Generic placeholder image

The Natural Products Journal

Editor-in-Chief

ISSN (Print): 2210-3155
ISSN (Online): 2210-3163

Review Article

Pharmacological Approaches and Herbal Interventions for Alzheimer's Disease

Author(s): Shivendra Kumar*, Shubham Singh, Dharmendra Rajput, Bhawna Sharma, Kumkum Chaturvedi, Nidhi Singh, Sunam Saha, Kuldeep Singh and Soumyadip Mukherjee

Volume 14, Issue 8, 2024

Published on: 22 January, 2024

Article ID: e220124225945 Pages: 16

DOI: 10.2174/0122103155275266231123090138

Price: $65

Abstract

This comprehensive review extensively examines the utilization of herbal remedies and pharmacological techniques for managing Alzheimer's disease (AD). It delves deeply into the active constituents and modes of operation of diverse herbal medications such as Withania somnifera, Bacopa monnieri, Ginkgo biloba, and Curcuma longa, emphasizing their qualities in reducing inflammation, acting as antioxidants, and safeguarding neural tissue. Additionally, it assesses conventional pharmaceuticals like cholinesterase inhibitors (Donepezil, rivastigmine) and memantine, investigating their mechanisms of action and potential adverse effects. The study also encompasses non-pharmacological therapies like interventions aimed at cognition, physical exercise, and methods of stimulating the brain, all of which exhibit potential in enhancing cognitive capacity and neural adaptability. Furthermore, it delves into the amalgamation of therapies to tackle numerous facets of AD pathology. In essence, this review furnishes valuable insights into alternative strategies for managing AD, underscoring the potential of herbal interventions in enhancing cognitive function and addressing the underlying issues of AD. Additionally, it presents a fresh avenue for exploring the collaborative impacts of combining conventional pharmaceuticals with herbal remedies.

Keywords: Alzheimer's disease, combined therapy, botanical medications, cognitive capability, progression of the disease, neurodegenerative ailment.

Graphical Abstract
[1]
Lyketsos, C.G.; Carrillo, M.C.; Ryan, J.M.; Khachaturian, A.S.; Trzepacz, P.; Amatniek, J.; Cedarbaum, J.; Brashear, R.; Miller, D.S. Neuropsychiatric symptoms in Alzheimer’s disease. Alzheimers Dement., 2011, 7(5), 532-539.
[http://dx.doi.org/10.1016/j.jalz.2011.05.2410] [PMID: 21889116]
[2]
Srivastava, S.; Ahmad, R.; Khare, S.K. Alzheimer’s disease and its treatment by different approaches: A review. Eur. J. Med. Chem., 2021, 216, 113320.
[http://dx.doi.org/10.1016/j.ejmech.2021.113320] [PMID: 33652356]
[3]
Schwarzinger, M.; Dufouil, C. Forecasting the prevalence of dementia. Lancet Public Health, 2022, 7(2), e94-e95.
[http://dx.doi.org/10.1016/S2468-2667(21)00277-2] [PMID: 34998486]
[4]
Nichols, E.; Steinmetz, J.D.; Vollset, S.E.; Fukutaki, K.; Chalek, J.; Abd-Allah, F.; Abdoli, A.; Abualhasan, A.; Abu-Gharbieh, E.; Akram, T.T.; Al Hamad, H.; Alahdab, F.; Alanezi, F.M.; Alipour, V.; Almustanyir, S.; Amu, H.; Ansari, I.; Arabloo, J.; Ashraf, T.; Astell-Burt, T.; Ayano, G.; Ayuso-Mateos, J.L.; Baig, A.A.; Barnett, A.; Barrow, A.; Baune, B.T.; Béjot, Y.; Bezabhe, W.M.M.; Bezabih, Y.M.; Bhagavathula, A.S.; Bhaskar, S.; Bhattacharyya, K.; Bijani, A.; Biswas, A.; Bolla, S.R.; Boloor, A.; Brayne, C.; Brenner, H.; Burkart, K.; Burns, R.A.; Cámera, L.A.; Cao, C.; Carvalho, F.; Castro-de-Araujo, L.F.S.; Catalá-López, F.; Cerin, E.; Chavan, P.P.; Cherbuin, N.; Chu, D-T.; Costa, V.M.; Couto, R.A.S.; Dadras, O.; Dai, X.; Dandona, L.; Dandona, R.; De la Cruz-Góngora, V.; Dhamnetiya, D.; Dias da Silva, D.; Diaz, D.; Douiri, A.; Edvardsson, D.; Ekholuenetale, M.; El Sayed, I.; El-Jaafary, S.I.; Eskandari, K.; Eskandarieh, S.; Esmaeilnejad, S.; Fares, J.; Faro, A.; Farooque, U.; Feigin, V.L.; Feng, X.; Fereshtehnejad, S-M.; Fernandes, E.; Ferrara, P.; Filip, I.; Fillit, H.; Fischer, F.; Gaidhane, S.; Galluzzo, L.; Ghashghaee, A.; Ghith, N.; Gialluisi, A.; Gilani, S.A.; Glavan, I-R.; Gnedovskaya, E.V.; Golechha, M.; Gupta, R.; Gupta, V.B.; Gupta, V.K.; Haider, M.R.; Hall, B.J.; Hamidi, S.; Hanif, A.; Hankey, G.J.; Haque, S.; Hartono, R.K.; Hasaballah, A.I.; Hasan, M.T.; Hassan, A.; Hay, S.I.; Hayat, K.; Hegazy, M.I.; Heidari, G.; Heidari-Soureshjani, R.; Herteliu, C.; Househ, M.; Hussain, R.; Hwang, B-F.; Iacoviello, L.; Iavicoli, I.; Ilesanmi, O.S.; Ilic, I.M.; Ilic, M.D.; Irvani, S.S.N.; Iso, H.; Iwagami, M.; Jabbarinejad, R.; Jacob, L.; Jain, V.; Jayapal, S.K.; Jayawardena, R.; Jha, R.P.; Jonas, J.B.; Joseph, N.; Kalani, R.; Kandel, A.; Kandel, H.; Karch, A.; Kasa, A.S.; Kassie, G.M.; Keshavarz, P.; Khan, M.A.B.; Khatib, M.N.; Khoja, T.A.M.; Khubchandani, J.; Kim, M.S.; Kim, Y.J.; Kisa, A.; Kisa, S.; Kivimäki, M.; Koroshetz, W.J.; Koyanagi, A.; Kumar, G.A.; Kumar, M.; Lak, H.M.; Leonardi, M.; Li, B.; Lim, S.S.; Liu, X.; Liu, Y.; Logroscino, G.; Lorkowski, S.; Lucchetti, G.; Lutzky Saute, R.; Magnani, F.G.; Malik, A.A.; Massano, J.; Mehndiratta, M.M.; Menezes, R.G.; Meretoja, A.; Mohajer, B.; Mohamed Ibrahim, N.; Mohammad, Y.; Mohammed, A.; Mokdad, A.H.; Mondello, S.; Moni, M.A.A.; Moniruzzaman, M.; Mossie, T.B.; Nagel, G.; Naveed, M.; Nayak, V.C.; Neupane Kandel, S.; Nguyen, T.H.; Oancea, B.; Otstavnov, N.; Otstavnov, S.S.; Owolabi, M.O.; Panda-Jonas, S.; Pashazadeh Kan, F.; Pasovic, M.; Patel, U.K.; Pathak, M.; Peres, M.F.P.; Perianayagam, A.; Peterson, C.B.; Phillips, M.R.; Pinheiro, M.; Piradov, M.A.; Pond, C.D.; Potashman, M.H.; Pottoo, F.H.; Prada, S.I.; Radfar, A.; Raggi, A.; Rahim, F.; Rahman, M.; Ram, P.; Ranasinghe, P.; Rawaf, D.L.; Rawaf, S.; Rezaei, N.; Rezapour, A.; Robinson, S.R.; Romoli, M.; Roshandel, G.; Sahathevan, R.; Sahebkar, A.; Sahraian, M.A.; Sathian, B.; Sattin, D.; Sawhney, M.; Saylan, M.; Schiavolin, S.; Seylani, A.; Sha, F.; Shaikh, M.A.; Shaji, K.S.; Shannawaz, M.; Shetty, J.K.; Shigematsu, M.; Shin, J.I.; Shiri, R.; Silva, D.A.S.; Silva, J.P.; Silva, R.; Singh, J.A.; Skryabin, V.Y.; Skryabina, A.A.; Smith, A.E.; Soshnikov, S.; Spurlock, E.E.; Stein, D.J.; Sun, J.; Tabarés-Seisdedos, R.; Thakur, B.; Timalsina, B.; Tovani-Palone, M.R.; Tran, B.X.; Tsegaye, G.W.; Valadan Tahbaz, S.; Valdez, P.R.; Venketasubramanian, N.; Vlassov, V.; Vu, G.T.; Vu, L.G.; Wang, Y-P.; Wimo, A.; Winkler, A.S.; Yadav, L.; Yahyazadeh Jabbari, S.H.; Yamagishi, K.; Yang, L.; Yano, Y.; Yonemoto, N.; Yu, C.; Yunusa, I.; Zadey, S.; Zastrozhin, M.S.; Zastrozhina, A.; Zhang, Z-J.; Murray, C.J.L.; Vos, T. Estimation of the global prevalence of dementia in 2019 and forecasted prevalence in 2050: an analysis for the Global Burden of Disease Study 2019. Lancet Public Health, 2022, 7(2), e105-e125.
[http://dx.doi.org/10.1016/S2468-2667(21)00249-8] [PMID: 34998485]
[5]
Livingston, G.; Sommerlad, A.; Orgeta, V.; Costafreda, S.G.; Huntley, J.; Ames, D.; Ballard, C.; Banerjee, S.; Burns, A.; Cohen-Mansfield, J.; Cooper, C.; Fox, N.; Gitlin, L.N.; Howard, R.; Kales, H.C.; Larson, E.B.; Ritchie, K.; Rockwood, K.; Sampson, E.L.; Samus, Q.; Schneider, L.S.; Selbæk, G.; Teri, L.; Mukadam, N. Dementia prevention, intervention, and care. Lancet, 2017, 390(10113), 2673-2734.
[http://dx.doi.org/10.1016/S0140-6736(17)31363-6] [PMID: 28735855]
[6]
Ngandu, T.; Lehtisalo, J.; Solomon, A.; Levälahti, E.; Ahtiluoto, S.; Antikainen, R.; Bäckman, L.; Hänninen, T.; Jula, A.; Laatikainen, T.; Lindström, J.; Mangialasche, F.; Paajanen, T.; Pajala, S.; Peltonen, M.; Rauramaa, R.; Stigsdotter-Neely, A.; Strandberg, T.; Tuomilehto, J.; Soininen, H.; Kivipelto, M.A. 2 year multidomain intervention of diet, exercise, cognitive training, and vascular risk monitoring versus control to prevent cognitive decline in at-risk elderly people (FINGER): A randomised controlled trial. Lancet, 2015, 385(9984), 2255-2263.
[http://dx.doi.org/10.1016/S0140-6736(15)60461-5] [PMID: 25771249]
[7]
Cummings, J; Lee, G; Nahed, P; Kambar, MEZN; Zhong, K; Fonseca, J Alzheimer’s disease drug development pipeline. A&D Transl Res & Clin Interv 2022, 8(1)
[8]
Gribkoff, V.K.; Kaczmarek, L.K. The need for new approaches in CNS drug discovery: Why drugs have failed, and what can be done to improve outcomes. Neuropharmacology, 2017, 120, 11-19.
[http://dx.doi.org/10.1016/j.neuropharm.2016.03.021] [PMID: 26979921]
[9]
Puentes-Díaz, N.; Chaparro, D.; Morales-Morales, D.; Flores-Gaspar, A.; Alí-Torres, J. Role of metal cations of copper, iron, and aluminum and multifunctional ligands in alzheimer’s disease: Experimental and computational insights. ACS Omega, 2023, 8(5), 4508-4526.
[http://dx.doi.org/10.1021/acsomega.2c06939] [PMID: 36777601]
[10]
Huang, H.C.; Jiang, Z.F. Accumulated amyloid-β peptide and hyperphosphorylated tau protein: relationship and links in Alzheimer’s disease. J. Alzheimers Dis., 2009, 16(1), 15-27.
[http://dx.doi.org/10.3233/JAD-2009-0960] [PMID: 19158417]
[11]
LaFerla, F.M. Pathways linking Aβ and tau pathologies. Biochem. Soc. Trans., 2010, 38(4), 993-995.
[http://dx.doi.org/10.1042/BST0380993] [PMID: 20658991]
[12]
Whitehouse, P.J. The cholinergic deficit in Alzheimer’s disease. J. Clin. Psychiatry, 1998, 59(Suppl. 13), 19-22.
[PMID: 9771826]
[13]
Lipton, S. The molecular basis of memantine action in Alzheimer’s disease and other neurologic disorders: low-affinity, uncompetitive antagonism. Curr. Alzheimer Res., 2005, 2(2), 155-165.
[http://dx.doi.org/10.2174/1567205053585846] [PMID: 15974913]
[14]
Ravona-Springer, R.; Davidson, M.; Noy, S. Is the distinction between Alzheimer’s disease and vascular dementia possible and relevant? Dialogues Clin. Neurosci., 2003, 5(1), 7-15.
[http://dx.doi.org/10.31887/DCNS.2003.5.1/rravonaspringer] [PMID: 22033677]
[15]
Hasnain, M.; Vieweg, W. Possible role of vascular risk factors in Alzheimer’s disease and vascular dementia. Curr. Pharm. Des., 2014, 20(38), 6007-6013.
[http://dx.doi.org/10.2174/1381612820666140314153440] [PMID: 24641219]
[16]
Attems, J.; Jellinger, K.A. The overlap between vascular disease and Alzheimer’s disease - lessons from pathology. BMC Med., 2014, 12(1), 206.
[http://dx.doi.org/10.1186/s12916-014-0206-2] [PMID: 25385447]
[17]
de Toledo Ferraz Alves, T.C.; Ferreira, L.K.; Wajngarten, M.; Busatto, G.F. Cardiac disorders as risk factors for Alzheimer’s disease. J. Alzheimers Dis., 2010, 20(3), 749-763.
[http://dx.doi.org/10.3233/JAD-2010-091561] [PMID: 20413875]
[18]
Midlife vascular risk factors and alzheimer’s disease: evidence from epidemiological studies. Available from: https://content.iospress.com/articles/journal-of-alzheimers-disease/jad120802
[19]
Luchsinger, J.A. Adiposity, hyperinsulinemia, diabetes and Alzheimer’s disease. Eur. J. Pharmacol., 2008, 585(1), 119-129.
[http://dx.doi.org/10.1016/j.ejphar.2008.02.048] [PMID: 18384771]
[20]
Abdul-Hay, S.O.; Kang, D.; McBride, M.; Li, L.; Zhao, J.; Leissring, M.A. Deletion of insulindegrading enzyme elicits antipodal, age-dependent effects on glucose and insulin tolerance; PLoS ONE, 2011, 6(6), 20818.
[21]
Martinez, A.; Gil, C.; Perez, D.I. Glycogen synthase kinase 3 inhibitors in the next horizon for Alzheimer’s disease treatment. Int. J. Alzheimers Dis., 2011, 2011, 1-7.
[http://dx.doi.org/10.4061/2011/280502] [PMID: 21760986]
[22]
den Hoedt, S.; Crivelli, S.M.; Leijten, F.P.J.; Losen, M.; Stevens, J.A.A.; Mané-Damas, M.; de Vries, H.E.; Walter, J.; Mirzaian, M.; Sijbrands, E.J.G.; Aerts, J.M.F.G.; Verhoeven, A.J.M.; Martinez-Martinez, P.; Mulder, M.T. Effects of sex, age, and apolipoprotein e genotype on brain ceramides and sphingosine-1-phosphate in alzheimer’s disease and control mice. Front. Aging Neurosci., 2021, 13, 765252.
[http://dx.doi.org/10.3389/fnagi.2021.765252] [PMID: 34776936]
[23]
Liu, C.C.; Kanekiyo, T.; Xu, H.; Bu, G.; Bu, G. Apolipoprotein E and Alzheimer disease: Risk, mechanisms and therapy. Nat. Rev. Neurol., 2013, 9(2), 106-118.
[http://dx.doi.org/10.1038/nrneurol.2012.263] [PMID: 23296339]
[24]
Guo, T.; Zhang, D.; Zeng, Y.; Huang, T.Y.; Xu, H.; Zhao, Y. Molecular and cellular mechanisms underlying the pathogenesis of Alzheimer’s disease. Mol. Neurodegener., 2020, 15(1), 40.
[http://dx.doi.org/10.1186/s13024-020-00391-7] [PMID: 32677986]
[25]
Erickson, M.A.; Dohi, K.; Banks, W.A. Neuroinflammation: A common pathway in CNS diseases as mediated at the blood-brain barrier. Neuroimmunomodulation, 2012, 19(2), 121-130.
[http://dx.doi.org/10.1159/000330247] [PMID: 22248728]
[26]
Asanuma, M.; Nishibayashi-Asanuma, S.; Miyazaki, I.; Kohno, M.; Ogawa, N. Neuroprotective effects of non-steroidal anti-inflammatory drugs by direct scavenging of nitric oxide radicals. J. Neurochem., 2001, 76(6), 1895-1904.
[http://dx.doi.org/10.1046/j.1471-4159.2001.00205.x] [PMID: 11259508]
[27]
Mallah, K.; Couch, C.; Borucki, D.M.; Toutonji, A.; Alshareef, M.; Tomlinson, S. Anti-inflammatory and Neuroprotective Agents in Clinical Trials for CNS Disease and Injury: Where Do We Go From Here? Front. Immunol., 2020, 11, 2021.
[http://dx.doi.org/10.3389/fimmu.2020.02021] [PMID: 33013859]
[28]
Xu, J.; Patassini, S.; Begley, P.; Church, S.; Waldvogel, H.J.; Faull, R.L.M.; Unwin, R.D.; Cooper, G.J.S. Cerebral deficiency of vitamin B5 (d-pantothenic acid; pantothenate) as a potentially-reversible cause of neurodegeneration and dementia in sporadic Alzheimer’s disease. Biochem. Biophys. Res. Commun., 2020, 527(3), 676-681.
[http://dx.doi.org/10.1016/j.bbrc.2020.05.015] [PMID: 32416962]
[29]
Cenini, G.; Voos, W. Mitochondria as potential targets in alzheimer disease therapy: An update. Front. Pharmacol., 2019, 10, 902.
[http://dx.doi.org/10.3389/fphar.2019.00902] [PMID: 31507410]
[30]
Gazit, N.; Vertkin, I.; Shapira, I.; Helm, M.; Slomowitz, E.; Sheiba, M.; Mor, Y.; Rizzoli, S.; Slutsky, I. IGF-1 Receptor differentially regulates spontaneous and evoked transmission via mitochondria at hippocampal synapses. Neuron, 2016, 89(3), 583-597.
[http://dx.doi.org/10.1016/j.neuron.2015.12.034] [PMID: 26804996]
[31]
Chang, X.L.; Tan, M.S.; Tan, L.; Yu, J.T. The Role of TDP-43 in Alzheimer’s Disease. Mol. Neurobiol., 2016, 53(5), 3349-3359.
[http://dx.doi.org/10.1007/s12035-015-9264-5] [PMID: 26081142]
[32]
Chun, H.; Lee, C.J. Reactive astrocytes in Alzheimer’s disease: A double-edged sword. Neurosci. Res., 2018, 126, 44-52.
[http://dx.doi.org/10.1016/j.neures.2017.11.012] [PMID: 29225140]
[33]
Wang, X.P.; Ye, P.; Lv, J.; Zhou, L.; Qian, Z.Y.; Huang, Y.J.; Mu, Z.H.; Wang, X.; Liu, X.; Wan, Q.; Yang, Z.H.; Wang, F.; Zou, Y.Y. Expression changes of NMDA and AMPA receptor subunits in the hippocampus in rats with diabetes induced by streptozotocin coupled with memory impairment. Neurochem. Res., 2019, 44(4), 978-993.
[http://dx.doi.org/10.1007/s11064-019-02733-4] [PMID: 30747310]
[34]
Muraoka, S.; Jedrychowski, M.P.; Yanamandra, K.; Ikezu, S.; Gygi, S.P.; Ikezu, T. Proteomic profiling of extracellular vesicles derived from cerebrospinal fluid of alzheimer’s disease patients: A pilot study. Cells, 2020, 9(9), 1959.
[http://dx.doi.org/10.3390/cells9091959] [PMID: 32854315]
[35]
Peyressatre, M.; Arama, D.P.; Laure, A.; González-Vera, J.A.; Pellerano, M.; Masurier, N.; Lisowski, V.; Morris, M.C. Identification of quinazolinone analogs targeting CDK5 kinase activity and glioblastoma cell proliferation. Front Chem., 2020, 8, 691.
[http://dx.doi.org/10.3389/fchem.2020.00691] [PMID: 32974274]
[36]
Duncan, R.; Song, B.; Koulen, P. Presenilins as drug targets for alzheimer’s disease—recent insights from cell biology and electrophysiology as novel opportunities in drug development. Int. J. Mol. Sci., 2018, 19(6), 1621.
[http://dx.doi.org/10.3390/ijms19061621] [PMID: 29857474]
[37]
Miraj, S. Rafieian-Kopaei; Kiani, S. Melissa officinalis L: A review study with an antioxidant prospective. J. Evid. Based Complementary Altern. Med., 2017, 22(3), 385-394.
[http://dx.doi.org/10.1177/2156587216663433] [PMID: 27620926]
[38]
Sepand, M.R.; Soodi, M.; Hajimehdipoor, H.; Soleimani, M.; Sahraei, E. Comparison of neuroprotective effects of melissa officinalis total extract and its acidic and non-acidic fractions against a β-induced toxicity. Iran. J. Pharm. Res., 2013, 12(2), 415-423.
[PMID: 24250617]
[39]
Jeong, H.Y.; Kim, J.Y.; Lee, H.K.; Ha, D.T.; Song, K.S.; Bae, K.; Seong, Y.H. Leaf and stem of Vitis amurensis and its active components protect against amyloid β protein (25–35)-induced neurotoxicity. Arch. Pharm. Res., 2010, 33(10), 1655-1664.
[http://dx.doi.org/10.1007/s12272-010-1015-6] [PMID: 21052941]
[40]
Stanciu, G.D.; Luca, A.; Rusu, R.N.; Bild, V.; Beschea Chiriac, S.I.; Solcan, C.; Bild, W.; Ababei, D.C. Alzheimer’s disease pharmacotherapy in relation to cholinergic system involvement. Biomolecules, 2019, 10(1), 40.
[http://dx.doi.org/10.3390/biom10010040] [PMID: 31888102]
[41]
Akram, M.; Nawaz, A. Effects of medicinal plants on Alzheimer’s disease and memory deficits. Neural Regen. Res., 2017, 12(4), 660-670.
[http://dx.doi.org/10.4103/1673-5374.205108] [PMID: 28553349]
[42]
Mahrous, R.S.R.; Ghareeb, D.A.; Fathy, H.M.; Abu, E.L. Khair, R.M.; Abdallah, The protective effect of egyptian withania somnifera against alzeheimer’s. Med. Aromat. Plants, 2017, 6(2)
[http://dx.doi.org/10.4172/2167-0412.1000285]
[43]
Abdul Manap, A.S.; Vijayabalan, S.; Madhavan, P.; Chia, Y.Y.; Arya, A.; Wong, E.H.; Rizwan, F.; Bindal, U.; Koshy, S. Bacopa monnieri, a Neuroprotective Lead in Alzheimer Disease: A Review on Its Properties, Mechanisms of Action, and Preclinical and Clinical Studies. Drug Target Insights, 2019, 13.
[http://dx.doi.org/10.1177/1177392819866412] [PMID: 31391778]
[44]
Bastianetto, S.; Zheng, W.H.; Quirion, R. The Ginkgo biloba extract (EGb 761) protects and rescues hippocampal cells against nitric oxide-induced toxicity: involvement of its flavonoid constituents and protein kinase C. J. Neurochem., 2000, 74(6), 2268-2277.
[http://dx.doi.org/10.1046/j.1471-4159.2000.0742268.x] [PMID: 10820186]
[45]
Sandur, S.K.; Pandey, M.K.; Sung, B.; Ahn, K.S.; Murakami, A.; Sethi, G.; Limtrakul, P.; Badmaev, V.; Aggarwal, B.B. Curcumin, demethoxycurcumin, bisdemethoxycurcumin, tetrahydrocurcumin and turmerones differentially regulate anti-inflammatory and anti-proliferative responses through a ROS-independent mechanism. Carcinogenesis, 2007, 28(8), 1765-1773.
[http://dx.doi.org/10.1093/carcin/bgm123] [PMID: 17522064]
[46]
Karunaweera, N.; Raju, R.; Gyengesi, E.; Münch, G. Plant polyphenols as inhibitors of NF-κB induced cytokine production-a potential anti-inflammatory treatment for Alzheimer’s disease? Front. Mol. Neurosci., 2015, 8, 24.
[http://dx.doi.org/10.3389/fnmol.2015.00024] [PMID: 26136655]
[47]
Wahab, S.; Annadurai, S.; Abullais, S.S.; Das, G.; Ahmad, W.; Ahmad, M.F.; Kandasamy, G.; Vasudevan, R.; Ali, M.S.; Amir, M. Glycyrrhiza glabra (Licorice): A comprehensive review on its phytochemistry, biological activities, clinical evidence and toxicology. Plants, 2021, 10(12), 2751.
[http://dx.doi.org/10.3390/plants10122751] [PMID: 34961221]
[48]
Cho, M.J.; Kim, J.H.; Park, C.H.; Lee, A.Y.; Shin, Y.S.; Lee, J.H.; Park, C.G.; Cho, E.J. Comparison of the effect of three licorice varieties on cognitive improvement via an amelioration of neuroinflammation in lipopolysaccharide-induced mice. Nutr. Res. Pract., 2018, 12(3), 191-198.
[http://dx.doi.org/10.4162/nrp.2018.12.3.191] [PMID: 29854324]
[49]
Song, J.H.; Lee, J.W.; Shim, B.; Lee, C.Y.; Choi, S.; Kang, C.; Sohn, N.W.; Shin, J.W. Glycyrrhizin alleviates neuroinflammation and memory deficit induced by systemic lipopolysaccharide treatment in mice. Molecules, 2013, 18(12), 15788-15803.
[http://dx.doi.org/10.3390/molecules181215788] [PMID: 24352029]
[50]
Guo, J.; Yang, C.; Yang, J.; Yao, Y. Glycyrrhizic acid ameliorates cognitive impairment in a rat model of vascular dementia associated with oxidative damage and inhibition of voltage-gated sodium channels. CNS Neurol. Disord. Drug Targets, 2016, 15(8), 1001-1008.
[http://dx.doi.org/10.2174/1871527315666160527163526] [PMID: 27238153]
[51]
Shekarian, M.; Komaki, A.; Shahidi, S.; Sarihi, A.; Salehi, I.; Raoufi, S. The protective and therapeutic effects of vinpocetine, a PDE1 inhibitor, on oxidative stress and learning and memory impairment induced by an intracerebroventricular (ICV) injection of amyloid beta (aβ) peptide. Behav. Brain Res., 2020, 383, 112512.
[http://dx.doi.org/10.1016/j.bbr.2020.112512] [PMID: 31991177]
[52]
Szatmári, S.Z.; Whitehouse, P.J. Vinpocetine for cognitive impairment and dementia. Cochrane Database Syst. Rev., 2003, 2003(1), CD003119.
[PMID: 12535455]
[53]
Zhang, B.; Li, Q.; Chu, X.; Sun, S.; Chen, S. Salidroside reduces tau hyperphosphorylation via up-regulating GSK-3β phosphorylation in a tau transgenic Drosophila model of Alzheimer’s disease. Transl. Neurodegener., 2016, 5(1), 21.
[http://dx.doi.org/10.1186/s40035-016-0068-y] [PMID: 27933142]
[54]
Zhang, B.; Wang, Y.; Li, H.; Xiong, R.; Zhao, Z.; Chu, X.; Li, Q.; Sun, S.; Chen, S. Neuroprotective effects of salidroside through PI3K/Akt pathway activation in Alzheimer’s disease models. Drug Des. Devel. Ther., 2016, 10, 1335-1343.
[PMID: 27103787]
[55]
Zhang, L.; Yu, H.; Zhao, X.; Lin, X.; Tan, C.; Cao, G.; Wang, Z. Neuroprotective effects of salidroside against beta-amyloid-induced oxidative stress in SH-SY5Y human neuroblastoma cells. Neurochem. Int., 2010, 57(5), 547-555.
[http://dx.doi.org/10.1016/j.neuint.2010.06.021] [PMID: 20615444]
[56]
Li, Y.; Wu, J.; Shi, R.; Li, N.; Xu, Z.; Sun, M. Antioxidative effects of rhodiola genus: Phytochemistry and pharmacological mechanisms against the diseases. Curr. Top. Med. Chem., 2017, 17(15), 1692-1708.
[http://dx.doi.org/10.2174/1568026617666161116141334] [PMID: 27848900]
[57]
Yan, Z.Q.; Chen, J.; Xing, G.X.; Huang, J.G.; Hou, X.H.; Zhang, Y. Salidroside prevents cognitive impairment induced by chronic cerebral hypoperfusion in rats. J. Int. Med. Res., 2015, 43(3), 402-411.
[http://dx.doi.org/10.1177/0300060514566648] [PMID: 25858674]
[58]
Zhou, Q.; Yin, Z.P.; Ma, L.; Zhao, W.; Hao, H.W.; Li, H.L. Free radical-scavenging activities of oligomeric proanthocyanidin from Rhodiola rosea L. and its antioxidant effects in vivo. Nat. Prod. Res., 2014, 28(24), 2301-2303.
[http://dx.doi.org/10.1080/14786419.2014.921786] [PMID: 24896611]
[59]
de Macedo, L.M.; Santos, É.M.; Militão, L.; Tundisi, L.L.; Ataide, J.A.; Souto, E.B.; Mazzola, P.G. Rosemary (Rosmarinus officinalis L., syn Salvia rosmarinus Spenn.) and Its Topical Applications: A Review. Plants, 2020, 9(5), 651.
[http://dx.doi.org/10.3390/plants9050651] [PMID: 32455585]
[60]
Lamaison, J.L.; Petitjean-Freytet, C.; Carnat, A. [Rosmarinic acid, total hydroxycinnamic derivatives and antioxidant activity of Apiaceae, Borraginaceae and Lamiceae medicinals]. Ann. Pharm. Fr., 1990, 48(2), 103-108. [Rosmarinic acid, total hydroxycinnamic derivatives and antioxidant activity of Apiaceae, Borraginaceae and Lamiaceae medicinals].
[PMID: 2291599]
[61]
Orhan, I. Küpeli, E.; Şener, B.; Yesilada, E. Appraisal of anti-inflammatory potential of the clubmoss, Lycopodium clavatum L. J. Ethnopharmacol., 2007, 109(1), 146-150.
[http://dx.doi.org/10.1016/j.jep.2006.07.018] [PMID: 16962272]
[62]
Snow, A.D.; Castillo, G.M.; Nguyen, B.P.; Choi, P.Y.; Cummings, J.A.; Cam, J.; Hu, Q.; Lake, T.; Pan, W.; Kastin, A.J.; Kirschner, D.A.; Wood, S.G.; Rockenstein, E.; Masliah, E.; Lorimer, S.; Tanzi, R.E.; Larsen, L. The Amazon rain forest plant Uncaria tomentosa (cat’s claw) and its specific proanthocyanidin constituents are potent inhibitors and reducers of both brain plaques and tangles. Sci. Rep., 2019, 9(1), 561.
[http://dx.doi.org/10.1038/s41598-019-38645-0] [PMID: 30728442]
[63]
Liu, Q.F.; Jeong, H.; Lee, J.H.; Hong, Y.K.; Oh, Y.; Kim, Y.M.; Suh, Y.S.; Bang, S.; Yun, H.S.; Lee, K.; Cho, S.M.; Lee, S.B.; Jeon, S.; Chin, Y.W.; Koo, B.S.; Cho, K.S. Coriandrum sativum Suppresses Aβ42-Induced ROS Increases, glial cell proliferation, and ERK Activation. Am. J. Chin. Med., 2016, 44(7), 1325-1347.
[http://dx.doi.org/10.1142/S0192415X16500749] [PMID: 27776428]
[64]
Sun, Y.; Yang, Y.; Liu, S.; Yang, S.; Chen, C.; Lin, M.; Zeng, Q.; Long, J.; Yao, J.; Yi, F.; Meng, L.; Ai, Q.; Chen, N. New therapeutic approaches to and mechanisms of ginsenoside rg1 against neurological diseases. Cells, 2022, 11(16), 2529.
[http://dx.doi.org/10.3390/cells11162529] [PMID: 36010610]
[65]
Kim, J.H.; Yi, Y.S.; Kim, M.Y.; Cho, J.Y. Role of ginsenosides, the main active components of Panax ginseng, in inflammatory responses and diseases. J. Ginseng Res., 2017, 41(4), 435-443.
[http://dx.doi.org/10.1016/j.jgr.2016.08.004] [PMID: 29021688]
[66]
Arendash, G.W.; Mori, T.; Cao, C.; Mamcarz, M.; Runfeldt, M.; Dickson, A.; Rezai-Zadeh, K.; Tan, J.; Citron, B.A.; Lin, X.; Echeverria, V.; Potter, H. Caffeine reverses cognitive impairment and decreases brain amyloid-beta levels in aged Alzheimer’s disease mice. J. Alzheimers Dis., 2009, 17(3), 661-680.
[http://dx.doi.org/10.3233/JAD-2009-1087] [PMID: 19581722]
[67]
Lee, Y.K.; Yuk, D.Y.; Kim, T.I.; Kim, Y.H.; Kim, K.T.; Kim, K.H.; Lee, B.J.; Nam, S.Y.; Hong, J.T. Protective effect of the ethanol extract of Magnolia officinalis and 4-O-methylhonokiol on scopolamine-induced memory impairment and the inhibition of acetylcholinesterase activity. J. Nat. Med., 2009, 63(3), 274-282.
[http://dx.doi.org/10.1007/s11418-009-0330-z] [PMID: 19343477]
[68]
D’Onofrio, G.; Nabavi, S.M.; Sancarlo, D.; Greco, A.; Pieretti, S. Crocus Sativus L. (Saffron) in Alzheimer’s disease treatment: Bioactive effects on cognitive impairment. Curr. Neuropharmacol., 2021, 19(9), 1606-1616.
[PMID: 33441068]
[69]
Rubio, J.; Dang, H.; Gong, M.; Liu, X.; Chen, S.; Gonzales, G.F. Aqueous and hydroalcoholic extracts of Black Maca (Lepidium meyenii) improve scopolamine-induced memory impairment in mice. Food Chem. Toxicol., 2007, 45(10), 1882-1890.
[http://dx.doi.org/10.1016/j.fct.2007.04.002] [PMID: 17543435]
[70]
Saxena, V.; Ahmad, H.; Gupta, R. Memory enhancing effects of Ficus carica leaves in hexane extract on interoceptive behavioral models. Asian J. Pharm. Clin. Res., 2013, 6, 109-113.
[71]
Dwivedi, V.; Maurya, H. A comprehensive overview of celastrus paniculatus seed oil intended for the management of human ailments. Indian Journal of Pharmaceutical and Biological Research, 2018, 6(2), 37-42.
[http://dx.doi.org/10.30750/ijpbr.6.2.7]
[72]
Badrul, A.; Ekramul, H. Anti-Alzheimer and antioxidant activity of celastrus paniculatus seed. Indian J. Pharm. Sci., 2011, 7(1), 49-56.
[73]
Sharma, R.; Singla, R.K.; Banerjee, S.; Sinha, B.; Shen, B.; Sharma, R. Role of Shankhpushpi (Convolvulus pluricaulis) in neurological disorders: An umbrella review covering evidence from ethnopharmacology to clinical studies. Neurosci. Biobehav. Rev., 2022, 140, 104795.
[http://dx.doi.org/10.1016/j.neubiorev.2022.104795] [PMID: 35878793]
[74]
Purnima, M.B.; Kothiyal, P. A review article on phytochemistry and pharmacological profiles of Nardostachys jatamansi DC-medicinal herb. J. Pharmacogn. Phytochem., 2015, 3(5), 102-106.
[75]
Gray, N.E.; Zweig, J.A.; Caruso, M.; Zhu, J.Y.; Wright, K.M.; Quinn, J.F.; Soumyanath, A. Centella asiatica attenuates hippocampal mitochondrial dysfunction and improves memory and executive function in β-amyloid overexpressing mice. Mol. Cell. Neurosci., 2018, 93, 1-9.
[http://dx.doi.org/10.1016/j.mcn.2018.09.002] [PMID: 30253196]
[76]
Choi, S.J.; Lee, J.H.; Heo, H.J.; Cho, H.Y.; Kim, H.K.; Kim, C.J.; Kim, M.O.; Suh, S.H.; Shin, D.H. Punica granatum protects against oxidative stress in PC12 cells and oxidative stress-induced Alzheimer’s symptoms in mice. J. Med. Food, 2011, 14(7-8), 695-701.
[77]
Sathya, S.; Amarasinghe, N.R.; Jayasinghe, L.; Araya, H.; Fujimoto, Y. Enzyme inhibitors from the aril of Myristica fragrans. S. Afr. J. Bot., 2020, 130, 172-176.
[http://dx.doi.org/10.1016/j.sajb.2019.12.020]
[78]
Beheshti, S.; Shahmoradi, B. Therapeutic effect of Melissa officinalis in an amyloid-β rat model of Alzheimer’s disease. Journal of Herbmed Pharmacology, 2018, 7(3), 193-199.
[http://dx.doi.org/10.15171/jhp.2018.31]
[79]
Mohammad Sadeghi, H.; Adeli, I.; Mousavi, T.; Daniali, M.; Nikfar, S.; Abdollahi, M. Drug repurposing for the management of depression: Where do we stand currently? Life, 2021, 11(8), 774.
[http://dx.doi.org/10.3390/life11080774] [PMID: 34440518]
[80]
Kandiah, N.; Pai, M.C.; Senanarong, V.; Looi, I.; Ampil, E.; Park, K.W.; Karanam, A.K.; Christopher, S. Rivastigmine: The advantages of dual inhibition of acetylcholinesterase and butyrylcholinesterase and its role in subcortical vascular dementia and Parkinson’s disease dementia. Clin. Interv. Aging, 2017, 12, 697-707.
[http://dx.doi.org/10.2147/CIA.S129145] [PMID: 28458525]
[81]
Johnson, J.; Kotermanski, S. Mechanism of action of memantine. Curr. Opin. Pharmacol., 2006, 6(1), 61-67.
[http://dx.doi.org/10.1016/j.coph.2005.09.007] [PMID: 16368266]
[82]
Breijyeh, Z.; Karaman, R. Comprehensive review on alzheimer’s disease: Causes and treatment. Molecules, 2020, 25(24), 5789.
[http://dx.doi.org/10.3390/molecules25245789] [PMID: 33302541]
[83]
Zhang, K.; Yamaki, V.N.; Wei, Z.; Zheng, Y.; Cai, X. Differential regulation of GluA1 expression by ketamine and memantine. Behav. Brain Res., 2017, 316, 152-159.
[http://dx.doi.org/10.1016/j.bbr.2016.09.002] [PMID: 27599619]
[84]
Kumar, S. Memantine: Pharmacological properties and clinical uses. Neurol. India, 2004, 52(3), 307-309.
[PMID: 15472417]
[85]
Flores-Clemente, C.; Nicolás-Vázquez, M.I.; Mera Jiménez, E.; Hernández-Rodríguez, M. Inhibition of astrocytic histamine n-methyltransferase as a possible target for the treatment of alzheimer’s disease. Biomolecules, 2021, 11(10), 1408.
[http://dx.doi.org/10.3390/biom11101408] [PMID: 34680041]
[86]
Colović, M.B.; Krstić, D.Z.; Lazarević,-Pašti, T.D.; Bondžić, A.M.; Vasić, V.M. Acetylcholinesterase inhibitors: Pharmacology and toxicology. Curr. Neuropharmacol., 2013, 11(3), 315-335.
[http://dx.doi.org/10.2174/1570159X11311030006] [PMID: 24179466]
[87]
Bohnen, N.I.; Kaufer, D.I.; Hendrickson, R.; Ivanco, L.S.; Lopresti, B.J.; Koeppe, R.A.; Meltzer, C.C.; Constantine, G.; Davis, J.G.; Mathis, C.A.; Dekosky, S.T.; Moore, R.Y. Degree of inhibition of cortical acetylcholinesterase activity and cognitive effects by donepezil treatment in Alzheimer’s disease. J. Neurol. Neurosurg. Psychiatry, 2005, 76(3), 315-319.
[http://dx.doi.org/10.1136/jnnp.2004.038729] [PMID: 15716518]
[88]
Homma, A.; Atarashi, H.; Kubota, N.; Nakai, K.; Takase, T. Efficacy and safety of sustained release donepezil high dose versus immediate release donepezil standard dose in japanese patients with severe alzheimer’s disease: A randomized, double-blind trial. J. Alzheimers Dis., 2016, 52(1), 345-357.
[http://dx.doi.org/10.3233/JAD-151149] [PMID: 26967222]
[89]
Bajpai, S.; Tripathi, M.; Pandey, R.M.; Dey, A.B.; Nehra, A. Development and validation of cognitive training intervention for alzheimer’s disease (cti-ad): A picture-based interventional program. Dementia, 2020, 19(4), 1203-1219.
[http://dx.doi.org/10.1177/1471301218797043] [PMID: 30180764]
[90]
Nousia, A.; Siokas, V.; Aretouli, E.; Messinis, L.; Aloizou, A.M.; Martzoukou, M.; Karala, M.; Koumpoulis, C.; Nasios, G.; Dardiotis, E. Beneficial effect of multidomain cognitive training on the neuropsychological performance of patients with early-stage alzheimer’s disease. Neural Plast., 2018, 2018, 1-9.
[http://dx.doi.org/10.1155/2018/2845176] [PMID: 30123243]
[91]
Clements-Cortes, A.; Ahonen, H.; Evans, M.; Freedman, M.; Bartel, L. Short-term effects of rhythmic sensory stimulation in alzheimer’s disease: An exploratory pilot study. J. Alzheimers Dis., 2016, 52(2), 651-660.
[http://dx.doi.org/10.3233/JAD-160081] [PMID: 27031491]
[92]
Clare, L.; Wilson, B.A.; Carter, G.; Roth, I.; Hodges, J.R. Relearning face-name associations in early Alzheimer’s disease. Neuropsychology, 2002, 16(4), 538-547.
[http://dx.doi.org/10.1037/0894-4105.16.4.538] [PMID: 12382992]
[93]
Burns, J.M.; Cronk, B.B.; Anderson, H.S.; Donnelly, J.E.; Thomas, G.P.; Harsha, A.; Brooks, W.M.; Swerdlow, R.H. Cardiorespiratory fitness and brain atrophy in early Alzheimer disease. Neurology, 2008, 71(3), 210-216.
[http://dx.doi.org/10.1212/01.wnl.0000317094.86209.cb] [PMID: 18625967]
[94]
Bahar-Fuchs, A.; Clare, L.; Woods, B. Cognitive training and cognitive rehabilitation for mild to moderate Alzheimer’s disease and vascular dementia. Cochrane Libr., 2013, 2013(6), CD003260.
[http://dx.doi.org/10.1002/14651858.CD003260.pub2] [PMID: 23740535]
[95]
Erickson, K.I.; Voss, M.W.; Prakash, R.S.; Basak, C.; Szabo, A.; Chaddock, L.; Kim, J.S.; Heo, S.; Alves, H.; White, S.M.; Wojcicki, T.R.; Mailey, E.; Vieira, V.J.; Martin, S.A.; Pence, B.D.; Woods, J.A.; McAuley, E.; Kramer, A.F. Exercise training increases size of hippocampus and improves memory. Proc. Natl. Acad. Sci., 2011, 108(7), 3017-3022.
[http://dx.doi.org/10.1073/pnas.1015950108] [PMID: 21282661]
[96]
Liu, P.Z.; Nusslock, R. Exercise-Mediated Neurogenesis in the Hippocampus via BDNF. Front. Neurosci., 2018, 12, 52.
[http://dx.doi.org/10.3389/fnins.2018.00052] [PMID: 29467613]
[97]
Noreik, M.; Kuhn, J.; Hardenacke, K.; Lenartz, D.; Bauer, A.; Bührle, C.P.; Häussermann, P.; Hellmich, M.; Klosterkötter, J.; Wiltfang, J.; Maarouf, M.; Freund, H.J.; Visser-Vandewalle, V.; Sturm, V.; Schulz, R.J. Changes in nutritional status after deep brain stimulation of the nucleus basalis of Meynert in Alzheimer’s disease — Results of a phase I study. J. Nutr. Health Aging, 2015, 19(8), 812-818.
[http://dx.doi.org/10.1007/s12603-015-0595-8] [PMID: 26412285]
[98]
Stagg, C.J.; Nitsche, M.A. Physiological basis of transcranial direct current stimulation. Neuroscientist, 2011, 17(1), 37-53.
[http://dx.doi.org/10.1177/1073858410386614] [PMID: 21343407]
[99]
Bauer, P.R.; Kalitzin, S.; Zijlmans, M.; Sander, J.W.; Visser, G.H. Cortical excitability as a potential clinical marker of epilepsy: A review of the clinical application of transcranial magnetic stimulation. Int. J. Neural Syst., 2014, 24(2), 1430001.
[http://dx.doi.org/10.1142/S0129065714300010] [PMID: 24475894]
[100]
Legon, W.; Ai, L.; Bansal, P.; Mueller, J.K. Neuromodulation with single-element transcranial focused ultrasound in human thalamus. Hum. Brain Mapp., 2018, 39(5), 1995-2006.
[http://dx.doi.org/10.1002/hbm.23981] [PMID: 29380485]
[101]
Huang, Y.Z.; Edwards, M.J.; Rounis, E.; Bhatia, K.P.; Rothwell, J.C. Theta burst stimulation of the human motor cortex. Neuron, 2005, 45(2), 201-206.
[http://dx.doi.org/10.1016/j.neuron.2004.12.033] [PMID: 15664172]
[102]
Soininen, H.; Solomon, A.; Visser, P.J.; Hendrix, S.B.; Blennow, K.; Kivipelto, M.; Hartmann, T.; Hallikainen, I.; Hallikainen, M.; Helisalmi, S.; Lappalainen, T.; Liu, Y.; Paajanen, T.; Wahlund, L-O.; Freund-Levi, Y.; Andreasen, N.; Hagman, G.; Lindblom, S.; Fassbender, K.; Riemenschneider, M.; Grimm, M.O.W.; Klees-Rollmann, A.; Luley, M.; Lyros, E.; Schomburg, R.; Kennel, J.; Ramelli, D.; Frölich, L.; Hausner, L.; Laske, C.; Leyhe, T.; Mychajliw, C.; Koehler, N.; Schiekofer, S.; Klünemann, H.; Schröder, J.; Lütjohann, D.; Scheltens, P.; van Rossum, I.; Scheltens, N.; Bertens, D.; ten Kate, M.; Barkhof, F.; Henselmans, J.M.L.; Roks, G.; van Hees, A.M.J.; Ellison, N. 24-month intervention with a specific multinutrient in people with prodromal Alzheimer’s disease (LipiDiDiet): A randomised, double-blind, controlled trial. Lancet Neurol., 2017, 16(12), 965-975.
[http://dx.doi.org/10.1016/S1474-4422(17)30332-0] [PMID: 29097166]
[103]
Suzuki, H.; Yamashiro, D.; Ogawa, S.; Kobayashi, M.; Cho, D.; Iizuka, A.; Tsukamoto-Yasui, M.; Takada, M.; Isokawa, M.; Nagao, K.; Fujiwara, Y. Intake of seven essential amino acids improves cognitive function and psychological and social function in middle-aged and older adults: A double-blind, randomized, placebo-controlled trial. Front. Nutr., 2020, 7, 586166.
[http://dx.doi.org/10.3389/fnut.2020.586166] [PMID: 33324669]
[104]
Yulug, B.; Altay, O.; Li, X.; Hanoglu, L.; Cankaya, S.; Lam, S.; Velioglu, H.A.; Yang, H.; Coskun, E.; Idil, E.; Nogaylar, R.; Ozsimsek, A.; Bayram, C.; Bolat, I.; Oner, S.; Tozlu, O.O.; Arslan, M.E.; Hacimuftuoglu, A.; Yildirim, S.; Arif, M.; Shoaie, S.; Zhang, C.; Nielsen, J.; Turkez, H.; Borén, J.; Uhlén, M.; Mardinoglu, A. Combined metabolic activators improve cognitive functions in Alzheimer’s disease patients: A randomised, double-blinded, placebo-controlled phase-II trial. Transl. Neurodegener., 2023, 12(1), 4.
[http://dx.doi.org/10.1186/s40035-023-00336-2] [PMID: 36703196]
[105]
Schmitt, B.; Bernhardt, T.; Moeller, H.J.; Heuser, I.; Frölich, L. Combination therapy in Alzheimer’s disease: A review of current evidence. CNS Drugs, 2004, 18(13), 827-844.
[http://dx.doi.org/10.2165/00023210-200418130-00001] [PMID: 15521788]
[106]
Weiner, M.W.; Sadowsky, C.; Saxton, J.; Hofbauer, R.K.; Graham, S.M.; Yu, S.Y.; Li, S.; Hsu, H.A.; Suhy, J.; Fridman, M.; Perhach, J.L. Magnetic resonance imaging and neuropsychological results from a trial of memantine in Alzheimer’s disease. Alzheimers Dement., 2011, 7(4), 425-435.
[http://dx.doi.org/10.1016/j.jalz.2010.09.003] [PMID: 21646051]
[107]
Choi, S.H.; Park, K.W.; Na, D.L.; Han, H.J.; Kim, E.J.; Shim, Y.S.; Lee, J.H. Tolerability and efficacy of memantine add-on therapy to rivastigmine transdermal patches in mild to moderate Alzheimer’s disease: a multicenter, randomized, open-label, parallel-group study. Curr. Med. Res. Opin., 2011, 27(7), 1375-1383.
[http://dx.doi.org/10.1185/03007995.2011.582484] [PMID: 21561398]
[108]
Farlow, M.R.; Alva, G.; Meng, X.; Olin, J.T. A 25-week, open-label trial investigating rivastigmine transdermal patches with concomitant memantine in mild-to-moderate Alzheimer’s disease: a post hoc analysis. Curr. Med. Res. Opin., 2010, 26(2), 263-269.
[http://dx.doi.org/10.1185/03007990903434914] [PMID: 19929593]
[109]
Lopez, O.L.; Becker, J.T.; Wahed, A.S.; Saxton, J.; Sweet, R.A.; Wolk, D.A.; Klunk, W.; DeKosky, S.T. Long-term effects of the concomitant use of memantine with cholinesterase inhibition in Alzheimer disease. J. Neurol. Neurosurg. Psychiatry, 2009, 80(6), 600-607.
[http://dx.doi.org/10.1136/jnnp.2008.158964] [PMID: 19204022]
[110]
Riepe, M.W.; Adler, G.; Ibach, B.; Weinkauf, B.; Tracik, F.; Gunay, I. Domain-specific improvement of cognition on memantine in patients with Alzheimer’s disease treated with rivastigmine. Dement. Geriatr. Cogn. Disord., 2007, 23(5), 301-306.
[http://dx.doi.org/10.1159/000100875] [PMID: 17356273]
[111]
Thomas, S.J.; Grossberg, G.T. Memantine: A review of studies into its safety and efficacy in treating Alzheimer’s disease and other dementias. Clin. Interv. Aging, 2009, 4, 367-377.
[PMID: 19851512]
[112]
Porsteinsson, A.; Grossberg, G.; Mintzer, J.; Olin, J. Memantine treatment in patients with mild to moderate Alzheimer’s disease already receiving a cholinesterase inhibitor: a randomized, double-blind, placebo-controlled trial. Curr. Alzheimer Res., 2008, 5(1), 83-89.
[http://dx.doi.org/10.2174/156720508783884576] [PMID: 18288936]
[113]
Schmitt, F.A.; van Dyck, C.H.; Wichems, C.H.; Olin, J.T. Cognitive response to memantine in moderate to severe Alzheimer disease patients already receiving donepezil: an exploratory reanalysis. Alzheimer Dis. Assoc. Disord., 2006, 20(4), 255-262.
[http://dx.doi.org/10.1097/01.wad.0000213860.35355.d4] [PMID: 17132970]
[114]
Atri, A.; Shaughnessy, L.W.; Locascio, J.J.; Growdon, J.H. Long-term course and effectiveness of combination therapy in Alzheimer disease. Alzheimer Dis. Assoc. Disord., 2008, 22(3), 209-221.
[http://dx.doi.org/10.1097/WAD.0b013e31816653bc] [PMID: 18580597]
[115]
Dantoine, T.; Auriacombe, S.; Sarazin, M.; Becker, H.; Pere, J-J.; Bourdeix, I. Rivastigmine monotherapy and combination therapy with memantine in patients with moderately severe Alzheimer’s disease who failed to benefit from previous cholinesterase inhibitor treatment. Int. J. Clin. Pract., 2006, 60(1), 110-118.
[http://dx.doi.org/10.1111/j.1368-5031.2005.00769.x] [PMID: 16409439]
[116]
Takada-Takatori, Y.; Kume, T.; Sugimoto, M.; Katsuki, H.; Sugimoto, H.; Akaike, A. Acetylcholinesterase inhibitors used in treatment of Alzheimer’s disease prevent glutamate neurotoxicity via nicotinic acetylcholine receptors and phosphatidylinositol 3-kinase cascade. Neuropharmacology, 2006, 51(3), 474-486.
[http://dx.doi.org/10.1016/j.neuropharm.2006.04.007] [PMID: 16762377]
[117]
Serrano-Pozo, A.; William, C.M.; Ferrer, I.; Uro-Coste, E.; Delisle, M.B.; Maurage, C.A.; Hock, C.; Nitsch, R.M.; Masliah, E.; Growdon, J.H.; Frosch, M.P.; Hyman, B.T. Beneficial effect of human anti-amyloid-β active immunization on neurite morphology and tau pathology. Brain, 2010, 133(5), 1312-1327.
[http://dx.doi.org/10.1093/brain/awq056] [PMID: 20360050]
[118]
Peña-Altamira, E.; Prati, F.; Massenzio, F.; Virgili, M.; Contestabile, A.; Bolognesi, M.L.; Monti, B. Changing paradigm to target microglia in neurodegenerative diseases: From anti-inflammatory strategy to active immunomodulation. Expert Opin. Ther. Targets, 2016, 20(5), 627-640.
[http://dx.doi.org/10.1517/14728222.2016.1121237] [PMID: 26568363]
[119]
Bar-Am, O.; Weinreb, O.; Amit, T.; Youdim, M.B.H. The novel cholinesterase-monoamine oxidase inhibitor and antioxidant, ladostigil, confers neuroprotection in neuroblastoma cells and aged rats. J. Mol. Neurosci., 2009, 37(2), 135-145.
[http://dx.doi.org/10.1007/s12031-008-9139-6] [PMID: 18751929]
[120]
Lannfelt, L.; Blennow, K.; Zetterberg, H.; Batsman, S.; Ames, D.; Harrison, J.; Masters, C.L.; Targum, S.; Bush, A.I.; Murdoch, R.; Wilson, J.; Ritchie, C.W. Safety, efficacy, and biomarker findings of PBT2 in targeting Aβ as a modifying therapy for Alzheimer’s disease: a phase IIa, double-blind, randomised, placebo-controlled trial. Lancet Neurol., 2008, 7(9), 779-786.
[http://dx.doi.org/10.1016/S1474-4422(08)70167-4] [PMID: 18672400]
[121]
Mohs, R.C.; Shiovitz, T.M.; Tariot, P.N.; Porsteinsson, A.P.; Baker, K.D.; Feldman, P.D. Atomoxetine augmentation of cholinesterase inhibitor therapy in patients with Alzheimer disease: 6-month, randomized, double-blind, placebo-controlled, parallel-trial study. Am. J. Geriatr. Psychiatry, 2009, 17(9), 752-759.
[http://dx.doi.org/10.1097/JGP.0b013e3181aad585] [PMID: 19700948]
[122]
Alvarez, X.A.; Cacabelos, R.; Sampedro, C.; Couceiro, V.; Aleixandre, M.; Vargas, M.; Linares, C.; Granizo, E.; García-Fantini, M.; Baurecht, W.; Doppler, E.; Moessler, H. Combination treatment in Alzheimer’s disease: results of a randomized, controlled trial with cerebrolysin and donepezil. Curr. Alzheimer Res., 2011, 8(5), 583-591.
[http://dx.doi.org/10.2174/156720511796391863] [PMID: 21679156]
[123]
Uddin, MS Kabir, MT Oxidative stress in Alzheimer's disease: molecular hallmarks of underlying vulnerability. Biological, Diagnostic and Therapeutic Advances in Alzheimer's Disease: Nonpharmacological Therapies for Alzheimer's Disease, 2019, 91-115.
[http://dx.doi.org/10.1007/978-981-13-9636-6_5]
[124]
Sano, M.; Ernesto, C.; Thomas, R.G.; Klauber, M.R.; Schafer, K.; Grundman, M.; Woodbury, P.; Growdon, J.; Cotman, C.W.; Pfeiffer, E.; Schneider, L.S.; Thal, L.J. A controlled trial of selegiline, alpha-tocopherol, or both as treatment for Alzheimer’s disease. The Alzheimer’s Disease Cooperative Study. N. Engl. J. Med., 1997, 336(17), 1216-1222.
[http://dx.doi.org/10.1056/NEJM199704243361704] [PMID: 9110909]
[125]
Aisen, P.S.; Schneider, L.S.; Sano, M.; Diaz-Arrastia, R.; van Dyck, C.H.; Weiner, M.F.; Bottiglieri, T.; Jin, S.; Stokes, K.T.; Thomas, R.G.; Thal, L.J. High-dose B vitamin supplementation and cognitive decline in Alzheimer disease: A randomized controlled trial. JAMA, 2008, 300(15), 1774-1783.
[http://dx.doi.org/10.1001/jama.300.15.1774] [PMID: 18854539]
[126]
Freund-Levi, Y.; Eriksdotter-Jönhagen, M.; Cederholm, T.; Basun, H.; Faxén-Irving, G.; Garlind, A.; Vedin, I.; Vessby, B.; Wahlund, L.O.; Palmblad, J. Omega-3 fatty acid treatment in 174 patients with mild to moderate Alzheimer disease: OmegAD study: a randomized double-blind trial. Arch. Neurol., 2006, 63(10), 1402-1408.
[http://dx.doi.org/10.1001/archneur.63.10.1402] [PMID: 17030655]
[127]
Moore, A.H.; Bigbee, M.J.; Boynton, G.E.; Wakeham, C.M.; Rosenheim, H.M.; Staral, C.J.; Morrissey, J.L.; Hund, A.K. Non-Steroidal anti-inflammatory drugs in alzheimer’s disease and parkinson’s disease: Reconsidering the role of neuroinflammation. Pharmaceuticals, 2010, 3(6), 1812-1841.
[http://dx.doi.org/10.3390/ph3061812] [PMID: 27713331]
[128]
Pasqualetti, P.; Bonomini, C.; Dal Forno, G.; Paulon, L.; Sinforiani, E.; Marra, C.; Zanetti, O.; Maria Rossini, P. A randomized controlled study on effects of ibuprofen on cognitive progression of Alzheimer’s disease. Aging Clin. Exp. Res., 2009, 21(2), 102-110.
[http://dx.doi.org/10.1007/BF03325217] [PMID: 19448381]
[129]
Soininen, H.; West, C.; Robbins, J.; Niculescu, L. Long-term efficacy and safety of celecoxib in Alzheimer’s disease. Dement. Geriatr. Cogn. Disord., 2007, 23(1), 8-21.
[http://dx.doi.org/10.1159/000096588] [PMID: 17068392]
[130]
Aisen, P.S.; Schafer, K.A.; Grundman, M.; Pfeiffer, E.; Sano, M.; Davis, K.L.; Farlow, M.R.; Jin, S.; Thomas, R.G.; Thal, L.J. Effects of rofecoxib or naproxen vs placebo on Alzheimer disease progression: A randomized controlled trial. JAMA, 2003, 289(21), 2819-2826.
[http://dx.doi.org/10.1001/jama.289.21.2819] [PMID: 12783912]
[131]
Zhong, K.L.; Chen, F.; Hong, H.; Ke, X.; Lv, Y.G.; Tang, S.S.; Zhu, Y.B. New views and possibilities of antidiabetic drugs in treating and/or preventing mild cognitive impairment and Alzheimer’s Disease. Metab. Brain Dis., 2018, 33(4), 1009-1018.
[http://dx.doi.org/10.1007/s11011-018-0227-1] [PMID: 29626315]
[132]
Plastino, M.; Fava, A.; Pirritano, D.; Cotronei, P.; Sacco, N.; Sperlì, T.; Spanò, A.; Gallo, D.; Mungari, P.; Consoli, D.; Bosco, D. Effects of insulinic therapy on cognitive impairment in patients with Alzheimer disease and Diabetes Mellitus type-2. J. Neurol. Sci., 2010, 288(1-2), 112-116.
[http://dx.doi.org/10.1016/j.jns.2009.09.022] [PMID: 19836029]
[133]
Patel, L.; Grossberg, G.T. Combination therapy for Alzheimer’s disease. Drugs Aging, 2011, 28(7), 539-546.
[http://dx.doi.org/10.2165/11591860-000000000-00000] [PMID: 21721598]
[134]
Kabir, M.T.; Uddin, M.S.; Mamun, A.A.; Jeandet, P.; Aleya, L.; Mansouri, R.A.; Ashraf, G.M.; Mathew, B.; Bin-Jumah, M.N.; Abdel-Daim, M.M. Combination Drug Therapy for the Management of Alzheimer’s Disease. Int. J. Mol. Sci., 2020, 21(9), 3272.
[http://dx.doi.org/10.3390/ijms21093272] [PMID: 32380758]
[135]
Rajesh, R; Pallavi, J; Padmapriya, M; Deena, J.T Evidence for using dextromethorphan-quinidine for the treatment of agitation in dementia. WJP world. Journal of. Psychiatry, 2020, 10(4), 29-33.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy