Generic placeholder image

Current Molecular Medicine

Editor-in-Chief

ISSN (Print): 1566-5240
ISSN (Online): 1875-5666

Research Article

Pharmacological Activation of AMPK Prevents Drp1-mediated Mitochondrial Fission and Alleviates Hepatic Steatosis In vitro

Author(s): Jingxia Du*, Tingting Wang, Chengyao Xiao, Yibo Dong, Shiyao Zhou and Yujiao Zhu

Volume 24, Issue 12, 2024

Published on: 17 January, 2024

Page: [1506 - 1517] Pages: 12

DOI: 10.2174/0115665240275594231229121030

Price: $65

Abstract

Background: The incidence of non-alcoholic fatty liver disease (NAFLD) is increasing worldwide. Adenosine monophosphate-activated protein kinase (AMPK) activation is beneficial for NAFLD treatment. Recent studies show the excessive fission of mitochondria during NAFLD progression, so targeting mitochondria dynamics may be a possible target for NAFLD. Still, little is known about whether AMPK regulates mitochondrial dynamics in hepar.

Objective: This study investigated whether AMPK activation alleviates hepatic steatosis by regulating mitochondrial dynamics mediated by GTPase dynamin-related protein 1 (Drp1).

Methods: Human hepatocyte line L-02 cells were cultured and subjected to palmitic acid (PA) treatment for 24 h to establish a hepatic steatosis model in vitro, which was pre-treated with different tool drugs. Hepatocyte function, hepatocyte lipid content, mitochondrial reactive oxygen species (ROS) production, and mitochondrial membrane potential (MMP) were examined. The expression levels of genes and proteins associated with mitochondrial dynamics were assessed using reverse transcription-quantitative PCR and western blotting.

Results: The results indicated that 5-Aminoimidazole-4-carboxamide 1-β-D-ribofuranoside (AICAR), an AMPK activator, improved hepatocyte function, as demonstrated by decreased alanine aminotransferase (ALT) and aspartate aminotransferase (AST) activity (P<0.05 or P<0.01). In addition, AICAR decreased total cholesterol (TC) and triglyceride (TG) content and lipid deposition in hepatocytes (P<0.01); decreased ROS production; improved MMP (P<0.01); reduced fission-1 (Fis1) and mitochondrial fission factor (Mff) mRNA expression; and downregulated p-Drp1 (Ser 616) protein expression. In contrast, AICAR increased mitochondrial fusion factor mitofusin-1 (Mfn1) and mitofusin-2 (Mfn2) mRNA expression and upregulated p-Drp1 (Ser 637) protein expression. Mdivi-1, a Drp-1 inhibitor, was used to confirm whether mitochondrial dynamics regulated by Drp1-mediated the role of AICAR. Similar to AICAR, Mdivi-1 improved hepatocyte function and MMP significantly, decreased ROS production and lipid deposition, downregulated Fis1 and Mff mRNA expression, downregulated p-Drp1 (Ser 616) protein expression, and enhanced Mfn1 and Mfn2 mRNA and p-Drp1 (Ser 637) protein expression. However, Compound C, an AMPKspecific inhibitor, had less impact on the protective effect of Mdivi-1.

Conclusion: The results demonstrated that AMPK activation has a protective effect on hepatic steatosis in vitro, largely dependent on the inhibition of Drp1-mediated mitochondrial fission.

Keywords: Hepatic steatosis, AMPK, mitochondrial dynamics, ROS, MMP, L-02 cell.

[1]
Powell EE, Wong VWS, Rinella M. Non-alcoholic fatty liver disease. Lancet 2021; 397(10290): 2212-24.
[http://dx.doi.org/10.1016/S0140-6736(20)32511-3] [PMID: 33894145]
[2]
Friedman SL, Neuschwander-Tetri BA, Rinella M, Sanyal AJ. Mechanisms of NAFLD development and therapeutic strategies. Nat Med 2018; 24(7): 908-22.
[http://dx.doi.org/10.1038/s41591-018-0104-9] [PMID: 29967350]
[3]
Liu D, Zhang P, Zhou J, et al. TNFAIP3 interacting protein 3 overexpression suppresses nonalcoholic steatohepatitis by blocking TAK1 activation. Cell Metab 2020; 31(4): 726-740.e8.
[http://dx.doi.org/10.1016/j.cmet.2020.03.007] [PMID: 32268115]
[4]
Cohen JC, Horton JD, Hobbs HH. Human fatty liver disease: Old questions and new insights. Science 2011; 332(6037): 1519-23.
[http://dx.doi.org/10.1126/science.1204265] [PMID: 21700865]
[5]
Byrne CD, Targher G. NAFLD: A multisystem disease. J Hepatol 2015; 62(1) (Suppl.): S47-64.
[http://dx.doi.org/10.1016/j.jhep.2014.12.012] [PMID: 25920090]
[6]
Browning JD, Horton JD. Molecular mediators of hepatic steatosis and liver injury. J Clin Invest 2004; 114(2): 147-52.
[http://dx.doi.org/10.1172/JCI200422422] [PMID: 15254578]
[7]
Cobbina E, Akhlaghi F. Non-alcoholic fatty liver disease (NAFLD) – pathogenesis, classification, and effect on drug metabolizing enzymes and transporters. Drug Metab Rev 2017; 49(2): 197-211.
[http://dx.doi.org/10.1080/03602532.2017.1293683] [PMID: 28303724]
[8]
Nassir F. NAFLD: Mechanisms, treatments, and biomarkers. Biomolecules 2022; 12(6): 824.
[http://dx.doi.org/10.3390/biom12060824] [PMID: 35740949]
[9]
Picard M, Shirihai OS. Mitochondrial signal transduction. Cell Metab 2022; 34(11): 1620-53.
[http://dx.doi.org/10.1016/j.cmet.2022.10.008] [PMID: 36323233]
[10]
Giacomello M, Pyakurel A, Glytsou C, Scorrano L. The cell biology of mitochondrial membrane dynamics. Nat Rev Mol Cell Biol 2020; 21(4): 204-24.
[http://dx.doi.org/10.1038/s41580-020-0210-7] [PMID: 32071438]
[11]
Ramanathan R, Ali AH, Ibdah JA. Mitochondrial dysfunction plays central role in nonalcoholic fatty liver disease. Int J Mol Sci 2022; 23(13): 7280.
[http://dx.doi.org/10.3390/ijms23137280] [PMID: 35806284]
[12]
Yu LP, Li YJ, Wang T, et al. In vivo recognition of bioactive substances of Polygonum multiflorum for regulating mitochondria against metabolic dysfunction-associated fatty liver disease. World J Gastroenterol 2023; 29(1): 171-89.
[http://dx.doi.org/10.3748/wjg.v29.i1.171] [PMID: 36683716]
[13]
Di Ciaula A, Passarella S, Shanmugam H, et al. Nonalcoholic fatty liver disease (NAFLD). Mitochondria as players and targets of therapies? Int J Mol Sci 2021; 22(10): 5375.
[http://dx.doi.org/10.3390/ijms22105375] [PMID: 34065331]
[14]
Yu R, Liu T, Ning C, et al. The phosphorylation status of Ser-637 in dynamin-related protein 1 (Drp1) does not determine Drp1 recruitment to mitochondria. J Biol Chem 2019; 294(46): 17262-77.
[http://dx.doi.org/10.1074/jbc.RA119.008202] [PMID: 31533986]
[15]
Zhao J, Lendahl U, Nistér M. Regulation of mitochondrial dynamics: Convergences and divergences between yeast and vertebrates. Cell Mol Life Sci 2013; 70(6): 951-76.
[http://dx.doi.org/10.1007/s00018-012-1066-6] [PMID: 22806564]
[16]
Westermann B. Mitochondrial fusion and fission in cell life and death. Nat Rev Mol Cell Biol 2010; 11(12): 872-84.
[http://dx.doi.org/10.1038/nrm3013] [PMID: 21102612]
[17]
Venediktova N, Solomadin I, Starinets V. Effect of thyroxine on the structural and dynamic features of cardiac mitochondria and mitophagy in rats. Cells 2023; 12(3): 396.
[http://dx.doi.org/10.3390/cells12030396] [PMID: 36766738]
[18]
Chan DC. Mitochondrial dynamics and its involvement in disease. Annu Rev Pathol 2020; 15(1): 235-59.
[http://dx.doi.org/10.1146/annurev-pathmechdis-012419-032711] [PMID: 31585519]
[19]
Wang J, Yang Y, Sun F, et al. ALKBH5 attenuates mitochondrial fission and ameliorates liver fibrosis by reducing Drp1 methylation. Pharmacol Res 2023; 187: 106608.
[http://dx.doi.org/10.1016/j.phrs.2022.106608] [PMID: 36566000]
[20]
Losón OC, Song Z, Chen H, Chan DC. Fis1, Mff, MiD49, and MiD51 mediate Drp1 recruitment in mitochondrial fission. Mol Biol Cell 2013; 24(5): 659-67.
[http://dx.doi.org/10.1091/mbc.e12-10-0721] [PMID: 23283981]
[21]
Wang M, Wei R, Li G, et al. SUMOylation of SYNJ2BP-COX16 promotes breast cancer progression through DRP1-mediated mitochondrial fission. Cancer Lett 2022; 547: 215871.
[http://dx.doi.org/10.1016/j.canlet.2022.215871] [PMID: 35998797]
[22]
Xie L, Shi F, Li Y, et al. Drp1-dependent remodeling of mitochondrial morphology triggered by EBV-LMP1 increases cisplatin resistance. Signal Transduct Target Ther 2020; 5(1): 56.
[http://dx.doi.org/10.1038/s41392-020-0151-9] [PMID: 32433544]
[23]
Huang Q, Chen H, Yin K, et al. Formononetin attenuates renal tubular injury and mitochondrial damage in diabetic nephropathy partly via regulating Sirt1/PGC-1α pathway. Front Pharmacol 2022; 13: 901234.
[http://dx.doi.org/10.3389/fphar.2022.901234] [PMID: 35645821]
[24]
Pagliuso A, Cossart P, Stavru F. The ever-growing complexity of the mitochondrial fission machinery. Cell Mol Life Sci 2018; 75(3): 355-74.
[http://dx.doi.org/10.1007/s00018-017-2603-0] [PMID: 28779209]
[25]
Liesa M, Palacín M, Zorzano A. Mitochondrial dynamics in mammalian health and disease. Physiol Rev 2009; 89(3): 799-845.
[http://dx.doi.org/10.1152/physrev.00030.2008] [PMID: 19584314]
[26]
Bae S, Lee YH, Lee J, Park J, Jun W. Salvia plebeia R. Br. water extract ameliorates hepatic steatosis in a non-alcoholic fatty liver disease model by regulating the AMPK pathway. Nutrients 2022; 14(24): 5379.
[http://dx.doi.org/10.3390/nu14245379] [PMID: 36558538]
[27]
Hardie DG. AMP-activated protein kinase-an energy sensor that regulates all aspects of cell function. Genes Dev 2011; 25(18): 1895-908.
[http://dx.doi.org/10.1101/gad.17420111] [PMID: 21937710]
[28]
Foretz M, Even P, Viollet B. AMPK activation reduces hepatic lipid content by increasing fat oxidation in vivo. Int J Mol Sci 2018; 19(9): 2826.
[http://dx.doi.org/10.3390/ijms19092826] [PMID: 30235785]
[29]
Mottillo EP, Desjardins EM, Crane JD, et al. Lack of adipocyte AMPK exacerbates insulin resistance and hepatic steatosis through brown and beige adipose tissue function. Cell Metab 2016; 24(1): 118-29.
[http://dx.doi.org/10.1016/j.cmet.2016.06.006] [PMID: 27411013]
[30]
Smith BK, Marcinko K, Desjardins EM, Lally JS, Ford RJ, Steinberg GR. Treatment of nonalcoholic fatty liver disease: Role of AMPK. Am J Physiol Endocrinol Metab 2016; 311(4): E730-40.
[http://dx.doi.org/10.1152/ajpendo.00225.2016] [PMID: 27577854]
[31]
Kim SH, Yun C, Kwon D, Lee YH, Kwak JH, Jung YS. Effect of isoquercitrin on free fatty acid-induced lipid accumulation in HepG2 cells. Molecules 2023; 28(3): 1476.
[http://dx.doi.org/10.3390/molecules28031476] [PMID: 36771140]
[32]
Huang R, Guo F, Li Y, et al. Activation of AMPK by triptolide alleviates nonalcoholic fatty liver disease by improving hepatic lipid metabolism, inflammation and fibrosis. Phytomedicine 2021; 92: 153739.
[http://dx.doi.org/10.1016/j.phymed.2021.153739] [PMID: 34592488]
[33]
Han H, Xue T, Li J, et al. Plant sterol ester of α-linolenic acid improved non-alcoholic fatty liver disease by attenuating endoplasmic reticulum stress-triggered apoptosis via activation of the AMPK. J Nutr Biochem 2022; 107: 109072.
[http://dx.doi.org/10.1016/j.jnutbio.2022.109072] [PMID: 35660097]
[34]
Dong Z, Zhuang Q, Ye X, et al. Adiponectin inhibits NLRP3 inflammasome activation in nonalcoholic steatohepatitis via AMPK-JNK/ErK1/2-NFκB/ROS signaling pathways. Front Med 2020; 7: 546445.
[http://dx.doi.org/10.3389/fmed.2020.546445] [PMID: 33251225]
[35]
Peng F, Jiang D, Xu W, et al. AMPK/MFF Activation: Role in mitochondrial fission and mitophagy in dry eye. Invest Ophthalmol Vis Sci 2022; 63(12): 18.
[http://dx.doi.org/10.1167/iovs.63.12.18] [PMID: 36374514]
[36]
Lee A, Kondapalli C, Virga DM, et al. Aβ42 oligomers trigger synaptic loss through CAMKK2-AMPK-dependent effectors coordinating mitochondrial fission and mitophagy. Nat Commun 2022; 13(1): 4444.
[http://dx.doi.org/10.1038/s41467-022-32130-5] [PMID: 35915085]
[37]
Du J, Li H, Song J, et al. AMPK activation alleviates myocardial ischemia-reperfusion injury by regulating drp1-mediated mitochondrial dynamics. Front Pharmacol 2022; 13: 862204.
[http://dx.doi.org/10.3389/fphar.2022.862204] [PMID: 35860026]
[38]
Liu J, Yan W, Zhao X, et al. Sirt3 attenuates post-infarction cardiac injury via inhibiting mitochondrial fission and normalization of AMPK-Drp1 pathways. Cell Signal 2019; 53: 1-13.
[http://dx.doi.org/10.1016/j.cellsig.2018.09.009] [PMID: 30219671]
[39]
Zhang P, Wang PX, Zhao LP, et al. The deubiquitinating enzyme TNFAIP3 mediates inactivation of hepatic ASK1 and ameliorates nonalcoholic steatohepatitis. Nat Med 2018; 24(1): 84-94.
[http://dx.doi.org/10.1038/nm.4453] [PMID: 29227477]
[40]
Ji YX, Huang Z, Yang X, et al. The deubiquitinating enzyme cylindromatosis mitigates nonalcoholic steatohepatitis. Nat Med 2018; 24(2): 213-23.
[http://dx.doi.org/10.1038/nm.4461] [PMID: 29291351]
[41]
Mou YL, Zhao R, Lyu SY, Zhang ZY, Zhu MF, Liu Q. Crocetin protects cardiomyocytes against hypoxia/reoxygenation injury by attenuating Drp1-mediated mitochondrial fission via PGC-1α. J Geriatr Cardiol 2023; 20(1): 68-82.
[http://dx.doi.org/10.26599/1671-5411.2023.01.001] [PMID: 36875162]
[42]
Li J, Wang Y, Wang Y, et al. Pharmacological activation of AMPK prevents Drp1-mediated mitochondrial fission and alleviates endoplasmic reticulum stress-associated endothelial dysfunction. J Mol Cell Cardiol 2015; 86: 62-74.
[http://dx.doi.org/10.1016/j.yjmcc.2015.07.010] [PMID: 26196303]
[43]
Song J, Li H, Zhang Y, et al. Effect of Dunaliella salina on myocardial ischemia-reperfusion injury through KEAP1/NRF2 pathway activation and JAK2/STAT3 pathway inhibition. Gene & Protein in Disease 2023; 2(2): 387.
[http://dx.doi.org/10.36922/gpd.387]
[44]
Wang H, Chan PK, Pan SY, et al. ERp57 is up‐regulated in free fatty acids‐induced steatotic L‐02 cells and human nonalcoholic fatty livers. J Cell Biochem 2010; 110(6): 1447-56.
[http://dx.doi.org/10.1002/jcb.22696] [PMID: 20506389]
[45]
Zhou SW, Zhang M, Zhu M. Liraglutide reduces lipid accumulation in steatotic L-02 cells by enhancing autophagy. Mol Med Rep 2014; 10(5): 2351-7.
[http://dx.doi.org/10.3892/mmr.2014.2569] [PMID: 25230688]
[46]
Fang K, Wu F, Chen G, et al. Diosgenin ameliorates palmitic acid-induced lipid accumulation via AMPK/ACC/CPT-1A and SREBP-1c/FAS signaling pathways in LO2 cells. BMC Complement Altern Med 2019; 19(1): 255.
[http://dx.doi.org/10.1186/s12906-019-2671-9] [PMID: 31519174]
[47]
Swapna Sasi US, Sindhu G, Raghu KG. Fructose-palmitate based high calorie induce steatosis in HepG2 cells via mitochondrial dysfunction: An in vitro approach. Toxicol In Vitro 2020; 68: 104952.
[http://dx.doi.org/10.1016/j.tiv.2020.104952] [PMID: 32730863]
[48]
Alnahdi A, John A, Raza H. Augmentation of glucotoxicity, oxidative stress, apoptosis and mitochondrial dysfunction in HepG2 cells by palmitic acid. Nutrients 2019; 11(9): 1979.
[http://dx.doi.org/10.3390/nu11091979] [PMID: 31443411]
[49]
Eynaudi A, Díaz-Castro F, Bórquez JC, Bravo-Sagua R, Parra V, Troncoso R. Differential effects of oleic and palmitic acids on lipid droplet-mitochondria interaction in the hepatic cell line HepG2. Front Nutr 2021; 8: 775382.
[http://dx.doi.org/10.3389/fnut.2021.775382] [PMID: 34869541]
[50]
Rada P, González-Rodríguez Á, García-Monzón C, Valverde ÁM. Understanding lipotoxicity in NAFLD pathogenesis: Is CD36 a key driver? Cell Death Dis 2020; 11(9): 802.
[http://dx.doi.org/10.1038/s41419-020-03003-w] [PMID: 32978374]
[51]
Li M, Xu C, Shi J, et al. Fatty acids promote fatty liver disease via the dysregulation of 3-mercaptopyruvate sulfurtransferase/hydrogen sulfide pathway. Gut 2018; 67(12): 2169-80.
[http://dx.doi.org/10.1136/gutjnl-2017-313778] [PMID: 28877979]
[52]
Li Y, Liu Y, Chen Z, et al. Protopanaxadiol ameliorates NAFLD by regulating hepatocyte lipid metabolism through AMPK/SIRT1 signaling pathway. Biomed Pharmacother 2023; 160: 114319.
[http://dx.doi.org/10.1016/j.biopha.2023.114319] [PMID: 36724639]
[53]
Herzig S, Shaw RJ. AMPK: Guardian of metabolism and mitochondrial homeostasis. Nat Rev Mol Cell Biol 2018; 19(2): 121-35.
[http://dx.doi.org/10.1038/nrm.2017.95] [PMID: 28974774]
[54]
Steinberg GR, Hardie DG. New insights into activation and function of the AMPK. Nat Rev Mol Cell Biol 2023; 24(4): 255-72.
[http://dx.doi.org/10.1038/s41580-022-00547-x] [PMID: 36316383]
[55]
Zhang D, Zhang Y, Wang Z, Lei L. Thymoquinone attenuates hepatic lipid accumulation by inducing autophagy via AMPK/mTOR/ULK1 ‐dependent pathway in nonalcoholic fatty liver disease. Phytother Res 2023; 37(3): 781-97.
[http://dx.doi.org/10.1002/ptr.7662] [PMID: 36479746]
[56]
Mansour SZ, Moustafa EM, Moawed FSM. Modulation of endoplasmic reticulum stress via sulforaphane-mediated AMPK upregulation against nonalcoholic fatty liver disease in rats. Cell Stress Chaperones 2022; 27(5): 499-511.
[http://dx.doi.org/10.1007/s12192-022-01286-w] [PMID: 35779187]
[57]
Garcia D, Hellberg K, Chaix A, et al. Genetic liver-specific AMPK activation protects against diet-induced obesity and NAFLD. Cell Rep 2019; 26(1): 192-208.e6.
[http://dx.doi.org/10.1016/j.celrep.2018.12.036] [PMID: 30605676]
[58]
Vidali S, Aminzadeh S, Lambert B, et al. Mitochondria: The ketogenic diet-A metabolism-based therapy. Int J Biochem Cell Biol 2015; 63: 55-9.
[http://dx.doi.org/10.1016/j.biocel.2015.01.022] [PMID: 25666556]
[59]
He Q, Chen Y, Wang Z, He H, Yu P. Cellular uptake, metabolism and sensing of long-chain fatty acids. Frontiers in Bioscience-Landmark 2023; 28(1): 10.
[http://dx.doi.org/10.31083/j.fbl2801010] [PMID: 36722264]
[60]
Du J, Zhang X, Han J, et al. Pro-Inflammatory CXCR3 impairs mitochondrial function in experimental non-alcoholic steatohepatitis. Theranostics 2017; 7(17): 4192-203.
[http://dx.doi.org/10.7150/thno.21400] [PMID: 29158819]
[61]
Paradies G, Paradies V, Ruggiero FM, Petrosillo G. Oxidative stress, cardiolipin and mitochondrial dysfunction in nonalcoholic fatty liver disease. World J Gastroenterol 2014; 20(39): 14205-18.
[http://dx.doi.org/10.3748/wjg.v20.i39.14205] [PMID: 25339807]
[62]
Tong M, Zablocki D, Sadoshima J. The role of Drp1 in mitophagy and cell death in the heart. J Mol Cell Cardiol 2020; 142: 138-45.
[http://dx.doi.org/10.1016/j.yjmcc.2020.04.015] [PMID: 32302592]
[63]
Wai T, Langer T. Mitochondrial dynamics and metabolic regulation. Trends Endocrinol Metab 2016; 27(2): 105-17.
[http://dx.doi.org/10.1016/j.tem.2015.12.001] [PMID: 26754340]
[64]
Wang Q, Zhang M, Torres G, et al. Metformin suppresses diabetes-accelerated atherosclerosis via the inhibition of drp1-mediated mitochondrial fission. Diabetes 2017; 66(1): 193-205.
[http://dx.doi.org/10.2337/db16-0915] [PMID: 27737949]
[65]
Hu Y, Chen H, Zhang L, et al. The AMPK-MFN2 axis regulates MAM dynamics and autophagy induced by energy stresses. Autophagy 2021; 17(5): 1142-56.
[http://dx.doi.org/10.1080/15548627.2020.1749490] [PMID: 32249716]
[66]
Fullerton MD, Ford RJ, McGregor CP, et al. Salicylate improves macrophage cholesterol homeostasis via activation of Ampk. J Lipid Res 2015; 56(5): 1025-33.
[http://dx.doi.org/10.1194/jlr.M058875] [PMID: 25773887]
[67]
O’Neill HM, Holloway GP, Steinberg GR. AMPK regulation of fatty acid metabolism and mitochondrial biogenesis: Implications for obesity. Mol Cell Endocrinol 2013; 366(2): 135-51.
[http://dx.doi.org/10.1016/j.mce.2012.06.019] [PMID: 22750049]
[68]
Quiles JM, Gustafsson ÅB. The role of mitochondrial fission in cardiovascular health and disease. Nat Rev Cardiol 2022; 19(11): 723-36.
[http://dx.doi.org/10.1038/s41569-022-00703-y] [PMID: 35523864]
[69]
Shi W, Tan C, Liu C, Chen D. Mitochondrial fission mediated by Drp1-Fis1 pathway and neurodegenerative diseases. Rev Neurosci 2023; 34(3): 275-94.
[http://dx.doi.org/10.1515/revneuro-2022-0056] [PMID: 36059131]
[70]
Oettinghaus B, D’Alonzo D, Barbieri E, et al. DRP1-dependent apoptotic mitochondrial fission occurs independently of BAX, BAK and APAF1 to amplify cell death by BID and oxidative stress. Biochim Biophys Acta Bioenerg 2016; 1857(8): 1267-76.
[http://dx.doi.org/10.1016/j.bbabio.2016.03.016] [PMID: 26997499]
[71]
Li J, Chang X, Shang M, et al. The crosstalk between DRP1-dependent mitochondrial fission and oxidative stress triggers hepatocyte apoptosis induced by silver nanoparticles. Nanoscale 2021; 13(28): 12356-69.
[http://dx.doi.org/10.1039/D1NR02153B] [PMID: 34254625]
[72]
Taguchi N, Ishihara N, Jofuku A, Oka T, Mihara K. Mitotic phosphorylation of dynamin-related GTPase Drp1 participates in mitochondrial fission. J Biol Chem 2007; 282(15): 11521-9.
[http://dx.doi.org/10.1074/jbc.M607279200] [PMID: 17301055]
[73]
Liang X, Wang S, Wang L, Ceylan AF, Ren J, Zhang Y. Mitophagy inhibitor liensinine suppresses doxorubicin-induced cardiotoxicity through inhibition of Drp1-mediated maladaptive mitochondrial fission. Pharmacol Res 2020; 157: 104846.
[http://dx.doi.org/10.1016/j.phrs.2020.104846] [PMID: 32339784]
[74]
Gomes LC, Benedetto GD, Scorrano L. During autophagy mitochondria elongate, are spared from degradation and sustain cell viability. Nat Cell Biol 2011; 13(5): 589-98.
[http://dx.doi.org/10.1038/ncb2220] [PMID: 21478857]
[75]
Ding J, Zhang Z, Li S, et al. Mdivi-1 alleviates cardiac fibrosis post myocardial infarction at infarcted border zone, possibly via inhibition of Drp1-Activated mitochondrial fission and oxidative stress. Arch Biochem Biophys 2022; 718: 109147.
[http://dx.doi.org/10.1016/j.abb.2022.109147] [PMID: 35143784]
[76]
Wu P, Li Y, Zhu S, et al. Mdivi-1 alleviates early brain injury after experimental subarachnoid hemorrhage in rats, possibly via inhibition of drp1-activated mitochondrial fission and oxidative stress. Neurochem Res 2017; 42(5): 1449-58.
[http://dx.doi.org/10.1007/s11064-017-2201-4] [PMID: 28210956]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy