Review Article

无金属催化Knoevenagel反应在药物化学中的重要性?最新的回顾

卷 31, 期 27, 2024

发表于: 12 January, 2024

页: [4286 - 4311] 页: 26

弟呕挨: 10.2174/0109298673260463231122074253

价格: $65

摘要

Knoevenagel缩合反应是碳-碳键转化过程中重要的一步。这些缩合物为聚合物、化妆品、化学工业和药物化学的各种用途提供了通用的产品/中间体。各种均相和多相催化剂均可促进Knoevenagel缩合反应,既环保又经济。由于它们在药物生产中具有吸引力的用途,它们被证明是推动涉及许多多组分和多步骤反应的合成的主要力量。因此,本研究旨在总结已报道的利用无金属催化剂的Knoevenagel缩合反应,从而产生具有抗癌、抗肿瘤、抗氧化、抗疟疾、抗糖尿病和抗菌活性的药用化合物。通过考虑它们的构效关系(SAR)、反应条件和所涉及的步骤等因素,以及特定方法的优点和局限性,我们还提供了一个总体框架和方向,以实现催化剂的优越特性。

关键词: Knoevenagel冷凝、抗癌、抗菌、抗氧化、抗病毒、降糖。

Zhang Z.; Nie X.; Wang F.; Chen G.; Huang W.Q.; Xia L.; Zhang W.J.; Hao Z.Y.; Hong C.Y.; Wang L.H.; You Y.Z.; Rhodanine-based Knoevenagel reaction and ring-opening polymerization for efficiently constructing multicyclic polymers. Nat Commun 2020,11(1),3654 10.1038/s41467-020-17474-0 32694628 Long N.; Le Gresley A.; Wren S.P.; Thiazolidinediones: An in-depth study of their synthesis and application to medicinal chemistry in the treatment of diabetes mellitus. ChemMedChem 2021,16(11),1717-1736 10.1002/cmdc.202100177 33844475 Bora D.; Kaushal A.; Shankaraiah N.; Anticancer potential of spirocompounds in medicinal chemistry: A pentennial expedition. Eur J Med Chem 2021,215,113263 10.1016/j.ejmech.2021.113263 33601313 Dhakshinamoorthy A.; Jacob M.; Vignesh N.S.; Varalakshmi P.; Pristine and modified chitosan as solid catalysts for catalysis and biodiesel production: A minireview. Int J Biol Macromol 2021,167,807-833 10.1016/j.ijbiomac.2020.10.216 33144253 Veerakumar P; Thanasekaran P; Subburaj T; Lin K-C; A metal-free carbon-based catalyst: An overview and directions for future research. C 2018,4(4),54 10.3390/c4040054 Johari S.; Johan M.R.; Khaligh N.G.; An overview of metal-free sustainable nitrogen-based catalytic knoevenagel condensation reaction. Org Biomol Chem 2022,20(11),2164-2186 10.1039/D2OB00135G 35225313 Badiger K.B.; Kamanna K.; Knoevenagel condensation reaction catalysed by agro-waste extract as a greener solvent catalyst. Organic Communications 2021,14(1),81-91 10.25135/acg.oc.99.21.01.1948 Tokala R.; Bora D.; Shankaraiah N.; Contribution of knoevenagel condensation products toward the development of anticancer agents: An updated review. ChemMedChem 2022,17(8),e202100736 10.1002/cmdc.202100736 35226798 Heravi MM.; Janati F.; Zadsirjan, V Applications of Knoevenagel condensation reaction in the total synthesis of natural products. Monatshefte Für Chemie - Chem. Mon 2020,151,439-482 10.1007/s00706-020-02586-6 Johari S.; Zaharani L.; Gorjian H.; Johan M.R.; Khaligh N.G.; A novel sublimable organic salt: Synthesis, characterization, thermal behavior, and catalytic activity for the synthesis of arylidene, heteroarylidene, and alkylidene malonates. Res Chem Intermed 2022,48(1),361-377 10.1007/s11164-021-04587-4 Hassanzadeh F.; Daneshvar N.; Shirini F.; Mamaghani M.; Introduction of a new bis-derivative of succinimide (Bis-Su) as a sustainable and efficient basic organo-catalyst for the synthesis of arylidene malononitrile and tetrahydrobenzo[b]pyran derivatives under green conditions. Res Chem Intermed 2020,46(11),4971-4984 10.1007/s11164-020-04235-3 van Schijndel J.; Canalle L.A.; Molendijk D.; Meuldijk J.; The green Knoevenagel condensation: solvent-free condensation of benzaldehydes. Green Chem Lett Rev 2017,10(4),404-411 10.1080/17518253.2017.1391881 Sahu P.K.; Sahu P.K.; Kaurav M.S.; Messali M.; Almutairi S.M.; Sahu P.L.; Agarwal D.D.; Metal-free construction of fused pyrimidines via consecutive C–C and C–N bond formation in water. ACS Omega 2018,3(11),15035-15042 10.1021/acsomega.8b01993 31458170 Sadjadi S.; Koohestani F.; Bentonite with high loading of ionic liquid: A potent non-metallic catalyst for the synthesis of dihydropyrimidinones. J Mol Liq 2020,319,114393 10.1016/j.molliq.2020.114393 Nayl A.A.; Arafa W.A.A.; Ahmed I.M.; Abd-Elhamid A.I.; El-Fakharany E.M.; Abdelgawad M.A.; Gomha S.M.; Ibrahim H.M.; Aly A.A.; Bräse S.; Mourad A.K.; Novel pyridinium based ionic liquid promoter for aqueous knoevenagel condensation: Green and efficient synthesis of new derivatives with their anticancer evaluation. Molecules 2022,27(9),2940 10.3390/molecules27092940 35566291 Smith E.L.; Abbott A.P.; Ryder K.S.; Deep eutectic solvents (DESs) and their applications. Chem Rev 2014,114(21),11060-11082 10.1021/cr300162p 25300631 Liu P.; Hao J.W.; Mo L.P.; Zhang Z.H.; Recent advances in the application of deep eutectic solvents as sustainable media as well as catalysts in organic reactions. RSC Advances 2015,5(60),48675-48704 10.1039/C5RA05746A Srivastava S.; Knoevenagel condensation and michael addition in bio‐renewable deep eutectic solvent: facile synthesis of a library of bis‐enol derivatives. ChemistrySelect 2020,5(2),799-803 10.1002/slct.201904806 Wang Y.; Yao Q.X.; He J.R.; Liang Z.H.; Li X.; Cheng H.; Li L-L.; L-proline-catalyzed Knoevenagel reaction promoted by choline chloride-based deep eutectic solvents. Biomass Convers Biorefin 2022,12(S1),87-93 10.1007/s13399-021-01747-9 Navudu R.; Mannem G.R.; Margani T.; Rao Vanga U.M.; Bollikolla H.B.; Synthesis, anticancer and antioxidant evaluation of some new 2-Aryl and 2-Pyrazole-2,3-dihydroquinazolin-4(1H)-ones. Asian J Chem 2016,28(6),1321-1324 10.14233/ajchem.2016.19676 Guchhait S.K.; Sisodiya S.; Saini M.; Shah Y.V.; Kumar G.; Daniel D.P.; Hura N.; Chaudhary V.; Synthesis of polyfunctionalized pyrroles via a tandem reaction of michael addition and intramolecular cyanide-mediated nitrile-to-nitrile condensation. J Org Chem 2018,83(10),5807-5815 10.1021/acs.joc.8b00465 29671317 Porter D.W.; Bradley M.; Brown Z.; Charlton S.J.; Cox B.; Hunt P.; Janus D.; Lewis S.; Oakley P.; O’Connor D.; Reilly J.; Smith N.; Press N.J.; The discovery of potent, orally bioavailable pyrimidine-5-carbonitrile-6-alkyl CXCR2 receptor antagonists. Bioorg Med Chem Lett 2014,24(15),3285-3290 10.1016/j.bmcl.2014.06.011 24974342 Ata A.; Synthesis and biological evaluation of benzothiazole derivatives of pyrimidines, acrylonitriles, and coumarins. Heterocycles 2006,68,347 10.3987/COM-05-10609 Bolikolla H.B.; Merugu S.K.; Improved knoevenagel condensation protocol for the synthesis of cyanoacrylates and their anticancer activity. J Mex Chem Soc 2023,67(1),60-69 10.29356/jmcs.v67i1.1835 Jadhav C.K.; Nipate A.S.; Chate A.V.; Dofe V.S.; Sangshetti J.N.; Khedkar V.M.; Gill C.H.; Rapid construction of substituted dihydrothiophene ureidoformamides at room temperature using diisopropyl ethyl ammonium acetate: A green perspective. ACS Omega 2020,5(45),29055-29067 10.1021/acsomega.0c03575 33225136 Onteddu R.S.; Mutchu R.B.; Thripuram D.V.; Chandu B.; Chavakula L.R.; Golkonda R.M.; Kotra V.; Bollikolla B.H.; Synthesis and anticancer activity of some new 2‐benzyloxy‐5‐alkyne substituted pyrimidines: An application to sonogashira coupling. ChemistrySelect 2020,5(27),8194-8197 10.1002/slct.202001668 Jadhav C.K.; Nipate A.S.; Chate A.V.; Songire V.D.; Patil A.P.; Gill C.H.; Efficient rapid access to biginelli for the multicomponent synthesis of 1,2,3,4-tetrahydropyrimidines in room-temperature diisopropyl ethyl ammonium acetate. ACS Omega 2019,4(27),22313-22324 10.1021/acsomega.9b02286 31909314 Sui G.; Li T.; Zhang B.; Wang R.; Hao H.; Zhou W.; Recent advances on synthesis and biological activities of aurones. Bioorg Med Chem 2021,29,115895 10.1016/j.bmc.2020.115895 33271454 Mazziotti I.; Petrarolo G.; La Motta C.; Aurones: A golden resource for active compounds. Molecules 2021,27(1),2 10.3390/molecules27010002 35011233 Alsayari A.; Muhsinah A.B.; Hassan M.Z.; Ahsan M.J.; Alshehri J.A.; Begum N.; Aurone: A biologically attractive scaffold as anticancer agent. Eur J Med Chem 2019,166,417-431 10.1016/j.ejmech.2019.01.078 30739824 Popova A.V.; Bondarenko S.P.; Frasinyuk M.S.; Aurones: Synthesis and properties. Chem Heterocycl Compd 2019,55(4-5),285-299 10.1007/s10593-019-02457-x Hassan G.S.; Georgey H.H.; George R.F.; Mohamed E.R.; Aurones and furoaurones: Biological activities and synthesis. Bull Fac Pharm Cairo Univ 2018,56(2),121-127 10.1016/j.bfopcu.2018.06.002 Harkat H.; Weibel J.; Pale P.; Chimie I; De ; Uni V.; Pasteur L; Versatile and expeditious synthesis of aurones via Au I-catalyzed cyclization. J Org Chem 2008,73(4),1620-1623 Taylor C.; Bolshan Y.; Metal-free methodology for the preparation of sterically hindered alkynoylphenols and its application to the synthesis of flavones and aurones. Tetrahedron Lett 2015,56(29),4392-4396 10.1016/j.tetlet.2015.05.097 Karadendrou M.A.; Kostopoulou I.; Kakokefalou V.; Tzani A.; Detsi A.; L-proline-based natural deep eutectic solvents as efficient solvents and catalysts for the ultrasound-assisted synthesis of aurones via knoevenagel condensation. Catalysts 2022,12(3),249 10.3390/catal12030249 Jeon R.; Park S.; Synthesis and biological activity of Benzoxazole containing thiazolidinedione derivatives. Arch Pharm Res 2004,27(11),1099-1105 10.1007/BF02975111 15595409 Bireddy S.R.; Konkala V.S.; Godugu C.; Dubey P.K.; A review on the synthesis and biological studies of 2,4-thiazolidinedione derivatives. Mini Rev Org Chem 2020,17(8),958-974 10.2174/1570193X17666200221123633 Nastasă C.; Tiperciuc B.; Pârvu A.; Duma M.; Ionuţ I.; Oniga O.; Synthesis of new N-substituted 5-arylidene-2,4-thiazolidinediones as anti-inflammatory and antimicrobial agents. Arch Pharm 2013,346(6),481-490 10.1002/ardp.201300021 23666636 Maccari R.; Ottanà R.; Ciurleo R.; Vigorita M.G.; Rakowitz D.; Steindl T.; Langer T.; Evaluation of in vitro aldose redutase inhibitory activity of 5-arylidene-2,4-thiazolidinediones. Bioorg Med Chem Lett 2007,17(14),3886-3893 10.1016/j.bmcl.2007.04.109 17512196 Steinrück H.P.; Wasserscheid P.; Ionic liquids in catalysis. Catal Lett 2015,145(1),380-397 10.1007/s10562-014-1435-x McNeice P.; Marr P.C.; Marr A.C.; Basic ionic liquids for catalysis: The road to greater stability. Catal Sci Technol 2021,11(3),726-741 10.1039/D0CY02274H Singh S.K.; Savoy A.W.; Ionic liquids synthesis and applications: An overview. J Mol Liq 2019,297,110238 10.1016/j.molliq.2019.112038 Nasirpour N.; Mohammadpourfard M.; Zeinali Heris S.; Ionic liquids: Promising compounds for sustainable chemical processes and applications. Chem Eng Res Des 2020,160,264-300 10.1016/j.cherd.2020.06.006 Talegaonkar R; Mohammad N; Ionic liquid mediated synthesis of 5-arylidine-2 , 4- thiazolidinedionesand antibacterial evaluation. 2022,10,56-60 Thorat B.R.; Nagre D.T.; Dhurandhar P.P.; Borase P.K.; Bavkar S.; Kasar R.R.; Narkar R.D.; Farooqui M.; Mali S.N.; L-proline catalyzed knoevenagel condensation of aldehydes with active methylene compounds and their molecular modeling studies for anti-SARS CoV-2 potentials. Curr Enzym Inhib 2022,18(2),145-159 10.2174/1573408018666220516104525 Mohammadi Ziarani G.; Moradi R.; Ahmadi T.; Gholamzadeh P.; The molecular diversity scope of 4-hydroxycoumarin in the synthesis of heterocyclic compounds via multicomponent reactions. Mol Divers 2019,23(4),1029-1064 10.1007/s11030-019-09918-7 30697671 Gill R.K.; Rawal R.K.; Bariwal J.; Recent advances in the chemistry and biology of benzothiazoles. Arch Pharm 2015,348(3),155-178 10.1002/ardp.201400340 25682746 Irfan A.; Batool F.; Zahra Naqvi S.A.; Islam A.; Osman S.M.; Nocentini A.; Alissa S.A.; Supuran C.T.; Benzothiazole derivatives as anticancer agents. J Enzyme Inhib Med Chem 2020,35(1),265-279 10.1080/14756366.2019.1698036 31790602 Sunderhaus J.D.; Martin S.F.; Applications of multicomponent reactions to the synthesis of diverse heterocyclic scaffolds. Chemistry 2009,15(6),1300-1308 10.1002/chem.200802140 19132705 Malinakova H.; Recent advances in the discovery and design of multicomponent reactions for the generation of small-molecule libraries. Reports Org Chem 2015,75,75 10.2147/ROC.S65115 Kadam P.R.; Bodke Y.D.; Naik M.D.; Nagaraja O.; Manjunatha B.; One-pot three-component synthesis of thioether linked 4-hydroxycoumarin-benzothiazole derivatives under ambient condition and evaluation of their biological activity. Results Chem 2022,4,100303 10.1016/j.rechem.2022.100303 Patil V.; Tilekar K.; Mehendale-Munj S.; Mohan R.; Ramaa C.S.; Synthesis and primary cytotoxicity evaluation of new 5-benzylidene-2,4-thiazolidinedione derivatives. Eur J Med Chem 2010,45(10),4539-4544 10.1016/j.ejmech.2010.07.014 20667627 Havrylyuk D.; Zimenkovsky B.; Vasylenko O.; Day C.W.; Smee D.F.; Grellier P.; Lesyk R.; Synthesis and biological activity evaluation of 5-pyrazoline substituted 4-thiazolidinones. Eur J Med Chem 2013,66,228-237 10.1016/j.ejmech.2013.05.044 23811085 Alegaon S.G.; Alagawadi K.R.; New thiazolidinedione-5-acetic acid amide derivatives: Synthesis, characterization and investigation of antimicrobial and cytotoxic properties. Med Chem Res 2012,21(6),816-824 10.1007/s00044-011-9598-0 Zimenkovskii B.S.; Kutsyk R.V.; Lesyk R.B.; Matyichuk V.S.; Obushak N.D.; Klyufinska T.I.; Synthesis and antimicrobial activity of 2,4-dioxothiazolidine-5-acetic acid amides. Pharm Chem J 2006,40(6),303-306 10.1007/s11094-006-0115-6 Rakowitz D.; Maccari R.; Ottanà R.; Vigorita M.G.; In vitro aldose reductase inhibitory activity of 5-benzyl-2,4-thiazolidinediones. Bioorg Med Chem 2006,14(2),567-574 10.1016/j.bmc.2005.08.056 16202614 Sucheta T.S.; Tahlan S.; Verma P.K.; Biological potential of thiazolidinedione derivatives of synthetic origin. Chem Cent J 2017,11(1),130 10.1186/s13065-017-0357-2 29222671 Kumar P.; Asati V.; Choubey A.; Synthesis and characterization of novel 3-(aminomethyl)5-benzylidenethiazolin-dine-2,4-dione derivatives as anticancer agents. Int J Adv Sci Res 2021,12(4),154-164 10.55218/JASR.202112420 Kaur R.; Kumar R.; Dogra N.; Kumar A.; Yadav A.K.; Kumar M.; Synthesis and studies of thiazolidinedione–isatin hybrids as α-glucosidase inhibitors for management of diabetes. Future Med Chem 2021,13(5),457-485 10.4155/fmc-2020-0022 33506699 El-Naggar M.; Eldehna W.; Almahli H.; Elgez A.; Fares M.; Elaasser M.; Abdel-Aziz H.; Novel thiazolidinone/thiazolo[3,2-a]benzimidazolone-isatin conjugates as apoptotic anti-proliferative agents towards breast cancer: One-pot synthesis and in vitro biological evaluation. Molecules 2018,23(6),1420 10.3390/molecules23061420 29895744 Hamzehloueian M.; Sarrafi Y.; Darroudi M.; Arani M.A.; Darestani R.N.; Safari F.; Synthesis, antibacterial and anticancer activities evaluation of new 4-thiazolidinone-indolin-2-one analogs. Biointerface Res Appl Chem 2021,12(6),8094-8104 10.33263/BRIAC126.80948104 Zhang R.R.; Liu J.; Zhang Y.; Hou M.Q.; Zhang M.Z.; Zhou F.; Zhang W.H.; Microwave-assisted synthesis and antifungal activity of novel coumarin derivatives: Pyrano[3,2- c]chromene-2,5-diones. Eur J Med Chem 2016,116,76-83 10.1016/j.ejmech.2016.03.069 27060759 Yavari I.; Askarian-Amiri M.; A synthesis of spiroindolo[2,1- b]quinazoline-6,2′-pyrido[2,1- b][1,3]oxazines from tryptanthrins and huisgen zwitterions. Synth Commun 2021,51,1-7 10.1080/00397911.2021.1899237 Kaur R.; Manjal S.K.; Rawal R.K.; Kumar K.; Recent synthetic and medicinal perspectives of tryptanthrin. Bioorg Med Chem 2017,25(17),4533-4552 10.1016/j.bmc.2017.07.003 28720329 Sadeghian Z.; Bayat M.; Safari F.; Synthesis and antitumor activity screening of spiro tryptanthrin-based heterocyclic compounds. Med Chem Res 2022,31(3),497-506 10.1007/s00044-022-02856-4 Araghi R.; Mirjalili B.B.F.; Zamani L.; Khabnadideh S.; Zomoridian K.; Faghih Z.; Arabi H.; Docking, synthesis and evaluation of the antifungal activity of pyrimido[4,5-b]quinolins. Iran J Pharm Res 2020,19(1),251-259 10.22037/ijpr.2020.1101010 32922484 Ranjbar S.; Edraki N.; Firuzi O.; Khoshneviszadeh M.; Miri R.; 5-Oxo-hexahydroquinoline: An attractive scaffold with diverse biological activities. Mol Divers 2019,23(2),471-508 10.1007/s11030-018-9886-4 30390186 Eghtedari M.; Azimzadeh Arani M.; Sarrafi Y.; Shafiei M.; Alimohammadi K.; Safari F.; Foroumadi A.; Synthesis and antitumor activity evaluation of novel pyrimidoquinoline derivatives. Polycycl Aromat Compd 2022,42(7),4359-4373 10.1080/10406638.2021.1892778 Küpeli Akkol E.; Genç Y.; Karpuz B.; Sobarzo-Sánchez E.; Capasso R.; Coumarins and coumarin-related compounds in pharmacotherapy of cancer. Cancers 2020,12(7),1959 10.3390/cancers12071959 32707666 Song X.F.; Fan J.; Liu L.; Liu X.F.; Gao F.; Coumarin derivatives with anticancer activities: An update. Arch Pharm 2020,353(8),2000025 10.1002/ardp.202000025 32383190 Gaber A.; Alsanie W.F.; Alhomrani M.; Alamri A.S.; El-Deen I.M.; Refat M.S.; Synthesis and characterization of some new coumarin derivatives as probable breast anticancer mcf-7 drugs. Crystals 2021,11(5),565 10.3390/cryst11050565 Pandey J.; Prajapati P.; Srivastava A.; Tandon P.; Sinha K.; Ayala A.P.; Bansal A.K.; Spectroscopic and molecular structure (monomeric and dimeric model) investigation of Febuxostat: A combined experimental and theoretical study. Spectrochim Acta A Mol Biomol Spectrosc 2018,203,1-12 10.1016/j.saa.2018.05.074 29852375 Pandey A.; Pandey A.; Dubey R.; Kant R.; Pandey J.; Synthesis and computational studies of potent antimicrobial and anticancer indolone scaffolds with spiro cyclopropyl moiety as a novel design element. J Indian Chem Soc 2022,99(7),100539 10.1016/j.jics.2022.100539 Sharma P.K.; Sharma H.P.; Chakole C.M.; Pandey J.; Chauhan M.K.; Application of vitamin E TPGS in ocular therapeutics - attributes beyond excipient. J Indian Chem Soc 2022,99(3),100387 10.1016/j.jics.2022.100387 Pandey A.; Dubey R.; Ravikant ; Pandey J.; Synthesis of uniquely substituted 4H-Chromeno[2,3-d] pyrimidin-2-one derivatives by l-Proline catalyzed green chemistry method. J Indian Chem Soc 2023,100(1),100862 10.1016/j.jics.2022.100862 Pratap R.; Ram V.J.; Natural and synthetic chromenes, fused chromenes, and versatility of dihydrobenzo[h]chromenes in organic synthesis. Chem Rev 2014,114(20),10476-10526 10.1021/cr500075s 25303539 Tanaka H.; Atsumi I.; Shirota O.; Sekita S.; Sakai E.; Sato M.; Murata J.; Murata H.; Darnaedi D.; Chen I.S.; Three new constituents from the roots of Erythrina variegata and their antibacterial activity against methicillin-resistant Staphylococcus aureus. Chem Biodivers 2011,8(3),476-482 10.1002/cbdv.201000068 21404431 Itokawa H.; Ibraheim Z.Z.; Qiao Y.F.; Takeya K.; Anthraquinones, naphthohydroquinones and naphthohydroquinone dimers from Rubia cordifolia and their cytotoxic activity. Chem Pharm Bull 1993,41(10),1869-1872 10.1248/cpb.41.1869 8281583 Khurana JM.; Nand B.; Saluja, P1, 8-Diazabicyclo [5. 4. 0] undec-7-ene: A highly efficient catalyst for one-pot synthesis of substituted tetrahydro-4 H-chromenes, tetrahydro [b] pyrans, pyrano [d] pyrimidines, and 4H-pyrans in aqueous medium. J Heterocycl Chem 2014,51(3),618-624 Thangamani A.; Grindstone chemistry: An efficient and green synthesis of 2-amino-4H-benzo[b]pyrans. J Appl Adv Res 2017,2,78-85 10.21839/jaar.2017.v2i2.65 Zanin L.L.; Jimenez D.E.Q.; de Jesus M.P.; Diniz L.F.; Ellena J.; Porto A.L.M.; Synthesis and X-ray crystal structures of polyfunctionalized 4H-chromene derivatives via tricomponent reaction with Knoevenagel adducts as intermediates in aqueous medium. J Mol Struct 2021,1223,129226 10.1016/j.molstruc.2020.129226 Strugstad M.; Despotovski S.; A summary of extraction, synthesis, properties, and potential uses of juglone: A literature review. BC J Ecosyst Manag 2013,13(3),1-16 10.22230/jem.2012v13n3a119 Tang Y.T.; Li Y.; Chu P.; Ma X.D.; Tang Z.Y.; Sun Z.L.; Molecular biological mechanism of action in cancer therapies: Juglone and its derivatives, the future of development. Biomed Pharmacother 2022,148,112785 10.1016/j.biopha.2022.112785 35272138 Lozynskyi A.V.; Kaminskyy D.V.; Romanchyshyn K.B.; Semenciv N.G.; Ogurtsov V.V.; Nektegayev I.O.; Lesyk R.B.; Screening of antioxidant and anti-inflammatory activities among thiopyrano[2,3-d]thiazoles. Biopolim Kletka 2015,31(2),131-137 10.7124/bc.0008D8 Kryshchyshyn A.; Roman O.; Lozynskyi A.; Lesyk R.; Thiopyrano[2,3-d]thiazoles as new efficient scaffolds in medicinal chemistry. Sci Pharm 2018,86(2),26 10.3390/scipharm86020026 29903979 Lozynskyi A.; Golota S.; Zimenkovsky B.; Atamanyuk D.; Gzella A.; Lesyk R.; Synthesis, anticancer and antiviral activities of novel thiopyrano[2,3-d]thiazole-6-carbalde-hydes. Phosphorus Sulfur Silicon Relat Elem 2016,191(9),1245-1249 10.1080/10426507.2016.1166108 Ivasechko I.; Lozynskyi A.; Senkiv J.; Roszczenko P.; Kozak Y.; Finiuk N.; Klyuchivska O.; Kashchak N.; Manko N.; Maslyak Z.; Lesyk D.; Karkhut A.; Polovkovych S.; Czarnomysy R.; Szewczyk O.; Kozytskiy A.; Karpenko O.; Khyluk D.; Gzella A.; Bielawski K.; Bielawska A.; Dzubak P.; Gurska S.; Hajduch M.; Stoika R.; Lesyk R.; Molecular design, synthesis and anticancer activity of new thiopyrano[2,3-d]thiazoles based on 5-hydroxy-1,4-naphthoquinone (juglone). Eur J Med Chem 2023,252,115304 10.1016/j.ejmech.2023.115304 37001390 Mhiri C.; Boubakri L.; Ternane R.; Mansour L.; Harrath A.H.; Al-Tamimi J.; Baklouti L.; Hamdi N.; Three‐component, one‐pot synthesis of pyrano[3,2‐c]chromene derivatives catalyzed by ammonium acetate: Synthesis, characterization, cation binding, and biological determination. J Heterocycl Chem 2020,57(1),291-298 10.1002/jhet.3776 Baitha A.; Gopinathan A.; Krishnan K.; Dabholkar V.V.; Synthesis of 2‐amino‐4‐(2‐ethoxybenzo[d][1,3]dioxol‐5‐yl)‐4H‐pyran‐3‐carbonitrile derivatives and their biological evaluation. J Heterocycl Chem 2018,55(5),1189-1192 10.1002/jhet.3152 Zheng J.; He M.; Xie B.; Yang L.; Hu Z.; Zhou H.B.; Dong C.; Enantioselective synthesis of novel pyrano[3,2- c]chromene derivatives as AChE inhibitors via an organocatalytic domino reaction. Org Biomol Chem 2018,16(3),472-479 10.1039/C7OB02794J 29265146 Raj V.; Lee J.; 2H/4H-Chromenes-A versatile biologically attractive scaffold. Front Chem 2020,8,623 10.3389/fchem.2020.00623 Yousefi M.R.; Goli-Jolodar O.; Shirini F.; Piperazine: An excellent catalyst for the synthesis of 2-amino-3-cyano-4H-pyrans derivatives in aqueous medium. Bioorg Chem 2018,81,326-333 10.1016/j.bioorg.2018.08.026 30179795 Gardelly M.; Trimech B.; Belkacem M.A.; Harbach M.; Abdelwahed S.; Mosbah A.; Bouajila J.; Ben Jannet H.; Synthesis of novel diazaphosphinanes coumarin derivatives with promoted cytotoxic and anti-tyrosinase activities. Bioorg Med Chem Lett 2016,26(10),2450-2454 10.1016/j.bmcl.2016.03.108 27080182 Tashrifi Z.; Mohammadi-Khanaposhtani M.; Hamedifar H.; Larijani B.; Ansari S.; Mahdavi M.; Synthesis and pharmacological properties of polysubstituted 2-amino-4H-pyran-3-carbonitrile derivatives. Mol Divers 2020,24(4),1385-1431 10.1007/s11030-019-09994-9 31555954 Nongrum R.; Nongthombam G.S.; Kharkongor M.; Star Rani J.W.; Rahman N.; Kathing C.; Myrboh B.; Nongkhlaw R.; A nano-organo catalyzed route towards the efficient synthesis of benzo[b]pyran derivatives under ultrasonic irradiation. RSC Advances 2016,6(110),108384-108392 10.1039/C6RA24108E Gholamhosseini-Nazari M.; Esmati S.; Safa K.D.; Khataee A.; Teimuri-Mofrad R.; Fe3O4@SiO2-BenzIm-Fc[Cl]/ZnCl2: A novel and efficient nano-catalyst for the one-pot three-component synthesis of pyran annulated bis-heterocyclic scaffolds under ultrasound irradiation. Res Chem Intermed 2019,45(4),1841-1862 10.1007/s11164-018-3704-6 Rayadurgam J.; Sabbasani, RR Synthesis of D-ribose and D-galactose derived chiral ionic liquids as recyclable chiral solvent for michael addition reaction. Trends Carbohydr Res 2015,7,60-67 Garg P.; Reddy S.R.; Biomass‐derived sugar ionic liquid as a sustainable organocatalyst: An efficient synthesis of functionalized dihydropyrano coumarins. Asian J Org Chem 2022,11(9),e202200322 10.1002/ajoc.202200322 Mohamadpour F.; Visible light irradiation promoted catalyst-free and solvent-free synthesis of pyrano[2,3-d]pyrimidine scaffolds at room temperature. J Saudi Chem Soc 2020,24(8),636-641 10.1016/j.jscs.2020.06.006 Brahmachari G.; Nurjamal K.; Ultrasound-assisted and trisodium citrate dihydrate-catalyzed green protocol for efficient and one-pot synthesis of substituted chromeno[3′,4′:5,6]pyrano[2,3-d]pyrimidines at ambient conditions. Tetrahedron Lett 2019,60(29),1904-1908 10.1016/j.tetlet.2019.06.028 Khumalo M.R.; Maddila S.N.; Maddila S.; Jonnalagadda S.B.; A facile and one-pot synthesis of new tetrahydrobenzo[b]pyrans in water under microwave irradiation. BMC Chem 2019,13(1),132 10.1186/s13065-019-0651-2 31788672 Aminkhani A.; Talati M.; Sharifi R.; Chalabian F.; Katouzian F.; Highly efficient one‐pot three‐component synthesis and antimicrobial activity of 2‐amino‐4 H ‐chromene derivatives. J Heterocycl Chem 2019,56(6),1812-1819 10.1002/jhet.3555 Adibian F.; Pourali A.R.; Maleki B.; Baghayeri M.; Amiri A.; One‐pot synthesis of dihydro-1H-indeno[1,2-b] pyridines and tetrahydrobenzo[b] pyran derivatives using a new and efficient nanocomposite catalyst based on N‐butylsulfonate‐functionalized MMWCNTs-D-NH2. Polyhedron 2020,175,114179 10.1016/j.poly.2019.114179 Mahmoudi Z.; Ghasemzadeh M.A.; Kabiri-Fard H.; Fabrication of UiO-66 nanocages confined Brønsted ionic liquids as an efficient catalyst for the synthesis of dihydropyrazolo[4′,3′:5,6]pyrano[2,3-d]pyrimidines. J Mol Struct 2019,1194,1-10 10.1016/j.molstruc.2019.05.079 Koohestani F.; Sadjadi S.; Polyionic liquid decorated chitosan beads as versatile metal-free catalysts for catalyzing chemical reactions in aqueous media. J Mol Liq 2021,334,115754 10.1016/j.molliq.2021.115754 Nahar L.; Talukdar A.D.; Nath D.; Nath S.; Mehan A.; Ismail F.M.D.; Sarker S.D.; Naturally occurring calanolides: Occurrence, biosynthesis, and pharmacological properties including therapeutic potential. Molecules 2020,25(21),4983 10.3390/molecules25214983 33126458 Zghab I.; Trimeche B.; Mansour M.B.; Hassine M.; Touboul D.; Jannet H.B.; Regiospecific synthesis, antibacterial and anticoagulant activities of novel isoxazoline chromene derivatives. Arab J Chem 2017,10,S2651-S2658 10.1016/j.arabjc.2013.10.008 El-Agrody A.M.; Halawa A.H.; Fouda A.M.; Al-Dies A.A.M.; The anti-proliferative activity of novel 4H-benzo[h]chromenes, 7H-benzo[h]-chromeno[2,3-d]pyrimi-dines and the structure–activity relationships of the 2-, 3-positions and fused rings at the 2, 3-positions. J Saudi Chem Soc 2017,21(1),82-90 10.1016/j.jscs.2016.03.002 Saczewski J.; Paluchowska A.; Klenc J.; Raux E.; Barnes S.; Sullivan S.; Duszynska B.; Bojarski A.J.; Strekowski L.; Synthesis of 4‐substituted 2‐(4‐methylpiperazino)pyrimidines and quinazoline analogs as serotonin 5‐HT 2A receptor ligands. J Heterocycl Chem 2009,46(6),1259-1265 10.1002/jhet.236 Yao C.; Yu C.; Li T.; Tu S.; An efficient synthesis of 4 H-Benzo[g]chromene-5,10-dione de-rivatives through triethylbenzylammonium chloride catalyzed multicomponent reaction under solvent-free conditions. Chin J Chem 2009,27(10),1989-1994 10.1002/cjoc.200990334 Khurana J.M.; Nand B.; Saluja P.; DBU: A highly efficient catalyst for one-pot synthesis of substituted 3,4-dihydropyrano[3,2-c]chromenes, dihydropyrano[4,3-b]pyranes, 2-amino-4H-benzo[h]chromenes and 2-amino-4H benzo[g]chromenes in aqueous medium. Tetrahedron 2010,66(30),5637-5641 10.1016/j.tet.2010.05.082 Thanh NH; Phuong HT; Giang LNT; Giang NTQ; Ha NTT; Anh DTT; 4-(Dimethylamino)pyridine as an efficient catalyst for one-pot synthesis of 1,4-pyranonaphthoquinone derivatives via microwave-assisted sequential three component reaction in green solvent. Nat Prod Commun 2021,16,1934578X2110539 10.1177/1934578X211053951 Jiang L.; Peng P.; Li M.; Li L.; Zhao M.; Yuan M.; Yuan M.; Efficient synthesis of 3-sulfonyl-2-sulfonylmethyl-2H-chromenes via tandem knoevenagel condensation/oxa-michael addition protocol. Catalysts 2022,12(5),491 10.3390/catal12050491 Kumar A.; Thadkapally S.; Menon R.S.; Base-mediated cyclocondensation of salicylaldehydes and 2-bromoallyl sulfones for the synthesis of 3-sulfonylchromene derivatives and their regioselective friedel–crafts heteroarylation reactions. J Org Chem 2015,80(21),11048-11056 10.1021/acs.joc.5b02324 26465821 Bellucci M.C.; Sacchetti A.; Volonterio A.; Multicomponent approach to libraries of substituted dihydroorotic acid amides. ACS Comb Sci 2019,21(10),705-715 10.1021/acscombsci.9b00144 31454221 Arcadia C.E.; Kennedy E.; Geiser J.; Dombroski A.; Oakley K.; Chen S.L.; Sprague L.; Ozmen M.; Sello J.; Weber P.M.; Reda S.; Rose C.; Kim E.; Rubenstein B.M.; Rosenstein J.K.; Multicomponent molecular memory. Nat Commun 2020,11(1),691 10.1038/s41467-020-14455-1 32019933 Ghashghaei O.; Seghetti F.; Lavilla R.; Selectivity in multiple multicomponent reactions: Types and synthetic applications. Beilstein J Org Chem 2019,15,521-534 10.3762/bjoc.15.46 30873236 Elinson M.N.; Ryzhkova Y.E.; Vereshchagin A.N.; Ryzhkov F.V.; Kalashnikova V.M.; Egorov M.P.; Direct and efficient electrocatalytic multicomponent assembling of arylaldehydes, malononitrile, and pyrazolin-5-ones into spirocyclopropyl pyrazolone scaffold. Monatsh Chem 2021,152(6),641-648 10.1007/s00706-021-02784-w Kuznetcova A.V.; Odin I.S.; Golovanov A.A.; Grigorev I.M.; Vasilyev A.V.; Multicomponent reaction of conjugated enynones with malononitrile and sodium alkoxides: Complex reaction mechanism of the formation of pyridine derivatives. Tetrahedron 2019,75(33),4516-4530 10.1016/j.tet.2019.06.041 Hajra S.; Abu Saleh S.K.; Hazra A.; Singh M.S.; Organocatalytic domino reaction of spiroaziridine oxindoles and malononitrile for the enantiopure synthesis of spiro dihydropyrrole-3,3′-oxindoles. J Org Chem 2019,84(12),8194-8201 10.1021/acs.joc.9b01226 31142119 Saleem F.; Kanwal ; Mohammed Khan K.; Chigurupati S.; Andriani Y.; Solangi M.; Hameed S.; Abdel Monem Abdel Hafez A.; Begum F.; Arif Lodhi M.; Taha M.; Rahim F.; Tengku Muhammad T.S.; Perveen S.; Dicyanoanilines as potential and dual inhibitors of α-amylase and α-glucosidase enzymes: Synthesis, characterization, in vitro, in silico, and kinetics studies. Arab J Chem 2022,15(3),103651 10.1016/j.arabjc.2021.103651 Abaee M.S.; Hatamifard A.; Mojtahedi M.M.; Notash B.; Naderi S.; Pseudo-five-component organocatalyzed synthesis of dicyanoanillines using only malononitrile and aromatic aldehydes. Synth Commun 2022,52(3),346-355 10.1080/00397911.2021.2024573 Alvim H.G.O.; da Silva Júnior E.N.; Neto B.A.D.; What do we know about multicomponent reactions? Mechanisms and trends for the Biginelli, Hantzsch, Mannich, Passerini and Ugi MCRs. RSC Advances 2014,4(97),54282-54299 10.1039/C4RA10651B Dömling A.; Wang W.; Wang K.; Chemistry and biology of multicomponent reactions. Chem Rev 2012,112(6),3083-3135 10.1021/cr100233r 22435608 Bienaymé H.; Hulme C.; Oddon G.; Schmitt P.; Maximizing synthetic efficiency: Multi-component transformations lead the way. Chemistry 2000,6(18),3321-3329 10.1002/1521-3765(20000915)6:18<3321:AID-CHEM3321>3.0.CO;2-A 11039522 Trotsko N.; Przekora A.; Zalewska J.; Ginalska G.; Paneth A.; Wujec M.; Synthesis and in vitro antiproliferative and antibacterial activity of new thiazolidine-2,4-dione derivatives. J Enzyme Inhib Med Chem 2018,33(1),17-24 10.1080/14756366.2017.1387543 29098896 Sindhu J.; Singh H.; Khurana J.M.; Sharma C.; Aneja K.R.; Multicomponent domino process for the synthesis of some novel 5-(arylidene)-3-((1-aryl-1H-1,2,3-triazol-4-yl)methyl)-thiazolidine-2,4-diones using PEG-400 as an efficient reaction medium and their antimicrobial evaluation. Chin Chem Lett 2015,26(1),50-54 10.1016/j.cclet.2014.09.006 Nyaki H.Y.; Mahmoodi N.O.; Synthesis and characterization of derivatives including thiazolidine-2,4-dione/1-H-imidazole and evaluation of antimicrobial, antioxidant, and cytotoxic properties of new synthetic heterocyclic compounds. Res Chem Intermed 2021,47(10),4129-4155 10.1007/s11164-021-04525-4 Sharma P.; Reddy T.S.; Kumar N.P.; Senwar K.R.; Bhargava S.K.; Shankaraiah N.; Conventional and microwave-assisted synthesis of new 1 H -benzimidazole-thiazolidinedione derivatives: A potential anticancer scaffold. Eur J Med Chem 2017,138,234-245 10.1016/j.ejmech.2017.06.035 28668476 Prabhakaran S.; Nivetha N.; Patil S.M.; Mary Martiz R.; Ramu R.; Sreenivasa S.; Velmathi S.; One-pot three-component synthesis of novel phenyl-pyrano-thiazol-2-one derivatives and their anti-diabetic activity studies. Results Chem 2022,4,100439 10.1016/j.rechem.2022.100439 Chadha N.; Bahia M.S.; Kaur M.; Silakari O.; Thiazolidine-2,4-dione derivatives: Programmed chemical weapons for key protein targets of various pathological conditions. Bioorg Med Chem 2015,23(13),2953-2974 10.1016/j.bmc.2015.03.071 25890697 da Rocha Junior L.F.; de Melo Rêgo M.J.B.; Cavalcanti M.B.; Pereira M.C.; Pitta M.G.R.; de Oliveira P.S.S.; Gonçalves S.M.C.; Duarte A.L.B.P.; de Lima M.C.A.; Pitta I.R.; Pitta M.G.R.; Synthesis of a novel thiazolidinedione and evaluation of its modulatory effect on IFN- γ, IL-6, IL-17A, and IL-22 production in PBMCs from rheumatoid arthritis patients. BioMed Res Int 2013,2013,1-8 10.1155/2013/926060 24078927 Youssef A.M.; Sydney White M.; Villanueva E.B.; El-Ashmawy I.M.; Klegeris A.; Synthesis and biological evaluation of novel pyrazolyl-2,4-thiazolidinediones as anti-inflammatory and neuroprotective agents. Bioorg Med Chem 2010,18(5),2019-2028 10.1016/j.bmc.2010.01.021 20138770 Kavetsou E.; Gkionis L.; Galani G.; Gkolfinopoulou C.; Argyri L.; Pontiki E.; Chroni A.; Hadjipavlou-Litina D.; Detsi A.; Synthesis of prenyloxy coumarin analogues and evaluation of their antioxidant, lipoxygenase (LOX) inhibitory and cytotoxic activity. Med Chem Res 2017,26(4),856-866 10.1007/s00044-017-1800-6 Chatterjee B.; Sharma A.; Fruit enzymes and their application: A review. Int J Clin Biomed Res 2018,4(2),84 10.5455/ijcbr.2018.42.18 Lončarić M.; Strelec I.; Pavić V.; Rastija V.; Karnaš M.; Molnar M.; Green synthesis of thiazolidine-2,4-dione derivatives and their lipoxygenase inhibition activity with QSAR and molecular docking studies. Front Chem 2022,10,912822 10.3389/fchem.2022.912822 35864866 Medina F.G.; Marrero J.G.; Macías-Alonso M.; González M.C.; Córdova-Guerrero I.; Teissier García A.G.; Osegueda-Robles S.; Coumarin heterocyclic derivatives: Chemical synthesis and biological activity. Nat Prod Rep 2015,32(10),1472-1507 10.1039/C4NP00162A 26151411 Barot K.P.; Jain S.V.; Kremer L.; Singh S.; Ghate M.D.; Recent advances and therapeutic journey of coumarins: Current status and perspectives. Med Chem Res 2015,24(7),2771-2798 10.1007/s00044-015-1350-8 Borges F.; Roleira F.; Milhazes N.; Santana L.; Uriarte E.; Simple coumarins and analogues in medicinal chemistry: Occurrence, synthesis and biological activity. Curr Med Chem 2005,12(8),887-916 10.2174/0929867053507315 15853704 Roussaki M.; Kontogiorgis C.A.; Hadjipavlou-Litina D.; Hamilakis S.; Detsi A.; A novel synthesis of 3-aryl coumarins and evaluation of their antioxidant and lipoxygenase inhibitory activity. Bioorg Med Chem Lett 2010,20(13),3889-3892 10.1016/j.bmcl.2010.05.022 20627725 Dvornikova I.A.; Buravlev E.V.; Fedorova I.V.; Shevchenko O.G.; Chukicheva I.Y.; Kutchin A.V.; Synthesis and antioxidant properties of benzimidazole derivatives with isobornylphenol fragments. Russ Chem Bull 2019,68(5),1000-1005 10.1007/s11172-019-2510-7 Anastassova N.; Argirova M.; Yancheva D.; Aluani D.; Tzankova V.; Hristova-Avakumova N.; In vitro assessment of the neuroprotective and antioxidant properties of new benzimidazole derivatives as potential drug candidates for the treatment of Parkinson’s disease. Proceedings 2019,22(1),54 10.3390/proceedings2019022054 Ayhan-Kılcıgil G.; Kus C.; Özdamar E.D.; Can-Eke B.; Iscan M.; Synthesis and antioxidant capacities of some new benzimidazole derivatives. Arch Pharm 2007,340(11),607-611 10.1002/ardp.200700088 17994646 Patagar D.N.; Batakurki S.R.; Kusanur R.; Patra S.M.; Saravanakumar S.; Ghate M.; Synthesis, antioxidant and anti-diabetic potential of novel benzimidazole substituted coumarin-3-carboxamides. J Mol Struct 2023,1274,134589 10.1016/j.molstruc.2022.134589

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy