung, K.H.; Song, E.C.; Lee, S.K.; Kim, M.; Roh, J.K. Pharmacological induction of ischemic tolerance by glutamate transporter-1 (EAAT2) upregulation. Stroke, 2007, 38(1), 177-182.
[http://dx.doi.org/10.1161/01.STR.0000252091.36912.65] [PMID: 17122424]
[237]
Rothstein, J.D.; Patel, S.; Regan, M.R.; Haenggeli, C.; Huang, Y.H.; Bergles, D.E.; Jin, L.; Dykes Hoberg, M.; Vidensky, S.; Chung, D.S.; Toan, S.V.; Bruijn, L.I.; Su, Z.; Gupta, P.; Fisher, P.B. β-Lactam antibiotics offer neuroprotection by increasing glutamate transporter expression. Nature, 2005, 433(7021), 73-77.
[http://dx.doi.org/10.1038/nature03180] [PMID: 15635412]
[238]
Lee, E.S.Y.; Sidoryk, M.; Jiang, H.; Yin, Z.; Aschner, M. Estrogen and tamoxifen reverse manganese‐induced glutamate transporter impairment in astrocytes. J. Neurochem., 2009, 110(2), 530-544.
[http://dx.doi.org/10.1111/j.1471-4159.2009.06105.x] [PMID: 19453300]
[239]
Zhang, Y.; Jin, Y.; Behr, M.; Feustel, P.; Morrison, J.; Kimelberg, H. Behavioral and histological neuroprotection by tamoxifen after reversible focal cerebral ischemia. Exp. Neurol., 2005, 196(1), 41-46.
[http://dx.doi.org/10.1016/j.expneurol.2005.07.002] [PMID: 16054626]
[240]
Mehta, S.H.; Dhandapani, K.M.; De Sevilla, L.M.; Webb, R.C.; Mahesh, V.B.; Brann, D.W. Tamoxifen, a selective estrogen receptor modulator, reduces ischemic damage caused by middle cerebral artery occlusion in the ovariectomized female rat. Neuroendocrinology, 2003, 77(1), 44-50.
[http://dx.doi.org/10.1159/000068332] [PMID: 12624540]
[241]
Ebert, D.; Haller, R.G.; Walton, M.E. Energy contribution of octanoate to intact rat brain metabolism measured by 13C nuclear magnetic resonance spectroscopy. J. Neurosci., 2003, 23(13), 5928-5935.
[http://dx.doi.org/10.1523/JNEUROSCI.23-13-05928.2003] [PMID: 12843297]
[242]
Sayre, N.L.; Sifuentes, M.; Holstein, D.; Cheng, S.; Zhu, X.; Lechleiter, J.D. Stimulation of astrocyte fatty acid oxidation by thyroid hormone is protective against ischemic stroke-induced damage. J. Cereb. Blood Flow Metab., 2017, 37(2), 514-527.
[http://dx.doi.org/10.1177/0271678X16629153] [PMID: 26873887]
[243]
Polyzos, A.A.; Lee, D.Y.; Datta, R.; Hauser, M.; Budworth, H.; Holt, A.; Mihalik, S.; Goldschmidt, P.; Frankel, K.; Trego, K.; Bennett, M.J.; Vockley, J.; Xu, K.; Gratton, E.; McMurray, C.T. Metabolic reprogramming in astrocytes distinguishes region-specific neuronal susceptibility in huntington mice. Cell Metab., 2019, 29(6), 1258-1273.e11.
[http://dx.doi.org/10.1016/j.cmet.2019.03.004] [PMID: 30930170]
[244]
Aizawa, F.; Nishinaka, T.; Yamashita, T.; Nakamoto, K.; Koyama, Y.; Kasuya, F.; Tokuyama, S. Astrocytes release polyunsaturated fatty acids by lipopolysaccharide stimuli. Biol. Pharm. Bull., 2016, 39(7), 1100-1106.
[http://dx.doi.org/10.1248/bpb.b15-01037] [PMID: 27374285]
[245]
Gupta, S.; Knight, A.G.; Gupta, S.; Keller, J.N.; Bruce-Keller, A.J. Saturated long‐chain fatty acids activate inflammatory signaling in astrocytes. J. Neurochem., 2012, 120(6), 1060-1071.
[http://dx.doi.org/10.1111/j.1471-4159.2012.07660.x] [PMID: 22248073]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy