Research Article

AMPK的药理激活阻止drp1介导的线粒体分裂并减轻肝脂肪变性

卷 24, 期 12, 2024

发表于: 17 January, 2024

页: [1506 - 1517] 页: 12

弟呕挨: 10.2174/0115665240275594231229121030

价格: $65

摘要

背景:非酒精性脂肪性肝病(NAFLD)的发病率在全球范围内呈上升趋势。腺苷单磷酸活化蛋白激酶(AMPK)的激活有利于NAFLD的治疗。最近的研究表明,在NAFLD的进展过程中线粒体的过度裂变,因此靶向线粒体动力学可能是NAFLD的可能靶点。然而,关于AMPK是否调节肝纤维化中的线粒体动力学,我们知之甚少。 目的:本研究探讨AMPK激活是否通过调节GTPase动力蛋白相关蛋白1 (Drp1)介导的线粒体动力学来缓解肝脂肪变性。 方法:培养人肝细胞系L-02细胞,经棕榈酸(PA)处理24 h,建立体外肝脂肪变性模型,并用不同的工具药物预处理。检测肝细胞功能、肝细胞脂质含量、线粒体活性氧(ROS)生成和线粒体膜电位(MMP)。利用逆转录-定量PCR和western blotting检测与线粒体动力学相关的基因和蛋白的表达水平。 结果:结果表明,AMPK激活剂5-氨基咪唑-4-carboxamide 1-β- d -核糖呋喃苷(AICAR)可通过降低谷丙转氨酶(ALT)和天冬氨酸转氨酶(AST)活性来改善肝细胞功能(P<0.05或P<0.01)。此外,AICAR降低了肝细胞总胆固醇(TC)和甘油三酯(TG)含量和脂质沉积(P<0.01);活性氧生成减少;MMP改善(P<0.01);裂变-1 (Fis1)和线粒体裂变因子(Mff) mRNA表达减少;p-Drp1 (Ser 616)蛋白表达下调。相反,AICAR增加了线粒体融合因子mitofusin-1 (Mfn1)和mitofusin-2 (Mfn2) mRNA的表达,上调了p-Drp1 (Ser 637)蛋白的表达。使用Drp-1抑制剂Mdivi-1来证实线粒体动力学是否受drp1介导的AICAR的调节。与AICAR类似,mdii -1显著改善肝细胞功能和MMP,降低ROS生成和脂质沉积,下调Fis1和Mff mRNA表达,下调p-Drp1 (Ser 616)蛋白表达,增强Mfn1和Mfn2 mRNA和p-Drp1 (Ser 637)蛋白表达。而ampk特异性抑制剂化合物C对Mdivi-1的保护作用影响较小。 结论:结果表明,AMPK激活在体外对肝脂肪变性具有保护作用,主要依赖于抑制drp1介导的线粒体裂变。

关键词: 肝脂肪变性,AMPK,线粒体动力学,ROS, MMP, L-02细胞。

[1]
Powell EE, Wong VWS, Rinella M. Non-alcoholic fatty liver disease. Lancet 2021; 397(10290): 2212-24.
[http://dx.doi.org/10.1016/S0140-6736(20)32511-3] [PMID: 33894145]
[2]
Friedman SL, Neuschwander-Tetri BA, Rinella M, Sanyal AJ. Mechanisms of NAFLD development and therapeutic strategies. Nat Med 2018; 24(7): 908-22.
[http://dx.doi.org/10.1038/s41591-018-0104-9] [PMID: 29967350]
[3]
Liu D, Zhang P, Zhou J, et al. TNFAIP3 interacting protein 3 overexpression suppresses nonalcoholic steatohepatitis by blocking TAK1 activation. Cell Metab 2020; 31(4): 726-740.e8.
[http://dx.doi.org/10.1016/j.cmet.2020.03.007] [PMID: 32268115]
[4]
Cohen JC, Horton JD, Hobbs HH. Human fatty liver disease: Old questions and new insights. Science 2011; 332(6037): 1519-23.
[http://dx.doi.org/10.1126/science.1204265] [PMID: 21700865]
[5]
Byrne CD, Targher G. NAFLD: A multisystem disease. J Hepatol 2015; 62(1) (Suppl.): S47-64.
[http://dx.doi.org/10.1016/j.jhep.2014.12.012] [PMID: 25920090]
[6]
Browning JD, Horton JD. Molecular mediators of hepatic steatosis and liver injury. J Clin Invest 2004; 114(2): 147-52.
[http://dx.doi.org/10.1172/JCI200422422] [PMID: 15254578]
[7]
Cobbina E, Akhlaghi F. Non-alcoholic fatty liver disease (NAFLD) – pathogenesis, classification, and effect on drug metabolizing enzymes and transporters. Drug Metab Rev 2017; 49(2): 197-211.
[http://dx.doi.org/10.1080/03602532.2017.1293683] [PMID: 28303724]
[8]
Nassir F. NAFLD: Mechanisms, treatments, and biomarkers. Biomolecules 2022; 12(6): 824.
[http://dx.doi.org/10.3390/biom12060824] [PMID: 35740949]
[9]
Picard M, Shirihai OS. Mitochondrial signal transduction. Cell Metab 2022; 34(11): 1620-53.
[http://dx.doi.org/10.1016/j.cmet.2022.10.008] [PMID: 36323233]
[10]
Giacomello M, Pyakurel A, Glytsou C, Scorrano L. The cell biology of mitochondrial membrane dynamics. Nat Rev Mol Cell Biol 2020; 21(4): 204-24.
[http://dx.doi.org/10.1038/s41580-020-0210-7] [PMID: 32071438]
[11]
Ramanathan R, Ali AH, Ibdah JA. Mitochondrial dysfunction plays central role in nonalcoholic fatty liver disease. Int J Mol Sci 2022; 23(13): 7280.
[http://dx.doi.org/10.3390/ijms23137280] [PMID: 35806284]
[12]
Yu LP, Li YJ, Wang T, et al. In vivo recognition of bioactive substances of Polygonum multiflorum for regulating mitochondria against metabolic dysfunction-associated fatty liver disease. World J Gastroenterol 2023; 29(1): 171-89.
[http://dx.doi.org/10.3748/wjg.v29.i1.171] [PMID: 36683716]
[13]
Di Ciaula A, Passarella S, Shanmugam H, et al. Nonalcoholic fatty liver disease (NAFLD). Mitochondria as players and targets of therapies? Int J Mol Sci 2021; 22(10): 5375.
[http://dx.doi.org/10.3390/ijms22105375] [PMID: 34065331]
[14]
Yu R, Liu T, Ning C, et al. The phosphorylation status of Ser-637 in dynamin-related protein 1 (Drp1) does not determine Drp1 recruitment to mitochondria. J Biol Chem 2019; 294(46): 17262-77.
[http://dx.doi.org/10.1074/jbc.RA119.008202] [PMID: 31533986]
[15]
Zhao J, Lendahl U, Nistér M. Regulation of mitochondrial dynamics: Convergences and divergences between yeast and vertebrates. Cell Mol Life Sci 2013; 70(6): 951-76.
[http://dx.doi.org/10.1007/s00018-012-1066-6] [PMID: 22806564]
[16]
Westermann B. Mitochondrial fusion and fission in cell life and death. Nat Rev Mol Cell Biol 2010; 11(12): 872-84.
[http://dx.doi.org/10.1038/nrm3013] [PMID: 21102612]
[17]
Venediktova N, Solomadin I, Starinets V. Effect of thyroxine on the structural and dynamic features of cardiac mitochondria and mitophagy in rats. Cells 2023; 12(3): 396.
[http://dx.doi.org/10.3390/cells12030396] [PMID: 36766738]
[18]
Chan DC. Mitochondrial dynamics and its involvement in disease. Annu Rev Pathol 2020; 15(1): 235-59.
[http://dx.doi.org/10.1146/annurev-pathmechdis-012419-032711] [PMID: 31585519]
[19]
Wang J, Yang Y, Sun F, et al. ALKBH5 attenuates mitochondrial fission and ameliorates liver fibrosis by reducing Drp1 methylation. Pharmacol Res 2023; 187: 106608.
[http://dx.doi.org/10.1016/j.phrs.2022.106608] [PMID: 36566000]
[20]
Losón OC, Song Z, Chen H, Chan DC. Fis1, Mff, MiD49, and MiD51 mediate Drp1 recruitment in mitochondrial fission. Mol Biol Cell 2013; 24(5): 659-67.
[http://dx.doi.org/10.1091/mbc.e12-10-0721] [PMID: 23283981]
[21]
Wang M, Wei R, Li G, et al. SUMOylation of SYNJ2BP-COX16 promotes breast cancer progression through DRP1-mediated mitochondrial fission. Cancer Lett 2022; 547: 215871.
[http://dx.doi.org/10.1016/j.canlet.2022.215871] [PMID: 35998797]
[22]
Xie L, Shi F, Li Y, et al. Drp1-dependent remodeling of mitochondrial morphology triggered by EBV-LMP1 increases cisplatin resistance. Signal Transduct Target Ther 2020; 5(1): 56.
[http://dx.doi.org/10.1038/s41392-020-0151-9] [PMID: 32433544]
[23]
Huang Q, Chen H, Yin K, et al. Formononetin attenuates renal tubular injury and mitochondrial damage in diabetic nephropathy partly via regulating Sirt1/PGC-1α pathway. Front Pharmacol 2022; 13: 901234.
[http://dx.doi.org/10.3389/fphar.2022.901234] [PMID: 35645821]
[24]
Pagliuso A, Cossart P, Stavru F. The ever-growing complexity of the mitochondrial fission machinery. Cell Mol Life Sci 2018; 75(3): 355-74.
[http://dx.doi.org/10.1007/s00018-017-2603-0] [PMID: 28779209]
[25]
Liesa M, Palacín M, Zorzano A. Mitochondrial dynamics in mammalian health and disease. Physiol Rev 2009; 89(3): 799-845.
[http://dx.doi.org/10.1152/physrev.00030.2008] [PMID: 19584314]
[26]
Bae S, Lee YH, Lee J, Park J, Jun W. Salvia plebeia R. Br. water extract ameliorates hepatic steatosis in a non-alcoholic fatty liver disease model by regulating the AMPK pathway. Nutrients 2022; 14(24): 5379.
[http://dx.doi.org/10.3390/nu14245379] [PMID: 36558538]
[27]
Hardie DG. AMP-activated protein kinase-an energy sensor that regulates all aspects of cell function. Genes Dev 2011; 25(18): 1895-908.
[http://dx.doi.org/10.1101/gad.17420111] [PMID: 21937710]
[28]
Foretz M, Even P, Viollet B. AMPK activation reduces hepatic lipid content by increasing fat oxidation in vivo. Int J Mol Sci 2018; 19(9): 2826.
[http://dx.doi.org/10.3390/ijms19092826] [PMID: 30235785]
[29]
Mottillo EP, Desjardins EM, Crane JD, et al. Lack of adipocyte AMPK exacerbates insulin resistance and hepatic steatosis through brown and beige adipose tissue function. Cell Metab 2016; 24(1): 118-29.
[http://dx.doi.org/10.1016/j.cmet.2016.06.006] [PMID: 27411013]
[30]
Smith BK, Marcinko K, Desjardins EM, Lally JS, Ford RJ, Steinberg GR. Treatment of nonalcoholic fatty liver disease: Role of AMPK. Am J Physiol Endocrinol Metab 2016; 311(4): E730-40.
[http://dx.doi.org/10.1152/ajpendo.00225.2016] [PMID: 27577854]
[31]
Kim SH, Yun C, Kwon D, Lee YH, Kwak JH, Jung YS. Effect of isoquercitrin on free fatty acid-induced lipid accumulation in HepG2 cells. Molecules 2023; 28(3): 1476.
[http://dx.doi.org/10.3390/molecules28031476] [PMID: 36771140]
[32]
Huang R, Guo F, Li Y, et al. Activation of AMPK by triptolide alleviates nonalcoholic fatty liver disease by improving hepatic lipid metabolism, inflammation and fibrosis. Phytomedicine 2021; 92: 153739.
[http://dx.doi.org/10.1016/j.phymed.2021.153739] [PMID: 34592488]
[33]
Han H, Xue T, Li J, et al. Plant sterol ester of α-linolenic acid improved non-alcoholic fatty liver disease by attenuating endoplasmic reticulum stress-triggered apoptosis via activation of the AMPK. J Nutr Biochem 2022; 107: 109072.
[http://dx.doi.org/10.1016/j.jnutbio.2022.109072] [PMID: 35660097]
[34]
Dong Z, Zhuang Q, Ye X, et al. Adiponectin inhibits NLRP3 inflammasome activation in nonalcoholic steatohepatitis via AMPK-JNK/ErK1/2-NFκB/ROS signaling pathways. Front Med 2020; 7: 546445.
[http://dx.doi.org/10.3389/fmed.2020.546445] [PMID: 33251225]
[35]
Peng F, Jiang D, Xu W, et al. AMPK/MFF Activation: Role in mitochondrial fission and mitophagy in dry eye. Invest Ophthalmol Vis Sci 2022; 63(12): 18.
[http://dx.doi.org/10.1167/iovs.63.12.18] [PMID: 36374514]
[36]
Lee A, Kondapalli C, Virga DM, et al. Aβ42 oligomers trigger synaptic loss through CAMKK2-AMPK-dependent effectors coordinating mitochondrial fission and mitophagy. Nat Commun 2022; 13(1): 4444.
[http://dx.doi.org/10.1038/s41467-022-32130-5] [PMID: 35915085]
[37]
Du J, Li H, Song J, et al. AMPK activation alleviates myocardial ischemia-reperfusion injury by regulating drp1-mediated mitochondrial dynamics. Front Pharmacol 2022; 13: 862204.
[http://dx.doi.org/10.3389/fphar.2022.862204] [PMID: 35860026]
[38]
Liu J, Yan W, Zhao X, et al. Sirt3 attenuates post-infarction cardiac injury via inhibiting mitochondrial fission and normalization of AMPK-Drp1 pathways. Cell Signal 2019; 53: 1-13.
[http://dx.doi.org/10.1016/j.cellsig.2018.09.009] [PMID: 30219671]
[39]
Zhang P, Wang PX, Zhao LP, et al. The deubiquitinating enzyme TNFAIP3 mediates inactivation of hepatic ASK1 and ameliorates nonalcoholic steatohepatitis. Nat Med 2018; 24(1): 84-94.
[http://dx.doi.org/10.1038/nm.4453] [PMID: 29227477]
[40]
Ji YX, Huang Z, Yang X, et al. The deubiquitinating enzyme cylindromatosis mitigates nonalcoholic steatohepatitis. Nat Med 2018; 24(2): 213-23.
[http://dx.doi.org/10.1038/nm.4461] [PMID: 29291351]
[41]
Mou YL, Zhao R, Lyu SY, Zhang ZY, Zhu MF, Liu Q. Crocetin protects cardiomyocytes against hypoxia/reoxygenation injury by attenuating Drp1-mediated mitochondrial fission via PGC-1α. J Geriatr Cardiol 2023; 20(1): 68-82.
[http://dx.doi.org/10.26599/1671-5411.2023.01.001] [PMID: 36875162]
[42]
Li J, Wang Y, Wang Y, et al. Pharmacological activation of AMPK prevents Drp1-mediated mitochondrial fission and alleviates endoplasmic reticulum stress-associated endothelial dysfunction. J Mol Cell Cardiol 2015; 86: 62-74.
[http://dx.doi.org/10.1016/j.yjmcc.2015.07.010] [PMID: 26196303]
[43]
Song J, Li H, Zhang Y, et al. Effect of Dunaliella salina on myocardial ischemia-reperfusion injury through KEAP1/NRF2 pathway activation and JAK2/STAT3 pathway inhibition. Gene & Protein in Disease 2023; 2(2): 387.
[http://dx.doi.org/10.36922/gpd.387]
[44]
Wang H, Chan PK, Pan SY, et al. ERp57 is up‐regulated in free fatty acids‐induced steatotic L‐02 cells and human nonalcoholic fatty livers. J Cell Biochem 2010; 110(6): 1447-56.
[http://dx.doi.org/10.1002/jcb.22696] [PMID: 20506389]
[45]
Zhou SW, Zhang M, Zhu M. Liraglutide reduces lipid accumulation in steatotic L-02 cells by enhancing autophagy. Mol Med Rep 2014; 10(5): 2351-7.
[http://dx.doi.org/10.3892/mmr.2014.2569] [PMID: 25230688]
[46]
Fang K, Wu F, Chen G, et al. Diosgenin ameliorates palmitic acid-induced lipid accumulation via AMPK/ACC/CPT-1A and SREBP-1c/FAS signaling pathways in LO2 cells. BMC Complement Altern Med 2019; 19(1): 255.
[http://dx.doi.org/10.1186/s12906-019-2671-9] [PMID: 31519174]
[47]
Swapna Sasi US, Sindhu G, Raghu KG. Fructose-palmitate based high calorie induce steatosis in HepG2 cells via mitochondrial dysfunction: An in vitro approach. Toxicol In Vitro 2020; 68: 104952.
[http://dx.doi.org/10.1016/j.tiv.2020.104952] [PMID: 32730863]
[48]
Alnahdi A, John A, Raza H. Augmentation of glucotoxicity, oxidative stress, apoptosis and mitochondrial dysfunction in HepG2 cells by palmitic acid. Nutrients 2019; 11(9): 1979.
[http://dx.doi.org/10.3390/nu11091979] [PMID: 31443411]
[49]
Eynaudi A, Díaz-Castro F, Bórquez JC, Bravo-Sagua R, Parra V, Troncoso R. Differential effects of oleic and palmitic acids on lipid droplet-mitochondria interaction in the hepatic cell line HepG2. Front Nutr 2021; 8: 775382.
[http://dx.doi.org/10.3389/fnut.2021.775382] [PMID: 34869541]
[50]
Rada P, González-Rodríguez Á, García-Monzón C, Valverde ÁM. Understanding lipotoxicity in NAFLD pathogenesis: Is CD36 a key driver? Cell Death Dis 2020; 11(9): 802.
[http://dx.doi.org/10.1038/s41419-020-03003-w] [PMID: 32978374]
[51]
Li M, Xu C, Shi J, et al. Fatty acids promote fatty liver disease via the dysregulation of 3-mercaptopyruvate sulfurtransferase/hydrogen sulfide pathway. Gut 2018; 67(12): 2169-80.
[http://dx.doi.org/10.1136/gutjnl-2017-313778] [PMID: 28877979]
[52]
Li Y, Liu Y, Chen Z, et al. Protopanaxadiol ameliorates NAFLD by regulating hepatocyte lipid metabolism through AMPK/SIRT1 signaling pathway. Biomed Pharmacother 2023; 160: 114319.
[http://dx.doi.org/10.1016/j.biopha.2023.114319] [PMID: 36724639]
[53]
Herzig S, Shaw RJ. AMPK: Guardian of metabolism and mitochondrial homeostasis. Nat Rev Mol Cell Biol 2018; 19(2): 121-35.
[http://dx.doi.org/10.1038/nrm.2017.95] [PMID: 28974774]
[54]
Steinberg GR, Hardie DG. New insights into activation and function of the AMPK. Nat Rev Mol Cell Biol 2023; 24(4): 255-72.
[http://dx.doi.org/10.1038/s41580-022-00547-x] [PMID: 36316383]
[55]
Zhang D, Zhang Y, Wang Z, Lei L. Thymoquinone attenuates hepatic lipid accumulation by inducing autophagy via AMPK/mTOR/ULK1 ‐dependent pathway in nonalcoholic fatty liver disease. Phytother Res 2023; 37(3): 781-97.
[http://dx.doi.org/10.1002/ptr.7662] [PMID: 36479746]
[56]
Mansour SZ, Moustafa EM, Moawed FSM. Modulation of endoplasmic reticulum stress via sulforaphane-mediated AMPK upregulation against nonalcoholic fatty liver disease in rats. Cell Stress Chaperones 2022; 27(5): 499-511.
[http://dx.doi.org/10.1007/s12192-022-01286-w] [PMID: 35779187]
[57]
Garcia D, Hellberg K, Chaix A, et al. Genetic liver-specific AMPK activation protects against diet-induced obesity and NAFLD. Cell Rep 2019; 26(1): 192-208.e6.
[http://dx.doi.org/10.1016/j.celrep.2018.12.036] [PMID: 30605676]
[58]
Vidali S, Aminzadeh S, Lambert B, et al. Mitochondria: The ketogenic diet-A metabolism-based therapy. Int J Biochem Cell Biol 2015; 63: 55-9.
[http://dx.doi.org/10.1016/j.biocel.2015.01.022] [PMID: 25666556]
[59]
He Q, Chen Y, Wang Z, He H, Yu P. Cellular uptake, metabolism and sensing of long-chain fatty acids. Frontiers in Bioscience-Landmark 2023; 28(1): 10.
[http://dx.doi.org/10.31083/j.fbl2801010] [PMID: 36722264]
[60]
Du J, Zhang X, Han J, et al. Pro-Inflammatory CXCR3 impairs mitochondrial function in experimental non-alcoholic steatohepatitis. Theranostics 2017; 7(17): 4192-203.
[http://dx.doi.org/10.7150/thno.21400] [PMID: 29158819]
[61]
Paradies G, Paradies V, Ruggiero FM, Petrosillo G. Oxidative stress, cardiolipin and mitochondrial dysfunction in nonalcoholic fatty liver disease. World J Gastroenterol 2014; 20(39): 14205-18.
[http://dx.doi.org/10.3748/wjg.v20.i39.14205] [PMID: 25339807]
[62]
Tong M, Zablocki D, Sadoshima J. The role of Drp1 in mitophagy and cell death in the heart. J Mol Cell Cardiol 2020; 142: 138-45.
[http://dx.doi.org/10.1016/j.yjmcc.2020.04.015] [PMID: 32302592]
[63]
Wai T, Langer T. Mitochondrial dynamics and metabolic regulation. Trends Endocrinol Metab 2016; 27(2): 105-17.
[http://dx.doi.org/10.1016/j.tem.2015.12.001] [PMID: 26754340]
[64]
Wang Q, Zhang M, Torres G, et al. Metformin suppresses diabetes-accelerated atherosclerosis via the inhibition of drp1-mediated mitochondrial fission. Diabetes 2017; 66(1): 193-205.
[http://dx.doi.org/10.2337/db16-0915] [PMID: 27737949]
[65]
Hu Y, Chen H, Zhang L, et al. The AMPK-MFN2 axis regulates MAM dynamics and autophagy induced by energy stresses. Autophagy 2021; 17(5): 1142-56.
[http://dx.doi.org/10.1080/15548627.2020.1749490] [PMID: 32249716]
[66]
Fullerton MD, Ford RJ, McGregor CP, et al. Salicylate improves macrophage cholesterol homeostasis via activation of Ampk. J Lipid Res 2015; 56(5): 1025-33.
[http://dx.doi.org/10.1194/jlr.M058875] [PMID: 25773887]
[67]
O’Neill HM, Holloway GP, Steinberg GR. AMPK regulation of fatty acid metabolism and mitochondrial biogenesis: Implications for obesity. Mol Cell Endocrinol 2013; 366(2): 135-51.
[http://dx.doi.org/10.1016/j.mce.2012.06.019] [PMID: 22750049]
[68]
Quiles JM, Gustafsson ÅB. The role of mitochondrial fission in cardiovascular health and disease. Nat Rev Cardiol 2022; 19(11): 723-36.
[http://dx.doi.org/10.1038/s41569-022-00703-y] [PMID: 35523864]
[69]
Shi W, Tan C, Liu C, Chen D. Mitochondrial fission mediated by Drp1-Fis1 pathway and neurodegenerative diseases. Rev Neurosci 2023; 34(3): 275-94.
[http://dx.doi.org/10.1515/revneuro-2022-0056] [PMID: 36059131]
[70]
Oettinghaus B, D’Alonzo D, Barbieri E, et al. DRP1-dependent apoptotic mitochondrial fission occurs independently of BAX, BAK and APAF1 to amplify cell death by BID and oxidative stress. Biochim Biophys Acta Bioenerg 2016; 1857(8): 1267-76.
[http://dx.doi.org/10.1016/j.bbabio.2016.03.016] [PMID: 26997499]
[71]
Li J, Chang X, Shang M, et al. The crosstalk between DRP1-dependent mitochondrial fission and oxidative stress triggers hepatocyte apoptosis induced by silver nanoparticles. Nanoscale 2021; 13(28): 12356-69.
[http://dx.doi.org/10.1039/D1NR02153B] [PMID: 34254625]
[72]
Taguchi N, Ishihara N, Jofuku A, Oka T, Mihara K. Mitotic phosphorylation of dynamin-related GTPase Drp1 participates in mitochondrial fission. J Biol Chem 2007; 282(15): 11521-9.
[http://dx.doi.org/10.1074/jbc.M607279200] [PMID: 17301055]
[73]
Liang X, Wang S, Wang L, Ceylan AF, Ren J, Zhang Y. Mitophagy inhibitor liensinine suppresses doxorubicin-induced cardiotoxicity through inhibition of Drp1-mediated maladaptive mitochondrial fission. Pharmacol Res 2020; 157: 104846.
[http://dx.doi.org/10.1016/j.phrs.2020.104846] [PMID: 32339784]
[74]
Gomes LC, Benedetto GD, Scorrano L. During autophagy mitochondria elongate, are spared from degradation and sustain cell viability. Nat Cell Biol 2011; 13(5): 589-98.
[http://dx.doi.org/10.1038/ncb2220] [PMID: 21478857]
[75]
Ding J, Zhang Z, Li S, et al. Mdivi-1 alleviates cardiac fibrosis post myocardial infarction at infarcted border zone, possibly via inhibition of Drp1-Activated mitochondrial fission and oxidative stress. Arch Biochem Biophys 2022; 718: 109147.
[http://dx.doi.org/10.1016/j.abb.2022.109147] [PMID: 35143784]
[76]
Wu P, Li Y, Zhu S, et al. Mdivi-1 alleviates early brain injury after experimental subarachnoid hemorrhage in rats, possibly via inhibition of drp1-activated mitochondrial fission and oxidative stress. Neurochem Res 2017; 42(5): 1449-58.
[http://dx.doi.org/10.1007/s11064-017-2201-4] [PMID: 28210956]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy