Generic placeholder image

Current Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 0929-8673
ISSN (Online): 1875-533X

Review Article

Current Understanding of Androgen Signaling in Prostatitis and its Treatment: A Review

Author(s): Marisa Cabeza*

Volume 31, Issue 27, 2024

Published on: 17 January, 2024

Page: [4249 - 4266] Pages: 18

DOI: 10.2174/0109298673279207231228070533

Price: $65

Abstract

Chronic prostatitis is a highly prevalent condition that significantly impacts the quality of life and fertility of men. Because of its heterogeneous nature, there is no definitive treatment, which requires ongoing research into its etiology. Additionally, the association between prostatitis and an elevated risk of prostate cancer highlights the importance of comprehending androgen involvement in prostatitis. This paper examines the current understanding of androgen signaling in prostatitis and explores contemporary therapeutic approaches. It was reviewed Medline articles comprehensively, using keywords such as nonbacterial prostatitis, prostatitis infertility, androgen role in prostatitis, and chronic pelvic pain. Several cellular targets are linked to androgen signaling. Notably, the major tyrosine phosphatase activity (cPAcP) in normal human prostate is influenced by androgen signaling, and its serum levels inversely correlate with prostate cancer progression. Androgens also regulate membrane-associated zinc and pyruvate transporters transduction in prostate cells, suggesting promising avenues for novel drug development aimed at inhibiting these molecules to reduce cancer tumor growth. Various therapies for prostatitis have been evaluated, including antibiotics, anti-inflammatory medications (including bioflavonoids), neuromodulators, alpha-blockers, 5α-reductase inhibitors, and androgen receptor antagonists. These therapies have demonstrated varying degrees of success in ameliorating symptoms.In conclusion, aging decreases circulating T and intraprostatic DHT, altering the proper functioning of the prostate, reducing the ability of androgens to maintain normal Zn2+ levels, and diminishing the secretion of citrate, PAcP, and other proteins into the prostatic fluid. The Zn2+-transporter decreases or is absent in prostate cancer, so the pyruvate transporter activates. Consequently, the cell ATP increases, inducing tumor growth.

Keywords: Prostate diseases, current treatments, inhibitors of the 5α-reductase enzyme, prostatitis, prostatic fluid, zinc transporter, pyruvate transporter.

[1]
Huggins, C.; Hodges, C.V. Studies on prostatic cancer. Cancer Res., 1941, 1(4), 293-297.
[2]
Han, M.; Piantadosi, S.; Zahurak, M.L.; Sokoll, L.J.; Chan, D.W.; Epstein, J.I.; Walsh, P.C.; Partin, A.W. Serum acid phosphatase level and biochemical recurrence following radical prostatectomy for men with clinically localized prostate cancer. Urology, 2001, 57(4), 707-711.
[http://dx.doi.org/10.1016/S0090-4295(00)01073-6] [PMID: 11306387]
[3]
Veeramani, S.; Yuan, T.C.; Chen, S.J.; Lin, F.F.; Petersen, J.E.; Shaheduzzaman, S.; Srivastava, S.; MacDonald, R.G.; Lin, M.F. Cellular prostatic acid phosphatase: A protein tyrosine phosphatase involved in androgen-independent proliferation of prostate cancer. Endocr. Relat. Cancer, 2005, 12(4), 805-822.
[http://dx.doi.org/10.1677/erc.1.00950] [PMID: 16322323]
[4]
Garcia-Arenas, R.; Lin, F-F.; Lin, D.; Jin, L-P.; Shih, C.C.; Chang, C.; Lin, M.F. The expression of prostatic acid phosphatase is transcriptionally regulated in human prostate carcinoma cells. Mol. Cell. Endocrinol., 1995, 111(1), 29-37.
[http://dx.doi.org/10.1016/0303-7207(95)03544-H] [PMID: 7649350]
[5]
Tanaka, M.; Kishi, Y.; Takanezawa, Y.; Kakehi, Y.; Aoki, J.; Arai, H. Prostatic acid phosphatase degrades lysophosphatidic acid in seminal plasma. FEBS Lett., 2004, 571(1-3), 197-204.
[http://dx.doi.org/10.1016/j.febslet.2004.06.083]
[6]
Sakai, H.; Yogi, Y.; Minami, Y.; Yushita, Y.; Kanetake, H.; Saito, Y. Prostate specific antigen and prostatic acid phosphatase immunoreactivity as prognostic indicators of advanced prostatic carcinoma. J. Urol., 1993, 149(5 Part 1), 1020-1023.
[http://dx.doi.org/10.1016/S0022-5347(17)36285-7] [PMID: 7683340]
[7]
Castillejos-Molina, R.A.; Gabilondo-Navarro, F.B. Prostate cancer. Salud Publica Mex., 2016, 58(2), 279-284.
[http://dx.doi.org/10.21149/spm.v58i2.7797] [PMID: 27557386]
[8]
Ahmann, F.R.; Schifman, R.B. Prospective comparison between serum monoclonal prostate specific antigen and acid phosphatase measurements in metastatic prostatic cancer. J. Urol., 1987, 137(3), 431-434.
[http://dx.doi.org/10.1016/S0022-5347(17)44057-2] [PMID: 2434667]
[9]
Vu, P.L.; Vadakekolathu, J.; Idri, S.; Nicholls, H.; Cavaignac, M.; Reeder, S.; Khan, M.A.; Christensen, D.; Pockley, A.G.; McArdle, S.E. A Mutated Prostatic Acid Phosphatase (PAP) peptide-based vaccine induces pap-specific CD8+ t cells with ex vivo cytotoxic capacities in HHDII/DR1 Transgenic Mice. Cancers, 2022, 14(8)
[http://dx.doi.org/10.3390/cancers14081970] [PMID: 35454873]
[10]
Ferlay, J.; Soerjomataram, I.; Dikshit, R.; Eser, S.; Mathers, C.; Rebelo, M.; Parkin, D.M.; Forman, D.; Bray, F. Cancer incidence and mortality worldwide: Sources, methods and major patterns in GLOBOCAN 2012. Int. J. Cancer, 2015, 136(5), E359-E386.
[http://dx.doi.org/10.1002/ijc.29210] [PMID: 25220842]
[11]
Kavanagh, J.P. Sodium, potassium, calcium, magnesium, zinc, citrate and chloride content of human prostatic and seminal fluid. Reproduction, 1985, 75(1), 35-41.
[http://dx.doi.org/10.1530/jrf.0.0750035] [PMID: 4032375]
[12]
Gilany, K.; Minai-Tehrani, A.; Savadi-Shiraz, E.; Rezadoost, H.; Lakpour, N. Exploring the human seminal plasma proteome: An unexplored gold mine of biomarker for male infertility and male reproduction disorder. J. Reprod. Infertil., 2015, 16(2), 61-71.
[PMID: 25927022]
[13]
Huggins, C.; Neal, W. Coagulation and liquefaction of semen. J. Exp. Med., 1942, 76(6), 527-541.
[http://dx.doi.org/10.1084/jem.76.6.527] [PMID: 19871256]
[14]
Kavanagh, J.P.; Darby, C. Creatine kinase and ATPase in human seminal fluid and prostatic fluid. Reproduction, 1983, 68(1), 51-56.
[http://dx.doi.org/10.1530/jrf.0.0680051] [PMID: 6221096]
[15]
Lin, M.F.; Lee, M.S.; Zhou, X.W.; Andressen, J.C.; Meng, T.C.; Johansson, S.L.; West, W.W.; Taylor, R.J.; Anderson, J.R.; Lin, F.F. Decreased expression of cellular prostatic acid phosphatase increases tumorigenicity of human prostate cancer cells. J. Urol., 2001, 166(5), 1943-1950.
[http://dx.doi.org/10.1016/S0022-5347(05)65725-4] [PMID: 11586265]
[16]
Stenman, U.H.; Leinonen, J.; Zhang, W.M.; Finne, P. Prostate-specific antigen. Semin. Cancer Biol., 1999, 9(2), 83-93.
[http://dx.doi.org/10.1006/scbi.1998.0086] [PMID: 10202130]
[17]
Andersson, S.; Bishop, R.W.; Russell, D.W. Expression cloning and regulation of steroid 5 α-reductase, an enzyme essential for male sexual differentiation. J. Biol. Chem., 1989, 264(27), 16249-16255.
[http://dx.doi.org/10.1016/S0021-9258(18)71614-1] [PMID: 2476440]
[18]
Franklin, R. B.; Zou, J.; Yu, Z.; Costello, L. C. EAAC1 is expressed in rat and human prostate epithelial cells; functions as a high-affinity L-aspartate transporter; and is regulated by prolactin and testosterone. BMC Biochem., 2008, 7, 1-8.
[http://dx.doi.org/10.1186/1471-2091-7-10]
[19]
Takayama, K.; Horie-Inoue, K.; Ikeda, K.; Urano, T.; Murakami, K.; Hayashizaki, Y.; Ouchi, Y.; Inoue, S. FOXP1 is an androgen-responsive transcription factor that negatively regulates androgen receptor signaling in prostate cancer cells. Biochem. Biophys. Res. Commun., 2008, 374(2), 388-393.
[http://dx.doi.org/10.1016/j.bbrc.2008.07.056]
[20]
Takayama, K.; Tsutsumi, S.; Katayama, S.; Okayama, T.; Horie-Inoue, K.; Ikeda, K.; Urano, T.; Kawazu, C.; Hasegawa, A.; Ikeo, K.; Gojyobori, T.; Ouchi, Y.; Hayashizaki, Y.; Aburatani, H.; Inoue, S. Integration of cap analysis of gene expression and chromatin immunoprecipitation analysis on array reveals genome-wide androgen receptor signaling in prostate cancer cells. Oncogene, 2011, 30(5), 619-630.
[http://dx.doi.org/10.1038/onc.2010.436] [PMID: 20890304]
[21]
Gnanapragasam, V.J.; Robson, C.N.; Neal, D.E.; Leung, H.Y. Regulation of FGF8 expression by the androgen receptor in human prostate cancer. Oncogene, 2002, 21(33), 5069-5080.
[http://dx.doi.org/10.1038/sj.onc.1205663] [PMID: 12140757]
[22]
van Heijster, F.H.A.; Breukels, V.; Jansen, K.C.F.J.; Schalken, J.A.; Heerschap, A. Carbon sources and pathways for citrate secreted by human prostate cancer cells determined by NMR tracing and metabolic modeling. Proc. Natl. Acad. Sci., 2022, 119(14), e2024357119.
[http://dx.doi.org/10.1073/pnas.2024357119] [PMID: 35353621]
[23]
Costello, L.C.; Liu, Y.; Zou, J.; Franklin, R.B. Evidence for a zinc uptake transporter in human prostate cancer cells which is regulated by prolactin and testosterone. J. Biol. Chem., 1999, 274(25), 17499-17504.
[http://dx.doi.org/10.1074/jbc.274.25.17499] [PMID: 10364181]
[24]
Li, C.; He, C.; Xu, Y.; Xu, H.; Tang, Y.; Chavan, H.; Duan, S.; Artigues, A.; Forrest, M.L.; Krishnamurthy, P.; Han, S.; Holzbeierlein, J.M.; Li, B. Alternol eliminates excessive ATP production by disturbing Krebs cycle in prostate cancer. Prostate, 2019, 79(6), 628-639.
[http://dx.doi.org/10.1002/pros.23767] [PMID: 30663084]
[25]
Costello, L.C.; Franklin, R.B.; Liu, Y.; Kennedy, M.C. Zinc causes a shift toward citrate at equilibrium of the m-aconitase reaction of prostate mitochondria. J. Inorg. Biochem., 2000, 78(2), 161-165.
[http://dx.doi.org/10.1016/S0162-0134(99)00225-1] [PMID: 10766339]
[26]
Verze, P.; Cai, T.; Lorenzetti, S. The role of the prostate in male fertility, health and disease. Nat. Rev. Urol., 2016, 13(7), 379-386.
[http://dx.doi.org/10.1038/nrurol.2016.89] [PMID: 27245504]
[27]
Hasumi, M.; Suzuki, K.; Matsui, H.; Koike, H.; Ito, K.; Yamanaka, H. Regulation of metallothionein and zinc transporter expression in human prostate cancer cells and tissues. Cancer Lett., 2003, 200(2), 187-195.
[http://dx.doi.org/10.1016/S0304-3835(03)00441-5] [PMID: 14568174]
[28]
Sukhorukov, V.M.; Bereiter-Hahn, J. Anomalous diffusion induced by cristae geometry in the inner mitochondrial membrane. PLoS One, 2009, 4(2), e4604.
[http://dx.doi.org/10.1371/journal.pone.0004604] [PMID: 19242541]
[29]
Bader, D.A.; Hartig, S.M.; Putluri, V.; Foley, C.; Hamilton, M.P.; Smith, E.A.; Saha, P.K.; Panigrahi, A.; Walker, C.; Zong, L.; Martini-Stoica, H.; Chen, R.; Rajapakshe, K.; Coarfa, C.; Sreekumar, A.; Mitsiades, N.; Bankson, J.A.; Ittmann, M.M.; O’Malley, B.W.; Putluri, N.; McGuire, S.E. Mitochondrial pyruvate import is a metabolic vulnerability in androgen receptor-driven prostate cancer. Nat. Metab., 2018, 1(1), 70-85.
[http://dx.doi.org/10.1038/s42255-018-0002-y] [PMID: 31198906]
[30]
Li, L.; Wen, M.; Run, C.; Wu, B.; OuYang, B. Experimental investigations on the structure of yeast mitochondrial pyruvate carriers. Membranes, 2022, 12(10), 916.
[http://dx.doi.org/10.3390/membranes12100916] [PMID: 36295675]
[31]
Quesñay, J.E.N.; Pollock, N.L.; Nagampalli, R.S.K.; Lee, S.C.; Balakrishnan, V.; Dias, S.M.G.; Moraes, I.; Dafforn, T.R.; Ambrosio, A.L.B. Insights on the quest for the structure-function relationship of the mitochondrial pyruvate carrier. Biology, 2020, 9(11), 407.
[http://dx.doi.org/10.3390/biology9110407] [PMID: 33227948]
[32]
Caldamone, A.A.; Freytag, M.K.; Cockett, A.T.K.; Cockett, T.K. Seminal zinc and male infertility. Urology, 1979, 13(3), 280-281.
[http://dx.doi.org/10.1016/0090-4295(79)90421-7] [PMID: 442346]
[33]
Bedwal, R.S.; Bahuguna, A. Zinc, copper and selenium in reproduction. Experientia, 1994, 50(7), 626-640.
[http://dx.doi.org/10.1007/BF01952862] [PMID: 8033970]
[34]
Björndahl, L.; Kvist, U. A model for the importance of zinc in the dynamics of human sperm chromatin stabilization after ejaculation in relation to sperm DNA vulnerability. Syst. Biol. Reprod. Med., 2011, 57(1-2), 86-92.
[http://dx.doi.org/10.3109/19396368.2010.516306] [PMID: 21204594]
[35]
Barratt, C.L.; De Jonge, C.J. Clinical relevance of sperm DNA assessment: An update. Fertility and Sterility, 2010, 94(6), 1958-1953.
[http://dx.doi.org/10.1016/j.fertnstert.2010.07.1050]
[36]
Fair, W.R.; Couch, J.; Wehner, N. Prostatic antibacterial factor identity and significance. Urology, 1976, 7(2), 169-177.
[http://dx.doi.org/10.1016/0090-4295(76)90305-8] [PMID: 1023218]
[37]
Reeves, P.G.; O’Dell, B.L. Zinc deficiency in rats and angiotensin-converting enzyme activity: Comparative effects on lung and testis. J. Nutr., 1988, 118(5), 622-626.
[http://dx.doi.org/10.1093/jn/118.5.622] [PMID: 2835463]
[38]
Kavanagh, J. P. Isocitric and citric acid in human prostatic and seminal fluid: Implications for prostatic metabolism and secretion. Prostate, 1994, 24(3), 139-142.
[http://dx.doi.org/10.1002/pros.2990240307]
[39]
Singh, K.K.; Desouki, M.M.; Franklin, R.B.; Costello, L.C. Mitochondrial aconitase and citrate metabolism in malignant and nonmalignant human prostate tissues. Mol. Cancer, 2006, 5(1), 14.
[http://dx.doi.org/10.1186/1476-4598-5-14] [PMID: 16595004]
[40]
Roberts, R.O.; Lieber, M.M.; Bostwick, D.G.; Jacobsen, S.J. A review of clinical and pathological prostatitis syndromes. Urology, 1997, 49(6), 809-821.
[http://dx.doi.org/10.1016/S0090-4295(97)00235-5] [PMID: 9187684]
[41]
De La Rosette, J.J.M.C.H.; Hubregtse, M.R.; Meuleman, E.J.H.; Stolk-engelaar, M.V.M.; Debruyne, F.M.J. Diagnosis and treatment of 409 patients with prostatitis syndromes. Urology, 1993, 41(4), 301-307.
[http://dx.doi.org/10.1016/0090-4295(93)90584-W] [PMID: 8470312]
[42]
Persson, B.E.; Ronquist, G. Evidence for a mechanistic association between nonbacterial prostatitis and levels of urate and creatinine in expressed prostatic secretion. J. Urol., 1996, 155(3), 958-960.
[http://dx.doi.org/10.1016/S0022-5347(01)66357-2] [PMID: 8583617]
[43]
Gandaglia, G.; Briganti, A.; Gontero, P.; Mondaini, N.; Novara, G.; Salonia, A.; Sciarra, A.; Montorsi, F. The role of chronic prostatic inflammation in the pathogenesis and progression of benign prostatic hyperplasia (BPH). BJU Int., 2013, 112(4), 432-441.
[http://dx.doi.org/10.1111/bju.12118] [PMID: 23650937]
[44]
Kaur, K.; Prabha, V. Impairment by sperm agglutinating factor isolated from Escherichia coli: Receptor specific interactions. Biomed .Res . Int. 2013, 2013, 548497.
[http://dx.doi.org/10.1155/2013/548497]
[45]
Patra, K.C.; Wang, Q.; Bhaskar, P.T.; Miller, L.; Wang, Z.; Wheaton, W.; Chandel, N.; Laakso, M.; Muller, W.J.; Allen, E.L.; Jha, A.K. Hexokinase 2 is required for tumor initiation and maintenance and its systemic deletion is therapeutic in mouse models of cancer Cancer Cell, 2013, 24(2), 213-228.
[http://dx.doi.org/10.1016/j.ccr.2013.06.014]
[46]
Vander Heiden, M.G.; Cantley, L.C.; Thompson, C.B. Understanding the Warburg effect: The metabolic requirements of cell proliferation. Science, 2009, 324(5930), 1029-1033.
[http://dx.doi.org/10.1126/science.1160809] [PMID: 19460998]
[47]
Yun, J.; Rago, C.; Cheong, I.; Pagliarini, R.; Angenendt, P.; Rajagopalan, H.; Schmidt, K.; Willson, J.K.V.; Markowitz, S.; Zhou, S.; Diaz, L.A., Jr; Velculescu, V.E.; Lengauer, C.; Kinzler, K.W.; Vogelstein, B.; Papadopoulos, N. Glucose deprivation contributes to the development of KRAS pathway mutations in tumor cells. Science, 2009, 325(5947), 1555-1559.
[http://dx.doi.org/10.1126/science.1174229] [PMID: 19661383]
[48]
Han, Y.H.; Kim, S.H.; Kim, S.Z.; Park, W.H. Antimycin A as a mitochondrial electron transport inhibitor prevents the growth of human lung cancer A549 cells. Oncol. Rep., 2008, 20(3), 689-693.
[http://dx.doi.org/10.3892/or_00000061] [PMID: 18695925]
[49]
Schell, J.C.; Olson, K.A.; Jiang, L.; Hawkins, A.J.; Van Vranken, J.G.; Xie, J.; Egnatchik, R.A.; Earl, E.G.; DeBerardinis, R.J.; Rutter, J. A role for the mitochondrial pyruvate carrier as a repressor of the Warburg effect and colon cancer cell growth. Mol. Cell, 2014, 56(3), 400-413.
[http://dx.doi.org/10.1016/j.molcel.2014.09.026] [PMID: 25458841]
[50]
Herzig, S.; Raemy, E.; Montessuit, S.; Veuthey, J.L.; Zamboni, N.; Westermann, B.; Kunji, E.R.S.; Martinou, J.C. Identification and functional expression of the mitochondrial pyruvate carrier. Science, 2012, 337(6090), 93-96.
[http://dx.doi.org/10.1126/science.1218530] [PMID: 22628554]
[51]
Paradies, G.; Capuano, F.; Palombini, G.; Galeotti, T.; Papa, S. Transport of pyruvate in mitochondria from different tumor cells. Cancer Res., 1983, 43(11), 5068-5071.
[PMID: 6616443]
[52]
Massie, C.E.; Lynch, A.; Ramos-Montoya, A.; Boren, J.; Stark, R.; Fazli, L.; Warren, A.; Scott, H.; Madhu, B.; Sharma, N.; Bon, H.; Zecchini, V.; Smith, D.M.; DeNicola, G.M.; Mathews, N.; Osborne, M.; Hadfield, J.; MacArthur, S.; Adryan, B.; Lyons, S.K.; Brindle, K.M.; Griffiths, J.; Gleave, M.E.; Rennie, P.S.; Neal, D.E.; Mills, I.G. The androgen receptor fuels prostate cancer by regulating central metabolism and biosynthesis. EMBO J., 2011, 30(13), 2719-2733.
[http://dx.doi.org/10.1038/emboj.2011.158] [PMID: 21602788]
[53]
Kolenko, V.; Teper, E.; Kutikov, A.; Uzzo, R. Zinc and zinc transporters in prostate carcinogenesis. Nat. Rev. Urol., 2013, 10(4), 219-226.
[http://dx.doi.org/10.1038/nrurol.2013.43] [PMID: 23478540]
[54]
Murphy, A.B.; Nadler, R.B. Pharmacotherapy strategies in chronic prostatitis/chronic pelvic pain syndrome management. Expert Opin. Pharmacother., 2010, 11(8), 1255-1261.
[http://dx.doi.org/10.1517/14656561003709748] [PMID: 20429665]
[55]
Magri, V.; Montanari, E.; Škerk, V.; Markotić, A.; Marras, E.; Restelli, A.; Naber, K.G.; Perletti, G. Fluoroquinolone–macrolide combination therapy for chronic bacterial prostatitis: retrospective analysis of pathogen eradication rates, inflammatory findings and sexual dysfunction. Asian J. Androl., 2011, 13(6), 819-827.
[http://dx.doi.org/10.1038/aja.2011.36] [PMID: 21765442]
[56]
Seo, M.J.; Lee, Y.J.; Hwang, J.H.; Kim, K.J.; Lee, B.Y. The inhibitory effects of quercetin on obesity and obesity-induced inflammation by regulation of MAPK signaling. J. Nutr. Biochem., 2015, 26(11), 1308-1316.
[http://dx.doi.org/10.1016/j.jnutbio.2015.06.005] [PMID: 26277481]
[57]
Liao, Y.R.; Lin, J.Y. Quercetin intraperitoneal administration ameliorates lipopolysaccharide-induced systemic inflammation in mice. Life Sci., 2015, 137, 89-97.
[http://dx.doi.org/10.1016/j.lfs.2015.07.015] [PMID: 26209141]
[58]
Shoskes, D.A.; Zeitlin, S.I.; Shahed, A.; Rajfer, J. Quercetin in men with category III chronic prostatitis: A preliminary prospective, double-blind, placebo-controlled trial. Urology, 1999, 54(6), 960-963.
[http://dx.doi.org/10.1016/S0090-4295(99)00358-1] [PMID: 10604689]
[59]
Wagenlehner, F.M.E.; Schneider, H.; Ludwig, M.; Schnitker, J.; Brähler, E.; Weidner, W. A pollen extract (Cernilton) in patients with inflammatory chronic prostatitis-chronic pelvic pain syndrome: A multicentre, randomised, prospective, double-blind, placebo-controlled phase 3 study. Eur. Urol., 2009, 56(3), 544-551.
[http://dx.doi.org/10.1016/j.eururo.2009.05.046] [PMID: 19524353]
[60]
Nickel, J.C.; Pontari, M.; Moon, T.; Gittelman, M.; Malek, G.; Farrington, J.; Pearson, J.; Krupa, D.; Bach, M.; Drisko, J. A randomized, placebo controlled, multicenter study to evaluate the safety and efficacy of rofecoxib in the treatment of chronic nonbacterial prostatitis. J. Urol., 2003, 169(4), 1401-1405.
[http://dx.doi.org/10.1097/01.ju.0000054983.45096.16] [PMID: 12629372]
[61]
Zhao, W.P.; Zhang, Z.G.; Li, X.D.; Yu, D.; Rui, X.F.; Li, G.H.; Ding, G.Q. Celecoxib reduces symptoms in men with difficult chronic pelvic pain syndrome (Category IIIA). Braz. J. Med. Biol. Res., 2009, 42(10), 963-967.
[http://dx.doi.org/10.1590/S0100-879X2009005000021] [PMID: 19787151]
[62]
Bates, S.M.; Hill, V.A.; Anderson, J.B.; Chapple, C.R.; Spence, R.; Ryan, C.; Talbot, M.D. A prospective, randomized, double-blind trial to evaluate the role of a short reducing course of oral corticosteroid therapy in the treatment of chronic prostatitis/chronic pelvic pain syndrome. BJU Int., 2007, 99(2), 355-359.
[http://dx.doi.org/10.1111/j.1464-410X.2007.06667.x] [PMID: 17313424]
[63]
Pontari, M.A.; Krieger, J.N.; Litwin, M.S.; White, P.C.; Anderson, R.U.; McNaughton-Collins, M.; Nickel, J.C.; Shoskes, D.A.; Alexander, R.B.; O’Leary, M.; Zeitlin, S.; Chuai, S.; Landis, J.R.; Cen, L.; Propert, K.J.; Kusek, J.W.; Nyberg, L.M., Jr; Schaeffer, A.J. Pregabalin for the treatment of men with chronic prostatitis/chronic pelvic pain syndrome: A randomized controlled trial. Arch. Intern. Med., 2010, 170(17), 1586-1593.
[http://dx.doi.org/10.1001/archinternmed.2010.319] [PMID: 20876412]
[64]
Sator-Katzenschlager, S.M.; Scharbert, G.; Kress, H.G.; Frickey, N.; Ellend, A.; Gleiss, A.; Kozek-Langenecker, S.A. Chronic pelvic pain treated with gabapentin and amitriptyline: A randomized controlled pilot study. Wien. Klin. Wochenschr., 2005, 117(21-22), 761-768.
[http://dx.doi.org/10.1007/s00508-005-0464-2] [PMID: 16416358]
[65]
Berger, R.E. Re: Pregabalin for the treatment of men with chronic prostatitis/chronic pelvic pain syndrome: A randomized controlled trial. J. Urol., 2011, 185(4), 1302-1303.
[http://dx.doi.org/10.1016/S0022-5347(11)60282-6] [PMID: 22098964]
[66]
Manjunatha, R.; Pundarikaksha, H.P.; Madhusudhana, H.R.; Amarkumar, J.; Hanumantharaju, B.K. A randomized, comparative, open-label study of efficacy and tolerability of alfuzosin, tamsulosin and silodosin in benign prostatic hyperplasia. Indian J. Pharmacol., 2016, 48(2), 134-140.
[http://dx.doi.org/10.4103/0253-7613.178825] [PMID: 27127315]
[67]
Mirone, V.; Sessa, A.; Giuliano, F.; Berges, R.; Kirby, M.; Moncada, I. Current benign prostatic hyperplasia treatment: Impact on sexual function and management of related sexual adverse events. Int. J. Clin. Pract., 2011, 65(9), 1005-1013.
[http://dx.doi.org/10.1111/j.1742-1241.2011.02731.x] [PMID: 21718399]
[68]
Mari, A.; Antonelli, A.; Cindolo, L.; Fusco, F.; Minervini, A.; De Nunzio, C. Alfuzosin for the medical treatment of benign prostatic hyperplasia and lower urinary tract symptoms: A systematic review of the literature and narrative synthesis. Ther. Adv. Urol., 2021, 13, 1756287221993283.
[http://dx.doi.org/10.1177/1756287221993283] [PMID: 33912246]
[69]
Chen, Y.; Wu, X.; Liu, J.; Tang, W.; Zhao, T.; Zhang, J. Effects of a 6-month course of tamsulosin for chronic prostatitis/chronic pelvic pain syndrome: A multicenter, randomized trial. World J. Urol., 2011, 29(3), 381-385.
[http://dx.doi.org/10.1007/s00345-010-0537-3] [PMID: 20336302]
[70]
Rossi, M.; Roumeguère, T. Silodosin in the treatment of benign prostatic hyperplasia. Drug. Des. Devel. Ther., 2010, 4, 291-297.
[http://dx.doi.org/10.2147/dddt.s10428]
[71]
McVary, K.T. Alfuzosin for symptomatic benign prostatic hyperplasia: Long-term experience. J. Urol., 2006, 175(1), 35-42.
[http://dx.doi.org/10.1016/S0022-5347(05)00032-7] [PMID: 16406865]
[72]
Sebastianelli, A.; Spatafora, P.; Morselli, S.; Vignozzi, L.; Serni, S.; McVary, K.T.; Kaplan, S.; Gravas, S.; Chapple, C.; Gacci, M. Tadalafil alone or in combination with tamsulosin for the management for LUTS/BPH and ED. Curr. Urol. Rep., 2020, 21(12), 56.
[http://dx.doi.org/10.1007/s11934-020-01009-7] [PMID: 33108544]
[73]
Imperato-McGinley, J.; Zhu, Y. S. Androgens and male physiology the syndrome of 5α-reductase-2 deficiency. Mol. Cell Endocrinol., 2002, 198(1-2), 51-59.
[74]
Walsh, P.C.; Madden, J.D.; Harrod, M.J.; Goldstein, J.L.; MacDonald, P.C.; Wilson, J.D. Familial incomplete male pseudohermaphroditism, type 2. Decreased dihydrotestosterone formation in pseudovaginal perineoscrotal hypospadias. N. Engl. J. Med., 1974, 291(18), 944-949.
[http://dx.doi.org/10.1056/NEJM197410312911806] [PMID: 4413434]
[75]
Dadras, S. S.; Cai, X.; Abasolo, I.; Wang, Z. Inhibition of 5α-reductase in rat prostate reveals differential regulation of androgen-response gene expression by testosterone and dihydrotestosterone. Gene Expr., 2001, 9(4-5), 183-194.
[76]
Raynaud, J.P. Prostate cancer risk in testosterone-treated men. J. Steroid Biochem. Mol. Biol., 2006, 102(1-5), 261-266.
[http://dx.doi.org/10.1016/j.jsbmb.2006.09.032]
[77]
Wright, A.S.; Douglas, R.C.; Thomas, L.N.; Lazier, C.B.; Rittmaster, R.S. Androgen-induced regrowth in the castrated rat ventral prostate: Role of 5α-reductase. Endocrinology, 1999, 140(10), 4509-4515.
[http://dx.doi.org/10.1210/endo.140.10.7039] [PMID: 10499505]
[78]
Bosland, M.C. The role of steroid hormones in prostate carcinogenesis. JNCI Monographs, 2000, 2000(27), 39-66.
[79]
Bratoeff, E.; Sánchez, A.; Arellano, Y.; Heuze, Y.; Soriano, J.; Cabeza, M. In vivo and in vitro effect of androstene derivatives as 5α-reductase type 1 enzyme inhibitors. J. Enzyme Inhib. Med. Chem., 2013, 28(6), 1247-1254.
[http://dx.doi.org/10.3109/14756366.2012.729827] [PMID: 23051174]
[80]
Xiao, Q.; Wang, L.; Supekar, S.; Shen, T.; Liu, H.; Ye, F.; Huang, J.; Fan, H.; Wei, Z.; Zhang, C. Structure of human steroid 5α-reductase 2 with the anti-androgen drug finasteride. Nat. Commun., 2020, 11(1), 5430.
[http://dx.doi.org/10.1038/s41467-020-19249-z] [PMID: 33110062]
[81]
Wu, Y.; Godoy, A.; Azzouni, F.; Wilton, J.H.; Ip, C.; Mohler, J.L. Prostate cancer cells differ in testosterone accumulation, dihydrotestosterone conversion, and androgen receptor signaling response to steroid 5α-reductase inhibitors. Prostate, 2013, 73(13), 1470-1482.
[http://dx.doi.org/10.1002/pros.22694]
[82]
Russell, D.W.; Wilson, J.D. Steroid 5α-reductase: Two genes/two enzymes. Annu. Rev. Biochem., 1994, 63(1), 25-61.
[http://dx.doi.org/10.1146/annurev.bi.63.070194.000325] [PMID: 7979239]
[83]
Uemura, M.; Tamura, K.; Chung, S.; Honma, S.; Okuyama, A.; Nakamura, Y.; Nakagawa, H. Novel 5α-steroid reductase (SRD5A3, type-3) is overexpressed in hormone-refractory prostate cancer. Cancer Sci., 2008, 99(1), 81-86.
[http://dx.doi.org/10.1111/j.1349-7006.2007.00656.x] [PMID: 17986282]
[84]
Normington, K.; Russell, D.W. Tissue distribution and kinetic characteristics of rat steroid 5 α-reductase isozymes. Evidence for distinct physiological functions. J. Biol. Chem., 1992, 267(27), 19548-19554.
[http://dx.doi.org/10.1016/S0021-9258(18)41809-1] [PMID: 1527072]
[85]
McEwan, I.J.; Brinkmann, A.O. Androgen physiology: Receptor and metabolic disorders. In: Endotext; MDText.com, Inc. 2000.
[86]
Mai, Q.; Sheng, D.; Chen, C.; Gou, Q.; Chen, M.; Huang, X.; Yin, H.; Chen, X.; Chen, Z. Steroid 5 α-reductase 3 (SRD5A3) promotes tumor growth and predicts poor survival of human hepatocellular carcinoma (HCC). Aging, 2020, 12(24), 25395-25411.
[http://dx.doi.org/10.18632/aging.104142] [PMID: 33229626]
[87]
Cantagrel, V.; Lefeber, D.J.; Ng, B.G.; Guan, Z.; Silhavy, J.L.; Bielas, S.L.; Lehle, L.; Hombauer, H.; Adamowicz, M.; Swiezewska, E.; De Brouwer, A.P.; Blümel, P.; Sykut-Cegielska, J.; Houliston, S.; Swistun, D.; Ali, B.R.; Dobyns, W.B.; Babovic-Vuksanovic, D.; van Bokhoven, H.; Wevers, R.A.; Raetz, C.R.H.; Freeze, H.H.; Morava, É.; Al-Gazali, L.; Gleeson, J.G. SRD5A3 is required for converting polyprenol to dolichol and is mutated in a congenital glycosylation disorder. Cell, 2010, 142(2), 203-217.
[http://dx.doi.org/10.1016/j.cell.2010.06.001] [PMID: 20637498]
[88]
Montgomery, R.B.; Mostaghel, E.A.; Vessella, R.; Hess, D.L.; Kalhorn, T.F.; Higano, C.S.; True, L.D.; Nelson, P.S. Maintenance of intratumoral androgens in metastatic prostate cancer: A mechanism for castration-resistant tumor growth. Cancer Res., 2008, 68(11), 4447-4454.
[http://dx.doi.org/10.1158/0008-5472.CAN-08-0249] [PMID: 18519708]
[89]
Thigpen, A.E.; Silver, R.I.; Guileyardo, J.M.; Casey, M.L.; McConnell, J.D.; Russell, D.W. Tissue distribution and ontogeny of steroid 5 α-reductase isozyme expression. J. Clin. Invest., 1993, 92(2), 903-910.
[http://dx.doi.org/10.1172/JCI116665] [PMID: 7688765]
[90]
Madersbacher, S.; Sampson, N.; Culig, Z. Pathophysiology of benign prostatic hyperplasia and benign prostatic enlargement: A mini-review. Gerontology, 2019, 65(5), 458-464.
[http://dx.doi.org/10.1159/000496289] [PMID: 30943489]
[91]
Chan, W.K.; Fong, C.Y.; Tiong, H.H.; Tan, C.H. The ihibition of 3βHSD activity in porcine granulosa cells by 4- MA, a potent 5α-reductase inhibitor. Biochem. Biophys. Res. Commun., 1987, 144(1), 166-171.
[http://dx.doi.org/10.1016/S0006-291X(87)80490-4] [PMID: 3107552]
[92]
McConnell, J.D. The pathophysiology of benign prostatic hyperplasia. J. Androl., 1991, 12(6), 356-363.
[http://dx.doi.org/10.1002/j.1939-4640.1991.tb00272.x] [PMID: 1722791]
[93]
Di Salle, E.; Briatico, G.; Giudici, D.; Ornati, G.; Panzeri, A. Endocrine properties of the testosterone 5α-reductase inhibitor turosteride (FCE 26073). J. Steroid Biochem. Mol. Biol., 1994, 48(2-3), 241-248.
[http://dx.doi.org/10.1016/0960-0760(94)90151-1] [PMID: 8142301]
[94]
Sonoda, J.; Pei, L.; Evans, R.M. Nuclear receptors: Decoding metabolic disease. FEBS Lett., 2008, 582(1), 2-9.
[http://dx.doi.org/10.1016/j.febslet.2007.11.016] [PMID: 18023286]
[95]
Wilde, M.I.; Goa, K.L. Finasteride. Drugs, 1999, 57(4), 557-581.
[http://dx.doi.org/10.2165/00003495-199957040-00008] [PMID: 10235693]
[96]
Faller, B.; Farley, D.; Nick, H. Finasteride: A slow-binding 5α-reductase inhibitor. Biochemistry, 1993, 32(21), 5705-5710.
[http://dx.doi.org/10.1021/bi00072a028]
[97]
Darren Stuart, J.; Lee, F.W.; Simpson Noel, D.; Kadwell, S.H.; Overton, L.K.; Hoffman, C.R.; Kost, T.A.; Tippin, T.K.; Yeager, R.L.; Batchelor, K.W.; Neal Bramson, H. Pharmacokinetic parameters and mechanisms of inhibition of rat type 1 and 2 steroid 5α-reductases: Determinants for different in vivo activities of GI198745 and finasteride in the rat. Biochem. Pharmacol., 2001, 62(7), 933-942.
[http://dx.doi.org/10.1016/S0006-2952(01)00728-6] [PMID: 11543729]
[98]
Evans, H.C.; Goa, K.L. Dutasteride. Drugs Aging, 2003, 20(12), 905-916.
[http://dx.doi.org/10.2165/00002512-200320120-00005] [PMID: 14565784]
[99]
Clark, R.V.; Hermann, D.J.; Cunningham, G.R.; Wilson, T.H.; Morrill, B.B.; Hobbs, S. Marked suppression of dihydrotestosterone in men with benign prostatic hyperplasia by dutasteride, a dual 5α-reductase inhibitor. J. Clin. Endocrinol. Metab., 2004, 89(5), 2179-2184.
[http://dx.doi.org/10.1210/jc.2003-030330] [PMID: 15126539]
[100]
Schulman, C.; Pommerville, P.; Höfner, K.; Wachs, B. Long-term therapy with the dual 5α-reductase inhibitor dutasteride is well tolerated in men with symptomatic benign prostatic hyperplasia. BJU Int., 2006, 97(1), 73-80.
[http://dx.doi.org/10.1111/j.1464-410X.2005.05909.x] [PMID: 16336332]
[101]
Andriole, G.L.; Kirby, R. Safety and tolerability of the dual 5α-reductase inhibitor dutasteride in the treatment of benign prostatic hyperplasia. Eur. Urol., 2003, 44(1), 82-88.
[http://dx.doi.org/10.1016/S0302-2838(03)00198-2] [PMID: 12814679]
[102]
Lazier, C. B.; Thomas, L. N.; Douglas, R. C.; Vessey, J. P.; Rittmaster, R. S. Dutasteride, the dual 5α-reductase inhibitor, inhibits androgen action and promotes cell death in the LNCaP prostate cancer cell line. Prostate, 2004, 58(2), 130-144.
[http://dx.doi.org/10.1002/pros.10340]
[103]
Frye, S. V.; Haffner, C. D.; Maloney, P. R.; Hiner, R. N.; Dorsey, G. F.; Noe, R. A.; Unwalla, R. J.; Batchelor, K. W.; Bramson, H. N.; Stuart, J. D. Structure-activity relationships for inhibition of type 1 and 2 human 5α-reductase and human adrenal 3β-hydroxy-Δ5-steroid dehydrogenase/3-keto-Δ5-steroid isomerase by 6-azaandrost-4-en-3-ones: Optimization of the C-17 substituent. J. Med. Chem., 1995, 38(14), 2621-2627.
[http://dx.doi.org/10.1021/jm00014a015]
[104]
Pérez-ornelas, V.; Cabeza, M.; Bratoeff, E.; Heuze, I.; Sánchez, M.; Ramírez, E.; Naranjorodríguez, E. New 5α-reductase inhibitors: In vitro and in vivo effects. Steroids, 2005, 70(3), 217-224.
[http://dx.doi.org/10.1016/j.steroids.2004.11.008] [PMID: 15763601]
[105]
Bratoeff, E.; Cabeza, M.; Pérez-Ornelas, V.; Recillas, S.; Heuze, I. In vivo and in vitro effect of novel 4,16-pregnadiene-6,20-dione derivatives, as 5α-reductase inhibitors. J. Steroid Biochem. Mol. Biol., 2008, 111(3-5), 275-281.
[http://dx.doi.org/10.1016/j.jsbmb.2008.06.014] [PMID: 18644453]
[106]
Cabeza, M.; Bratoeff, E.; Ramírez, E.; Heuze, I.; Recillas, S.; Berrios, H.; Cruz, A.; Cabrera, O.; Pérez, V. Biological activity of novel progesterone derivatives having a bulky ester side chains at C-3. Steroids, 2008, 73(8), 838-843.
[http://dx.doi.org/10.1016/j.steroids.2008.03.006] [PMID: 18472120]
[107]
Cabeza, M.; Bratoeff, E.; Gómez, G.; Heuze, I.; Rojas, A.; Ochoa, M.; Palomino, M.A.; Revilla, C. Synthesis and biological effect of halogen substituted phenyl acetic acid derivatives of progesterone as potent progesterone receptor antagonists. J. Steroid Biochem. Mol. Biol., 2008, 111(3-5), 232-239.
[http://dx.doi.org/10.1016/j.jsbmb.2008.06.011] [PMID: 18625316]
[108]
Bratoeff, E.; Sainz, T.; Cabeza, M.; Heuze, I.; Recillas, S.; Pérez, V.; Rodríguez, C.; Segura, T.; Gonzáles, J.; Ramírez, E. Steroids with a carbamate function at C-17, a novel class of inhibitors for human and hamster steroid 5α-reductase. J. Steroid Biochem. Mol. Biol., 2007, 107(1-2), 48-56.
[http://dx.doi.org/10.1016/j.jsbmb.2007.03.038] [PMID: 17629476]
[109]
Arellano, Y.; Bratoeff, E.; Garrido, M.; Soriano, J.; Heuze, Y.; Cabeza, M. New ester derivatives of dehydroepiandrosterone as 5α-reductase inhibitors. Steroids, 2011, 76(12), 1241-1246.
[http://dx.doi.org/10.1016/j.steroids.2011.05.015] [PMID: 21729714]
[110]
Garrido, M.; Bratoeff, E.; Bonilla, D.; Soriano, J.; Heuze, Y.; Cabeza, M. New steroidal lactones as 5α-reductase inhibitors and antagonists for the androgen receptor. J. Steroid Biochem. Mol. Biol., 2011, 127(3-5), 367-373.
[http://dx.doi.org/10.1016/j.jsbmb.2011.07.001] [PMID: 21782943]
[111]
Di Silverio, F.; Flammia, G.P.; Sciarra, A.; Caponera, M.; Mauro, M.; Buscarini, M.; Tavani, M.; D’Eramo, G. Plant extracts in BPH. Minerva Urol. Nefrol., 1993, 45(4), 143-149.
[PMID: 7517582]
[112]
Buck, A. C. Phytotherapy for the prostate. Brit. J. Urol., 1996, 78(3), 325-336.
[http://dx.doi.org/10.1046/j.1464-410X.1996.00104.x]
[113]
Ishani, A.; MacDonald, R.; Nelson, D.; Rutks, I.; Wilt, T.J. Pygeum africanum for the treatment of patients with benign prostatic hyperplasia: A systematic review and quantitative meta-analysis. Am. J. Med., 2000, 109(8), 654-664.
[http://dx.doi.org/10.1016/S0002-9343(00)00604-5] [PMID: 11099686]
[114]
Bales, G.T.; Christiano, A.P.; Kirsh, E.J.; Gerber, G.S. Phytotherapeutic agents in the treatment of lower urinary tract symptoms: A demographic analysis of awareness and use at the University of Chicago. Urology, 1999, 54(1), 86-89.
[http://dx.doi.org/10.1016/S0090-4295(99)00028-X] [PMID: 10414732]
[115]
Carraro, J.C.; Raynaud, J.P.; Koch, G.; Chisholm, G.D.; Di Silverio, F.; Teillac, P.; Da Silva, F.C.; Cauquil, J.; Chopin, D.K.; Hamdy, F.C.; Hanus, M.; Hauri, D.; Kalinteris, A.; Marencak, J.; Perier, A.; Perrin, P. Comparison of phytotherapy (Permixon®) with finasteride in the treatment of benign prostate hyperplasia: A randomized international study of 1,098 patients. Prostate, 1996, 29(4), 231-240.
[http://dx.doi.org/10.1002/(SICI)1097-0045(199610)29:4<231::AID-PROS4>3.0.CO;2-E] [PMID: 8876706]
[116]
Wilt, T.J.; Ishani, A.; Stark, G.; MacDonald, R.; Lau, J.; Mulrow, C. Saw palmetto extracts for treatment of benign prostatic hyperplasia: A systematic review. JAMA, 1998, 280(18), 1604-1609.
[http://dx.doi.org/10.1001/jama.280.18.1604] [PMID: 9820264]
[117]
Morzycki, J.W.; Sicinski, R.R. Synthesis of 6,7-diazacholestane derivatives. Acta Chir. Hung., 1985, 120(4), 239-246.
[118]
Wilt, T.J.; Ishani, A.; Rutks, I.; MacDonald, R. Phytotherapy for benign prostatic hyperplasia. Public Health Nutr., 2000, 3(4a), 459-472.
[http://dx.doi.org/10.1017/S1368980000000549] [PMID: 11276294]
[119]
Marks, L.S.; Hess, D.L.; Dorey, F.J.; Luz Macairan, M.; Cruz Santos, P.B.; Tyler, V.E. Tissue effects of saw palmetto and finasteride: use of biopsy cores for in situ quantification of prostatic androgens. Urology, 2001, 57(5), 999-1005.
[http://dx.doi.org/10.1016/S0090-4295(00)01052-9] [PMID: 11337315]
[120]
Cabeza, M.; Bratoeff, E.; Heuze, I.; Ramírez, E.; Sánchez, M.; Flores, E. Effect of beta-sitosterol as inhibitor of 5 α-reductase in hamster prostate. Proc. West. Pharmacol. Soc., 2003, 46, 153-155.
[PMID: 14699915]
[121]
Kadow, C.; Abrams, P.H. A double-blind trial of the effect of β-sitosteryl glucoside (WA184) in the treatment of benign prostatic hyperplasia. Eur. Urol., 1986, 12(3), 187-189.
[http://dx.doi.org/10.1159/000472613] [PMID: 2423337]
[122]
Berges, R.R.; Windeler, J.; Trampisch, H.J.; Senge, T. β-sitosterol study, Randomized, placebo-controlled, double-blind clinical trial of β-sitosterol in patients with benign prostatic hyperplasia. Lancet, 1995, 345(8964), 1529-1532.
[http://dx.doi.org/10.1016/S0140-6736(95)91085-9] [PMID: 7540705]
[123]
Cambronero, J.; Osca-García, J.M.; Merino-Salas, S.; Miguel, J.M.; Borralleras, C.; López-Alcina, E. Effectiveness of treatment with Pygeum africanum in patients with lower urinary tract symptoms and benign prostatic hyperplasia: A cross-sectional study in the real-world clinical practice in Spain (The PROFIT Study). Arch. Esp. Urol., 2022, 75(3), 219-227.
[PMID: 35435166]
[124]
Schleich, S.; Papaioannou, M.; Baniahmad, A.; Matusch, R. Extracts from Pygeum africanum and other ethnobotanical species with antiandrogenic activity. Planta Med., 2006, 72(9), 807-813.
[http://dx.doi.org/10.1055/s-2006-946638] [PMID: 16783690]
[125]
Shenouda, N.S.; Sakla, M.S.; Newton, L.G.; Besch-Williford, C.; Greenberg, N.M.; MacDonald, R.S.; Lubahn, D.B. Phytosterol Pygeum africanum regulates prostate cancer in vitro and in vivo. Endocr. J., 2007, 31(1), 72-81.
[http://dx.doi.org/10.1007/s12020-007-0014-y] [PMID: 17709901]
[126]
Wang, T.; Xie, Z.; Huang, Z.; Li, H.; Wei, A.; Di, J.; Xiao, H.; Zhang, Z.; Cai, L.; Tao, X.; Qi, T.; Chen, D.; Chen, J. Total triterpenoids from Ganoderma lucidum suppresses prostate cancer cell growth by inducing growth arrest and apoptosis. J. Huazhong Univ. Sci. Technolog. Med. Sci., 2015, 35(5), 736-741.
[http://dx.doi.org/10.1007/s11596-015-1499-x] [PMID: 26489631]
[127]
Fujita, R.; Liu, J.; Shimizu, K.; Konishi, F.; Noda, K.; Kumamoto, S.; Ueda, C.; Tajiri, H.; Kaneko, S.; Suimi, Y.; Kondo, R. Anti-androgenic activities of Ganoderma lucidum. J. Ethnopharmacol., 2005, 102(1), 107-112.
[http://dx.doi.org/10.1016/j.jep.2005.05.041] [PMID: 16029938]
[128]
Liu, J.; Shimizu, K.; Konishi, F.; Kumamoto, S.; Kondo, R. The anti-androgen effect of ganoderol B isolated from the fruiting body of Ganoderma lucidum. Bioorg. Med. Chem., 2007, 15(14), 4966-4972.
[http://dx.doi.org/10.1016/j.bmc.2007.04.036] [PMID: 17499997]
[129]
Loyd, A.L.; Barnes, C.W.; Held, B.W.; Schink, M.J.; Smith, M.E.; Smith, J.A.; Blanchette, R.A. Elucidating “lucidum”: Distinguishing the diverse laccate Ganoderma species of the United States. PLoS One, 2018, 13(7), e0199738.
[http://dx.doi.org/10.1371/journal.pone.0199738] [PMID: 30020945]
[130]
Frigo, D.E.; Howe, M.K.; Wittmann, B.M.; Brunner, A.M.; Cushman, I.; Wang, Q.; Brown, M.; Means, A.R.; McDonnell, D.P. CaM kinase kinase beta-mediated activation of the growth regulatory kinase AMPK is required for androgen-dependent migration of prostate cancer cells. Cancer Res., 2011, 71(2), 528-537.
[http://dx.doi.org/10.1158/0008-5472.CAN-10-2581] [PMID: 21098087]
[131]
Eidelman, E.; Twum-Ampofo, J.; Ansari, J.; Siddiqui, M.M. The metabolic phenotype of prostate cancer. Front. Oncol., 2017, 7, 131.
[http://dx.doi.org/10.3389/fonc.2017.00131] [PMID: 28674679]
[132]
Ryan, C.J.; Smith, A.; Lal, P.; Satagopan, J.; Reuter, V.; Scardino, P.; Gerald, W.; Scher, H.I. Persistent prostate-specific antigen expression after neoadjuvant androgen depletion: An early predictor of relapse or incomplete androgen suppression. Urology, 2006, 68(4), 834-839.
[http://dx.doi.org/10.1016/j.urology.2006.04.016] [PMID: 17070363]
[133]
Hyytinen, E.R.; Haapala, K.; Thompson, J.; Lappalainen, I.; Roiha, M.; Rantala, I.; Helin, H.J.; Jänne, O.A.; Vihinen, M.; Palvimo, J.J.; Koivisto, P.A. Pattern of somatic androgen receptor gene mutations in patients with hormone-refractory prostate cancer. Lab. Invest., 2002, 82(11), 1591-1598.
[http://dx.doi.org/10.1097/01.LAB.0000038924.67707.75] [PMID: 12429819]
[134]
Buskiewicz, I.A.; Huber, S.A.; Fairweather, D. Sex hormone receptor expression in the immune system. In: Sex Differences in Physiology; Neigh, G.N.; Mitzelfelt, M.M., Eds.; Academic Press, 2016; pp. 45-60.
[http://dx.doi.org/10.1016/B978-0-12-802388-4.00004-5]
[135]
Roden, A.C.; Moser, M.T.; Tri, S.D.; Mercader, M.; Kuntz, S.M.; Dong, H.; Hurwitz, A.A.; McKean, D.J.; Celis, E.; Leibovich, B.C.; Allison, J.P.; Kwon, E.D. Augmentation of T cell levels and responses induced by androgen deprivation. J. Immunol., 2004, 173(10), 6098-6108.
[http://dx.doi.org/10.4049/jimmunol.173.10.6098] [PMID: 15528346]
[136]
Kissick, H.T.; Sanda, M.G.; Dunn, L.K.; Pellegrini, K.L.; On, S.T.; Noel, J.K.; Arredouani, M.S. Androgens alter T- cell immunity by inhibiting T-helper 1 differentiation. Proc. Natl. Acad. Sci., 2014, 111(27), 9887-9892.
[http://dx.doi.org/10.1073/pnas.1402468111] [PMID: 24958858]
[137]
Drake, C.G.; Doody, A.D.H.; Mihalyo, M.A.; Huang, C.T.; Kelleher, E.; Ravi, S.; Hipkiss, E.L.; Flies, D.B.; Kennedy, E.P.; Long, M.; McGary, P.W.; Coryell, L.; Nelson, W.G.; Pardoll, D.M.; Adler, A.J. Androgen ablation mitigates tolerance to a prostate/prostate cancer-restricted antigen. Cancer Cell, 2005, 7(3), 239-249.
[http://dx.doi.org/10.1016/j.ccr.2005.01.027] [PMID: 15766662]
[138]
Olsen, N.J.; Gu, X.; Kovacs, W.J. Bone marrow stromal cells mediate androgenic suppression of B lymphocyte development. J. Clin. Invest., 2001, 108(11), 1697-1704.
[http://dx.doi.org/10.1172/JCI200113183] [PMID: 11733565]
[139]
Mercader, M.; Bodner, B.K.; Moser, M.T.; Kwon, P.S.; Park, E.S.Y.; Manecke, R.G.; Ellis, T.M.; Wojcik, E.M.; Yang, D.; Flanigan, R.C.; Waters, W.B.; Kast, W.M.; Kwon, E.D. T cell infiltration of the prostate induced by androgen withdrawal in patients with prostate cancer. Proc. Natl. Acad. Sci., 2001, 98(25), 14565-14570.
[http://dx.doi.org/10.1073/pnas.251140998] [PMID: 11734652]
[140]
Singh, M.; Jha, R.; Melamed, J.; Shapiro, E.; Hayward, S.W.; Lee, P. Stromal androgen receptor in prostate development and cancer. Am. J. Pathol., 2014, 184(10), 2598-2607.
[http://dx.doi.org/10.1016/j.ajpath.2014.06.022] [PMID: 25088980]
[141]
Lin, M.C.; Rajfer, J.; Swerdloff, R.S.; González-Cadavid, N.F. Testosterone down-regulates the levels of androgen receptor mRNA in smooth muscle cells from the rat corpora cavernosa via aromatization to estrogens. J. Steroid Biochem. Mol. Biol., 1993, 45(5), 333-43.
[http://dx.doi.org/10.1016/0960-0760(93)90002-e] [PMID: 8499343]
[142]
Sehgal, P.D.; Bauman, T.M.; Nicholson, T.M.; Vellky, J.E.; Ricke, E.A.; Tang, W.; Xu, W.; Huang, W.; Ricke, W.A. Tissue-specific quantification and localization of androgen and estrogen receptors in prostate cancer. Hum. Pathol., 2019, 89, 99-108.
[http://dx.doi.org/10.1016/j.humpath.2019.04.009] [PMID: 31054895]
[143]
Barsouk, A.; Padala, S.A.; Vakiti, A.; Mohammed, A.; Saginala, K.; Thandra, K.C.; Rawla, P.; Barsouk, A. Epidemiology, staging and management of prostate cancer. Med. Sci., 2020, 8(3), 28.
[http://dx.doi.org/10.3390/medsci8030028] [PMID: 32698438]
[144]
Vrecl, M.; Heding, A.; Hanyaloglu, A.; Taylor, P.L.; Eidne, K.A. Internalization kinetics of the gonadotropin-releasing hormone (GnRH) receptor. Pflugers Arch., 2000, 439(S1), r019-r020.
[http://dx.doi.org/10.1007/s004240000075] [PMID: 28176059]
[145]
Branigan, G.L.; Torrandell-Haro, G.; Soto, M.; Gelmann, E.P.; Vitali, F.; Rodgers, K.E.; Brinton, R.D. Androgen- targeting therapeutics mitigate the adverse effect of GNRH agonist on the risk of neurodegenerative disease in men treated for prostate cancer. Cancer Med., 2022, 11(13), 2687-2698.
[http://dx.doi.org/10.1002/cam4.4650] [PMID: 35293700]
[146]
LiverTox: Clinical and Research Information on Drug-Induced Liver Injury. Bethesda (MD): National Institute of Diabetes and Digestive and Kidney Diseases. 2012.
[PMID: 31643176]
[147]
de Bono, J.S.; Logothetis, C.J.; Molina, A.; Fizazi, K.; North, S.; Chu, L.; Chi, K.N.; Jones, R.J.; Goodman, O.B., Jr; Saad, F.; Staffurth, J.N.; Mainwaring, P.; Harland, S.; Flaig, T.W.; Hutson, T.E.; Cheng, T.; Patterson, H.; Hainsworth, J.D.; Ryan, C.J.; Sternberg, C.N.; Ellard, S.L.; Fléchon, A.; Saleh, M.; Scholz, M.; Efstathiou, E.; Zivi, A.; Bianchini, D.; Loriot, Y.; Chieffo, N.; Kheoh, T.; Haqq, C.M.; Scher, H.I. Abiraterone and increased survival in metastatic prostate cancer. N. Engl. J. Med., 2011, 364(21), 1995-2005.
[http://dx.doi.org/10.1056/NEJMoa1014618] [PMID: 21612468]
[148]
Nuhn, P.; De Bono, J.S.; Fizazi, K.; Freedland, S.J.; Grilli, M.; Kantoff, P.W.; Sonpavde, G.; Sternberg, C.N.; Yegnasubramanian, S.; Antonarakis, E.S. Update on systemic prostate cancer therapies: Management of metastatic castration-resistant prostate cancer in the era of precision oncology. Eur. Urol., 2019, 75(1), 88-99.
[http://dx.doi.org/10.1016/j.eururo.2018.03.028] [PMID: 29673712]
[149]
Moreira, R.B.; Debiasi, M.; Francini, E.; Nuzzo, P.V.; Velasco, G.D.; Maluf, F.C.; Fay, A.P.; Bellmunt, J.; Choueiri, T.K.; Schutz, F.A. Differential side effects profile in patients with mCRPC treated with abiraterone or enzalutamide: A meta-analysis of randomized controlled trials. Oncotarget, 2017, 8(48), 84572-84578.
[http://dx.doi.org/10.18632/oncotarget.20028] [PMID: 29137449]
[150]
Acharya, M.; González, M.; Mannens, G.; De Vries, R.; López, C.; Griffin, T.; Tran, N. A phase I, open-label, single-dose, mass balance study of 14C-labeled abiraterone acetate in healthy male subjects. Xenobiotica, 2013, 43(4), 379-389.
[http://dx.doi.org/10.3109/00498254.2012.721022] [PMID: 23020788]
[151]
Wang, L.; Paller, C.J.; Hong, H.; De Felice, A.; Alexander, G.C.; Brawley, O. Comparison of systemic treatments for metastatic castration-sensitive prostate cancer: A systematic review and network meta-analysis. JAMA Oncol., 2021, 7(3), 412-420.
[http://dx.doi.org/10.1001/jamaoncol.2020.6973]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy