Generic placeholder image

Combinatorial Chemistry & High Throughput Screening

Editor-in-Chief

ISSN (Print): 1386-2073
ISSN (Online): 1875-5402

Research Article

Network Pharmacology and Experimental Validation Explore the Pharmacological Mechanisms of Herb Pair for Treating Rheumatoid Arthritis

Author(s): Xi-Xi Xu, Hua Shao*, Qiao-Xue Wang and Zi-Yuan Wang

Volume 27, Issue 12, 2024

Published on: 10 January, 2024

Page: [1808 - 1822] Pages: 15

DOI: 10.2174/0113862073263839231129163200

Price: $65

Abstract

Objective: This study aimed to elucidate the multitarget mechanism of the Mori Ramulus - Taxilli Herba (MT) herb pair in treating rheumatoid arthritis (RA).

Methods: The targets of the herb pair and RA were predicted from databases and screened through cross-analysis. The core targets were obtained using protein-protein interaction (PPI) network analysis. Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis were performed. Finally, animal experiments were conducted to validate the anti-RA effect and mechanism of this herb pair.

Results: This approach successfully identified 9 active compounds of MT that interacted with 6 core targets (AKT1, TNF, IL6, TP53, VEGFA, and IL1β). Pathway and functional enrichment analyses revealed that MT had significant effects on the TNF and IL-17 signaling pathways. The consistency of interactions between active components and targets in these pathways was confirmed through molecular docking. Moreover, the potential therapeutic effect of MT was verified in vivo, demonstrating its ability to effectively relieve inflammation by regulating these targeted genes and pathways.

Conclusion: The present work suggests that the therapeutic effect of MT herb pair on RA may be attributed to its ability to regulate the TNF signaling pathway and IL-17 signaling pathway.

Keywords: Traditional chinese medicine, network pharmacology, rheumatoid arthritis, herb pair, molecular docking, IL-17 signaling pathway, TNF signaling pathway.

Graphical Abstract
[1]
Smith, M.H.; Berman, J.R. What is rheumatoid arthritis? JAMA, 2022, 327(12), 1194.
[http://dx.doi.org/10.1001/jama.2022.0786] [PMID: 35315883]
[2]
Gravallese, E.M.; Firestein, G.S. Rheumatoid arthritis - Common origins, divergent mechanisms. N. Engl. J. Med., 2023, 388(6), 529-542.
[http://dx.doi.org/10.1056/NEJMra2103726] [PMID: 36780677]
[3]
Roberts-Thomson, P.J.; Jones, M.E.; Walker, J.G.; Macfarlane, J.G.; Smith, M.D.; Ahern, M.J. Stochastic processes in the causation of rheumatic disease. J. Rheumatol., 2002, 29(12), 2628-2634.
[PMID: 12465164]
[4]
Klareskog, L.; van der Heijde, D.; de Jager, J.P.; Gough, A.; Kalden, J.; Malaise, M.; Mola, E.M.; Pavelka, K.; Sany, J.; Settas, L.; Wajdula, J.; Pedersen, R.; Fatenejad, S.; Sanda, M. Therapeutic effect of the combination of etanercept and methotrexate compared with each treatment alone in patients with rheumatoid arthritis: Double-blind randomised controlled trial. Lancet, 2004, 363(9410), 675-681.
[http://dx.doi.org/10.1016/S0140-6736(04)15640-7] [PMID: 15001324]
[5]
Sánchez-Piedra, C.; Sueiro-Delgado, D.; García-González, J.; Ros-Vilamajo, I.; Prior-Español, A.; Moreno-Ramos, M.J.; Garcia-Magallon, B.; Calvo-Gutiérrez, J.; Perez-Vera, Y.; Martín-Domenech, R.; Ruiz-Montesino, D.; Vela-Casasempere, P.; Expósito, L.; Sánchez-Alonso, F.; González-Davila, E.; Díaz-González, F. Changes in the use patterns of bDMARDs in patients with rheumatic diseases over the past 13 years. Sci. Rep., 2021, 11(1), 15051.
[http://dx.doi.org/10.1038/s41598-021-94504-x] [PMID: 34302036]
[6]
Pelechas, E.; Voulgari, P.; Drosos, A. Golimumab for rheumatoid arthritis eleftherios. J. Clin. Med., 2019, 8(3), 387.
[http://dx.doi.org/10.3390/jcm8030387] [PMID: 30897745]
[7]
Breedveld, F.C.; Weisman, M.H.; Kavanaugh, A.F.; Cohen, S.B.; Pavelka, K.; Vollenhoven, R.; Sharp, J.; Perez, J.L.; Spencer-Green, G.T. The PREMIER study: A multicenter, randomized, double‐blind clinical trial of combination therapy with adalimumab plus methotrexate versus methotrexate alone or adalimumab alone in patients with early, aggressive rheumatoid arthritis who had not had previous methotrexate treatment. Arthritis Rheum., 2006, 54(1), 26-37.
[http://dx.doi.org/10.1002/art.21519] [PMID: 16385520]
[8]
Guo, Q.; Wang, Y.; Xu, D.; Nossent, J.; Pavlos, N.J.; Xu, J. Rheumatoid arthritis: Pathological mechanisms and modern pharmacologic therapies. Bone Res., 2018, 6(1), 15.
[http://dx.doi.org/10.1038/s41413-018-0016-9] [PMID: 29736302]
[9]
Lin, W.W.; Lu, Y.C.; Huang, B.C.; Chuang, C.H.; Cheng, Y.A.; Chen, I.J.; Liu, H.J.; Ho, K.W.; Liao, T.Y.; Liu, E.S.; Wu, T.Y.; Chang, L.S.; Hong, S.T.; Cheng, T.L. Selective activation of pro-anti-IL-1β antibody enhances specificity for autoinflammatory disorder therapy. Sci. Rep., 2021, 11(1), 14846.
[http://dx.doi.org/10.1038/s41598-021-94298-y] [PMID: 34290297]
[10]
Cohen, S.B.; Dore, R.K.; Lane, N.E.; Ory, P.A.; Peterfy, C.G.; Sharp, J.T.; van der Heijde, D.; Zhou, L.; Tsuji, W.; Newmark, R. Denosumab treatment effects on structural damage, bone mineral density, and bone turnover in rheumatoid arthritis: A twelve‐month, multicenter, randomized, double‐blind, placebo‐controlled, phase II clinical trial. Arthritis Rheum., 2008, 58(5), 1299-1309.
[http://dx.doi.org/10.1002/art.23417] [PMID: 18438830]
[11]
Takeuchi, T.; Tanaka, Y.; Ishiguro, N.; Yamanaka, H.; Yoneda, T.; Ohira, T.; Okubo, N.; Genant, H.K.; van der Heijde, D. Effect of denosumab on Japanese patients with rheumatoid arthritis: a dose–response study of AMG 162 (D enosumab) in patients with R heumato I d arthritis on methotrexate to V alidate inhibitory effect on bone E rosion (DRIVE)—a 12-month, multicentre, randomised, double-blind, placebo-controlled, phase II clinical trial. Ann. Rheum. Dis., 2016, 75(6), 983-990.
[http://dx.doi.org/10.1136/annrheumdis-2015-208052] [PMID: 26585988]
[12]
George, M.D.; Baker, J.F.; Winthrop, K.; Hsu, J.Y.; Wu, Q.; Chen, L.; Xie, F.; Yun, H.; Curtis, J.R. Risk for serious infection with low-dose glucocorticoids in patients with rheumatoid arthritis. Ann. Intern. Med., 2020, 173(11), 870-878.
[http://dx.doi.org/10.7326/M20-1594] [PMID: 32956604]
[13]
Chen, Y.R.; Hsieh, F.I.; Chang, C.C.; Chi, N.F.; Wu, H.C.; Chiou, H.Y. Effect on risk of stroke and acute myocardial infarction of nonselective nonsteroidal anti-inflammatory drugs in patients with rheumatoid arthritis. Am. J. Cardiol., 2018, 121(10), 1271-1277.
[http://dx.doi.org/10.1016/j.amjcard.2018.01.044] [PMID: 29548675]
[14]
Bergstra, S.A.; Sepriano, A.; Kerschbaumer, A.; van der Heijde, D.; Caporali, R.; Edwards, C.J.; Verschueren, P.; de Souza, S.; Pope, J.E.; Takeuchi, T.; Hyrich, K.L.; Winthrop, K.L.; Aletaha, D.; Stamm, T.A.; Schoones, J.W.; Smolen, J.S.; Landewé, R.B.M. Efficacy, duration of use and safety of glucocorticoids: A systematic literature review informing the 2022 update of the EULAR recommendations for the management of rheumatoid arthritis. Ann. Rheum. Dis., 2023, 82(1), 81-94.
[http://dx.doi.org/10.1136/ard-2022-223358] [PMID: 36410794]
[15]
He, B.; Li, Y.; Luo, W.; Cheng, X.; Xiang, H.; Zhang, Q.; He, J.; Peng, W. The risk of adverse effects of TNF-α inhibitors in patients with rheumatoid arthritis: A network meta-analysis. Front. Immunol., 2022, 13, 814429.
[http://dx.doi.org/10.3389/fimmu.2022.814429] [PMID: 35250992]
[16]
Hoisnard, L.; Pina Vegas, L.; Dray-Spira, R.; Weill, A.; Zureik, M.; Sbidian, E. Risk of major adverse cardiovascular and venous thromboembolism events in patients with rheumatoid arthritis exposed to JAK inhibitors versus adalimumab: A nationwide cohort study. Ann. Rheum. Dis., 2023, 82(2), 182-188.
[http://dx.doi.org/10.1136/ard-2022-222824] [PMID: 36198438]
[17]
Mirzaei, A.; Jahed, S.A.; Amini Kadijani, A.; Zabihiyeganeh, M. Risk of infection in postmenopausal women with rheumatoid arthritis and osteoporosis taking denosumab and bDMARDS. Med. J. Islam. Repub. Iran, 2021, 35, 12.
[http://dx.doi.org/10.47176/mjiri.35.12] [PMID: 33996663]
[18]
Curtis, J.R.; Xie, F.; Yun, H.; Saag, K.G.; Chen, L.; Delzell, E. Risk of hospitalized infection among rheumatoid arthritis patients concurrently treated with a biologic agent and denosumab. Arthritis Rheumatol., 2015, 67(6), 1456-1464.
[http://dx.doi.org/10.1002/art.39075] [PMID: 25708920]
[19]
Li, S.; Zhang, B.; Jiang, D. Herb network construction and co-module analysis for uncovering the combination rule of traditional Chinese herbal formulae. BMC Bioinformatics, 2010, 11(S11), S6.
[http://dx.doi.org/10.1186/1471-2105-11-S11-S6]
[20]
Wu, S.S.; Xu, X.X.; Shi, Y.Y.; Chen, Y.; Li, Y.Q.; Jiang, S.Q.; Wang, T.; Li, P.; Li, F. System pharmacology analysis to decipher the effect and mechanism of active ingredients combination from herb couple on rheumatoid arthritis in rats. J. Ethnopharmacol., 2022, 288, 114969.
[http://dx.doi.org/10.1016/j.jep.2022.114969] [PMID: 34999146]
[21]
Yue, S.J.; Liu, J.; Feng, W.W.; Zhang, F.L.; Chen, J.X.; Xin, L.T.; Peng, C.; Guan, H.S.; Wang, C.Y.; Yan, D. System pharmacology-based dissection of the synergistic mechanism of Huangqi and Huanglian for diabetesmellitus. Front. Pharmacol., 2017, 8, 694.
[http://dx.doi.org/10.3389/fphar.2017.00694] [PMID: 29051733]
[22]
Yao, Y.; Zhang, X.; Wang, Z.; Zheng, C.; Li, P.; Huang, C.; Tao, W.; Xiao, W.; Wang, Y.; Huang, L.; Yang, L. Deciphering the combination principles of Traditional Chinese Medicine from a systems pharmacology perspective based on Ma-huang Decoction. J. Ethnopharmacol., 2013, 150(2), 619-638.
[http://dx.doi.org/10.1016/j.jep.2013.09.018] [PMID: 24064232]
[23]
Yu, H.; Chen, J.; Xu, X.; Li, Y.; Zhao, H.; Fang, Y.; Li, X.; Zhou, W.; Wang, W.; Wang, Y. A systematic prediction of multiple drug-target interactions from chemical, genomic, and pharmacological data. PLoS One, 2012, 7(5), e37608.
[http://dx.doi.org/10.1371/journal.pone.0037608] [PMID: 22666371]
[24]
Wang, X.; Xu, X.; Ma, Z.; Huo, Y.; Xiao, Z.; Li, Y.; Wang, Y. Dynamic mechanisms for pre-miRNA binding and export by Exportin-5. RNA, 2011, 17(8), 1511-1528.
[http://dx.doi.org/10.1261/rna.2732611] [PMID: 21712399]
[25]
Xu, X.; Wang, X.; Li, Y.; Wang, Y.; Yang, L. A large-scale association study for nanoparticle C60 uncovers mechanisms of nanotoxicity disrupting the native conformations of DNA/RNA. Nucleic Acids Res., 2012, 40(16), 7622-7632.
[http://dx.doi.org/10.1093/nar/gks517] [PMID: 22661584]
[26]
Xu, X.; Ma, Z.; Wang, X.; Xiao, Z.T.; Li, Y.; Xue, Z.H.; Wang, Y.H. Water’s potential role: Insights from studies of the p53 core domain. J. Struct. Biol., 2012, 177(2), 358-366.
[http://dx.doi.org/10.1016/j.jsb.2011.12.008] [PMID: 22197648]
[27]
Wang, X.; Xu, X.; Zhu, S.; Xiao, Z.; Ma, Z.; Li, Y.; Wang, Y. Molecular dynamics simulation of conformational heterogeneity in transportin 1. Proteins, 2012, 80(2), 382-397.
[http://dx.doi.org/10.1002/prot.23193] [PMID: 22105828]
[28]
Zou, Z.; Sun, M.; Yin, W.; Yang, L.; Kong, L. Avicularin suppresses cartilage extracellular matrix degradation and inflammation via TRAF6/MAPK activation. Phytomedicine, 2021, 91, 153657.
[http://dx.doi.org/10.1016/j.phymed.2021.153657] [PMID: 34371251]
[29]
Panek-Krzyśko, A.; Stompor-Gorący, M. The pro-health benefits of morusin administration-an updated review. Nutrients, 2021, 13(9), 3043.
[http://dx.doi.org/10.3390/nu13093043] [PMID: 34578920]
[30]
Shingnaisui, K.; Dey, T.; Manna, P.; Kalita, J. Therapeutic potentials of Houttuynia cordata Thunb. against inflammation and oxidative stress: A review. J. Ethnopharmacol., 2018, 220, 35-43.
[http://dx.doi.org/10.1016/j.jep.2018.03.038] [PMID: 29605674]
[31]
Ko, W.; Yoon, C.S.; Kim, K.W.; Lee, H.; Kim, N.; Woo, E.R.; Kim, Y.C.; Kang, D.G.; Lee, H.S.; Oh, H.; Lee, D.S. Neuroprotective and anti-inflammatory effects of Kuwanon C from cudrania tricuspidata are mediated by heme oxygenase-1 in HT22 hippocampal cells, RAW264.7 macrophage, and BV2 microglia. Int. J. Mol. Sci., 2020, 21(14), 4839.
[http://dx.doi.org/10.3390/ijms21144839] [PMID: 32650596]
[32]
Kondo, N.; Kuroda, T.; Kobayashi, D. Cytokine networks in the pathogenesis of rheumatoid arthritis. Int. J. Mol. Sci., 2021, 22(20), 10922.
[http://dx.doi.org/10.3390/ijms222010922] [PMID: 34681582]
[33]
Komatsu, N.; Takayanagi, H. Mechanisms of joint destruction in rheumatoid arthritis — immune cell–fibroblast–bone interactions. Nat. Rev. Rheumatol., 2022, 18(7), 415-429.
[http://dx.doi.org/10.1038/s41584-022-00793-5] [PMID: 35705856]
[34]
Burmester, G.R.; Bijlsma, J.W.J.; Cutolo, M.; McInnes, I.B. Managing rheumatic and musculoskeletal diseases — past, present and future. Nat. Rev. Rheumatol., 2017, 13(7), 443-448.
[http://dx.doi.org/10.1038/nrrheum.2017.95] [PMID: 28615732]
[35]
Li, F.S.; Weng, J.K. Demystifying traditional herbal medicine with modern approach. Nat. Plants, 2017, 3(8), 17109.
[http://dx.doi.org/10.1038/nplants.2017.109] [PMID: 28758992]
[36]
Sasako, T.; Umehara, T.; Soeda, K.; Kaneko, K.; Suzuki, M.; Kobayashi, N.; Okazaki, Y.; Tamura-Nakano, M.; Chiba, T.; Accili, D.; Kahn, C.R.; Noda, T.; Asahara, H.; Yamauchi, T.; Kadowaki, T.; Ueki, K. Deletion of skeletal muscle Akt1/2 causes osteosarcopenia and reduces lifespan in mice. Nat. Commun., 2022, 13(1), 5655.
[http://dx.doi.org/10.1038/s41467-022-33008-2] [PMID: 36198696]
[37]
Yin, B.F.; Li, Z.L.; Yan, Z.Q.; Guo, Z.; Liang, J.W.; Wang, Q.; Zhao, Z.D.; Li, P.L.; Hao, R.C.; Han, M.Y.; Li, X.T.; Mao, N.; Ding, L.; Chen, D.F.; Gao, Y.; Zhu, H. Psoralen alleviates radiation-induced bone injury by rescuing skeletal stem cell stemness through AKT-mediated upregulation of GSK-3β and NRF2. Stem Cell Res. Ther., 2022, 13(1), 241.
[http://dx.doi.org/10.1186/s13287-022-02911-2] [PMID: 35672836]
[38]
McInnes, I.B.; Schett, G. Pathogenetic insights from the treatment of rheumatoid arthritis. Lancet, 2017, 389(10086), 2328-2337.
[http://dx.doi.org/10.1016/S0140-6736(17)31472-1] [PMID: 28612747]
[39]
Calvo, M.; Dawes, J.M.; Bennett, D.L.H. The role of the immune system in the generation of neuropathic pain. Lancet Neurol., 2012, 11(7), 629-642.
[http://dx.doi.org/10.1016/S1474-4422(12)70134-5] [PMID: 22710756]
[40]
Tanaka, T.; Narazaki, M.; Kishimoto, T. IL-6 in inflammation, mmunity, and disease. Csh Perspect Biol., 2014, 6(10), a16295.
[41]
Murakami, M.; Kamimura, D.; Hirano, T. Pleiotropy and specificity: Insights from the interleukin 6 family of cytokines. Immunity, 2019, 50(4), 812-831.
[http://dx.doi.org/10.1016/j.immuni.2019.03.027] [PMID: 30995501]
[42]
Uciechowski, P.; Dempke, W.C.M. Interleukin-6: A masterplayer in the cytokine network. Oncology, 2020, 98(3), 131-137.
[http://dx.doi.org/10.1159/000505099] [PMID: 31958792]
[43]
Narazaki, M.; Tanaka, T.; Kishimoto, T. The role and therapeutic targeting of IL-6 in rheumatoid arthritis. Expert Rev. Clin. Immunol., 2017, 13(6), 535-551.
[http://dx.doi.org/10.1080/1744666X.2017.1295850] [PMID: 28494214]
[44]
Bian, Y.; Dong, Y.; Sun, J.; Sun, M.; Hou, Q.; Lai, Y.; Zhang, B. Protective effect of kaempferol on LPS-induced inflammation and barrier dysfunction in a coculture model of intestinal epithelial cells and intestinal microvascular endothelial cells. J. Agric. Food Chem., 2020, 68(1), 160-167.
[http://dx.doi.org/10.1021/acs.jafc.9b06294] [PMID: 31825618]
[45]
Borghi, A.; Verstrepen, L.; Beyaert, R. TRAF2 multitasking in TNF receptor-induced signaling to NF-κB, MAP kinases and cell death. Biochem. Pharmacol., 2016, 116, 1-10.
[http://dx.doi.org/10.1016/j.bcp.2016.03.009] [PMID: 26993379]
[46]
Jafarinia, M.; Sadat Hosseini, M. kasiri, N.; Fazel, N.; Fathi, F.; Ganjalikhani, K.M.; Eskandari, N. Quercetin with the potential effect on allergic diseases. Allergy Asthma Clin. Immunol., 2020, 16(1), 36.
[http://dx.doi.org/10.1186/s13223-020-00434-0] [PMID: 32467711]
[47]
Biswas, P.; Dey, D.; Biswas, P.K.; Rahaman, T.I.; Saha, S.; Parvez, A.; Khan, D.A.; Lily, N.J.; Saha, K.; Sohel, M.; Hasan, M.M.; Al Azad, S.; Bibi, S.; Hasan, M.N.; Rahmatullah, M.; Chun, J.; Rahman, M.A.; Kim, B. A comprehensive analysis and anti-cancer activities of quercetin in ROS-mediated cancer and cancer stem cells. Int. J. Mol. Sci., 2022, 23(19), 11746.
[http://dx.doi.org/10.3390/ijms231911746] [PMID: 36233051]
[48]
Al-Khayri, J.M.; Sahana, G.R.; Nagella, P.; Joseph, B.V.; Alessa, F.M.; Al-Mssallem, M.Q. Flavonoids as potential anti-inflammatory molecules: A review. Molecules, 2022, 27(9), 2901.
[http://dx.doi.org/10.3390/molecules27092901] [PMID: 35566252]
[49]
Yuan, K.; Zhu, Q.; Lu, Q.; Jiang, H.; Zhu, M.; Li, X.; Huang, G.; Xu, A. Quercetin alleviates rheumatoid arthritis by inhibiting neutrophil inflammatory activities. J. Nutr. Biochem., 2020, 84, 108454.
[http://dx.doi.org/10.1016/j.jnutbio.2020.108454] [PMID: 32679549]
[50]
Tang, M.; Zeng, Y.; Peng, W.; Xie, X.; Yang, Y.; Ji, B.; Li, F. Pharmacological aspects of natural quercetin in rheumatoid arthritis. Drug Des. Devel. Ther., 2022, 16, 2043-2053.
[http://dx.doi.org/10.2147/DDDT.S364759] [PMID: 35791403]
[51]
Scott, D.L.; Wolfe, F.; Huizinga, T.W.J. Rheumatoid arthritis. Lancet, 2010, 376(9746), 1094-1108.
[http://dx.doi.org/10.1016/S0140-6736(10)60826-4] [PMID: 20870100]
[52]
Lee, D.M.; Weinblatt, M.E. Rheumatoid arthritis. Lancet, 2001, 358(9285), 903-911.
[http://dx.doi.org/10.1016/S0140-6736(01)06075-5] [PMID: 11567728]
[53]
Fearon, U.; Canavan, M.; Biniecka, M.; Veale, D.J. Hypoxia, mitochondrial dysfunction and synovial invasiveness in rheumatoid arthritis. Nat. Rev. Rheumatol., 2016, 12(7), 385-397.
[http://dx.doi.org/10.1038/nrrheum.2016.69] [PMID: 27225300]
[54]
Sabi, E.M.; Singh, A.; Althafar, Z.M.; Behl, T.; Sehgal, A.; Singh, S.; Sharma, N.; Bhatia, S.; Al-Harrasi, A.; Alqahtani, H.M.; Bungau, S. Elucidating the role of hypoxia-inducible factor in rheumatoid arthritis. Inflammopharmacology, 2022, 30(3), 737-748.
[http://dx.doi.org/10.1007/s10787-022-00974-4] [PMID: 35364736]
[55]
Huang, Z.; Shi, X.; Li, X.; Zhang, L.; Wu, P.; Mao, J.; Xing, R.; Zhang, N.; Wang, P. Network pharmacology approach to uncover the mechanism governing the effect of simiao powder on knee osteoarthritis. BioMed Res. Int., 2020, 2020, 1-13.
[http://dx.doi.org/10.1155/2020/6971503] [PMID: 33376732]
[56]
de Groot, L.; Hinkema, H.; Westra, J.; Smit, A.J.; Kallenberg, C.G.M.; Bijl, M.; Posthumus, M.D. Advanced glycation endproducts are increased in rheumatoid arthritis patients with controlled disease. Arthritis Res. Ther., 2011, 13(6), R205.
[http://dx.doi.org/10.1186/ar3538] [PMID: 22168993]
[57]
Rasheed, Z.; Haqqi, T.M. Endoplasmic reticulum stress induces the expression of COX-2 through activation of eIF2α, p38-MAPK and NF-κB in advanced glycation end products stimulated human chondrocytes. Biochim. Biophys. Acta Mol. Cell Res., 2012, 1823(12), 2179-2189.
[http://dx.doi.org/10.1016/j.bbamcr.2012.08.021] [PMID: 22982228]
[58]
Roman-Blas, J.A.; Jimenez, S.A. NF-κB as a potential therapeutic target in osteoarthritis and rheumatoid arthritis. Osteoarthritis Cartilage, 2006, 14(9), 839-848.
[http://dx.doi.org/10.1016/j.joca.2006.04.008] [PMID: 16730463]
[59]
Ohbayashi, H. Matrix metalloproteinases in lung diseases. Curr. Protein Pept. Sci., 2002, 3(4), 409-421.
[http://dx.doi.org/10.2174/1389203023380549] [PMID: 12370004]
[60]
Tsai, C.L.; Chen, W.C.; Hsieh, H.L.; Chi, P.L.; Hsiao, L.D.; Yang, C.M. TNF-α induces matrix metalloproteinase-9-dependent soluble intercellular adhesion molecule-1 release via TRAF2-mediated MAPKs and NF-κB activation in osteoblast-like MC3T3-E1 cells. J. Biomed. Sci., 2014, 21(1), 12.
[http://dx.doi.org/10.1186/1423-0127-21-12] [PMID: 24502696]
[61]
Mohammed, F.F.; Smookler, S.S.; Khokha, R. Metalloproteinases, inflammation, and rheumatoid arthritis. Ann. Rheum. Dis., 2003, 62(S2), 43-47.
[http://dx.doi.org/10.1136/ard.62.suppl_2.ii43]
[62]
Hu, L.; Liu, R.; Zhang, L. Advance in bone destruction participated by JAK/STAT in rheumatoid arthritis and therapeutic effect of JAK/STAT inhibitors. Int. Immunopharmacol., 2022, 111, 109095.
[http://dx.doi.org/10.1016/j.intimp.2022.109095] [PMID: 35926270]
[63]
Chabaud, M.; Garnero, P.; Dayer, J.M.; Guerne, P.A.; Fossiez, F.; Miossec, P. Contribution of interleukin 17 to synovium matrix destruction in rheumatoid arthritis. Cytokine, 2000, 12(7), 1092-1099.
[http://dx.doi.org/10.1006/cyto.2000.0681] [PMID: 10880256]
[64]
Park, E.; Lee, C.G.; Han, S.J.; Yun, S.H.; Hwang, S.; Jeon, H.; Kim, J.; Choi, C.W.; Yang, S.; Jeong, S.Y. Antiosteoarthritic effect of morroniside in chondrocyte inflammation and destabilization of medial meniscus-induced mouse model. Int. J. Mol. Sci., 2021, 22(6), 2987.
[http://dx.doi.org/10.3390/ijms22062987] [PMID: 33804203]
[65]
Kucharzewska, P.; Maracle, C.X.; Jeucken, K.C.M.; van Hamburg, J.P.; Israelsson, E.; Furber, M.; Tas, S.W.; Olsson, H.K. NIK–IKK complex interaction controls NF-κB-dependent inflammatory activation of endothelium in response to LTβR ligation. J. Cell Sci., 2019, 132(7), jcs.225615.
[http://dx.doi.org/10.1242/jcs.225615] [PMID: 30837284]
[66]
Yao, Z.; Getting, S.J.; Locke, I.C. Regulation of TNF-induced osteoclast differentiation. Cells, 2021, 11(1), 132.
[http://dx.doi.org/10.3390/cells11010132] [PMID: 35011694]
[67]
Xia, Y.; Inoue, K.; Du, Y.; Baker, S.J.; Reddy, E.P.; Greenblatt, M.B.; Zhao, B. TGFβ reprograms TNF stimulation of macrophages towards a non-canonical pathway driving inflammatory osteoclastogenesis. Nat. Commun., 2022, 13(1), 3920.
[http://dx.doi.org/10.1038/s41467-022-31475-1] [PMID: 35798734]
[68]
Tsuchiya, Y.; Nakabayashi, O.; Nakano, H. FLIP the switch: Regulation of apoptosis and necroptosis by cFLIP. Int. J. Mol. Sci., 2015, 16(12), 30321-30341.
[http://dx.doi.org/10.3390/ijms161226232] [PMID: 26694384]
[69]
Fujita, M.; Hiroshi, O.; Ikemage, S.; Harada, E.; Matsumoto, T.; Uchino, J.; Nakanishi, Y.; Watanabe, K. Critical role of tumor necrosis factor receptor 1 in the pathogenesis of pulmonary emphysema in mice. Int. J. Chron. Obstruct. Pulmon. Dis., 2016, 11, 1705-1712.
[http://dx.doi.org/10.2147/COPD.S108919] [PMID: 27555760]
[70]
Zhai, Z.; Yang, F.; Xu, W.; Han, J.; Luo, G.; Li, Y.; Zhuang, J.; Jie, H.; Li, X.; Shi, X.; Han, X.; Luo, X.; Song, R.; Chen, Y.; Liang, J.; Wu, S.; He, Y.; Sun, E. Attenuation of rheumatoid arthritis through the inhibition of tumor necrosis factor-induced caspase 3/gasdermin E–mediated pyroptosis. Arthritis Rheumatol., 2022, 74(3), 427-440.
[http://dx.doi.org/10.1002/art.41963] [PMID: 34480835]
[71]
Aggarwal, S.; Gollapudi, S.; Gupta, S. Increased TNF-α-induced apoptosis in lymphocytes from aged humans: changes in TNF-α receptor expression and activation of caspases. J. Immunol., 1999, 162(4), 2154-2161.
[http://dx.doi.org/10.4049/jimmunol.162.4.2154] [PMID: 9973490]
[72]
Qian, Q.; Cao, X.; Wang, B.; Qu, Y.; Qian, Q.; Sun, Z.; Feng, F. Retracted: TNF‐α–TNFR signal pathway inhibits autophagy and promotes apoptosis of alveolar macrophages in coal worker’s pneumoconiosis. J. Cell. Physiol., 2019, 234(5), 5953-5963.
[http://dx.doi.org/10.1002/jcp.27061] [PMID: 30467847]
[73]
Hannemann, N.; Jordan, J.; Paul, S.; Reid, S.; Baenkler, H.W.; Sonnewald, S.; Bäuerle, T.; Vera, J.; Schett, G.; Bozec, A. The AP-1 transcription factor c-Jun promotes arthritis by regulating cyclooxygenase-2 and arginase-1 expression in macrophages. J. Immunol., 2017, 198(9), 3605-3614.
[http://dx.doi.org/10.4049/jimmunol.1601330] [PMID: 28298526]
[74]
Sundarrajan, M.; Boyle, D.L.; Chabaud-Riou, M.; Hammaker, D.; Firestein, G.S. Expression of the MAPK kinases MKK‐4 and MKK‐7 in rheumatoid arthritis and their role as key regulators of JNK. Arthritis Rheum., 2003, 48(9), 2450-2460.
[http://dx.doi.org/10.1002/art.11228] [PMID: 13130464]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy