Generic placeholder image

当代肿瘤药物靶点

Editor-in-Chief

ISSN (Print): 1568-0096
ISSN (Online): 1873-5576

Research Article

IR-780染料靶向癌症相关成纤维细胞通过增加肿瘤内T淋巴细胞浸润改善癌症免疫治疗

卷 24, 期 6, 2024

发表于: 05 January, 2024

页: [642 - 653] 页: 12

弟呕挨: 10.2174/0115680096261142231018104854

价格: $65

摘要

背景:免疫检查点抑制剂(ICIs)对抗程序性死亡(PD)-1/PD- l1途径免疫治疗已被证明仅对一部分癌症患者有效,而其余患者可能表现出低反应或在最初反应后可能产生耐药性。先前的研究表明,肿瘤微环境中由癌相关成纤维细胞(cancer-associated fibroblasts, CAFs)分泌的大量富含胶原的基质通过减少浸润的细胞毒性T细胞而成为某些肿瘤免疫治疗的关键障碍之一。然而,目前仍缺乏有效的治疗策略来控制细胞外基质。 方法:采用体内或离体近红外荧光成像、共聚焦近红外荧光成像和CAFs分离试验,评价CAFs对IR-780的吸收增强作用。采用qPCR、western blot和流式细胞术检测IR-780的纤维化表型下调作用和体外CAFs杀伤作用。在EMT6和MC38皮下移植小鼠模型上评价IR-780对体内抗pd - l1的治疗增强作用。 结果:IR-780被CAFs优先吸收并在线粒体中积累。进一步的研究结果发现,低剂量IR-780可以下调纤维化表型,而高剂量IR-780可以直接杀死体外的CAFs和EMT6细胞。此外,IR-780显著抑制EMT6和MC38皮下异种移植物瘤周基质中的细胞外基质(ECM)蛋白沉积,从而增加肿瘤深部肿瘤浸润淋巴细胞(TILs)的比例,进一步提高抗pd - l1的治疗效果。 结论:本工作提供了一种独特的策略,通过靶向调节CAFs抑制肿瘤微环境中ECM蛋白的沉积,从而破坏T细胞屏障,进一步促进肿瘤对PD-L1单克隆抗体的反应。IR-780被认为是一种潜在的治疗性小分子佐剂,可以促进免疫治疗的效果。

关键词: IR-780,癌症相关成纤维细胞,肿瘤浸润淋巴细胞,细胞外基质,抗pd - l1,癌症免疫治疗。

图形摘要
[1]
Kraehenbuehl, L.; Weng, C.H.; Eghbali, S.; Wolchok, J.D.; Merghoub, T. Enhancing immunotherapy in cancer by targeting emerging immunomodulatory pathways. Nat. Rev. Clin. Oncol., 2022, 19(1), 37-50.
[http://dx.doi.org/10.1038/s41571-021-00552-7] [PMID: 34580473]
[2]
Chung, Y.M.; Khan, P.P.; Wang, H.; Tsai, W.B.; Qiao, Y.; Yu, B.; Larrick, J.W.; Hu, M.C.T. Sensitizing tumors to anti-PD-1 therapy by promoting NK and CD8+ T cells via pharmacological activation of FOXO3. J. Immunother. Cancer, 2021, 9(12), e002772.
[http://dx.doi.org/10.1136/jitc-2021-002772] [PMID: 34887262]
[3]
Fan, Q.; Chen, Z.; Wang, C.; Liu, Z. Toward biomaterials for enhancing immune checkpoint blockade therapy. Adv. Funct. Mater., 2018, 28(37), 1802540.
[http://dx.doi.org/10.1002/adfm.201802540]
[4]
Galon, J.; Bruni, D. Approaches to treat immune hot, altered and cold tumours with combination immunotherapies. Nat. Rev. Drug Discov., 2019, 18(3), 197-218.
[http://dx.doi.org/10.1038/s41573-018-0007-y] [PMID: 30610226]
[5]
Polyak, K.; Haviv, I.; Campbell, I.G. Co-evolution of tumor cells and their microenvironment. Trends Genet., 2009, 25(1), 30-38.
[http://dx.doi.org/10.1016/j.tig.2008.10.012] [PMID: 19054589]
[6]
Berdiel-Acer, M.; Sanz-Pamplona, R.; Calon, A.; Cuadras, D.; Berenguer, A.; Sanjuan, X.; Paules, M.J.; Salazar, R.; Moreno, V.; Batlle, E.; Villanueva, A.; Molleví, D.G. Differences between CAFs and their paired NCF from adjacent colonic mucosa reveal functional heterogeneity of CAFs, providing prognostic information. Mol. Oncol., 2014, 8(7), 1290-1305.
[http://dx.doi.org/10.1016/j.molonc.2014.04.006] [PMID: 24839936]
[7]
Erez, N.; Truitt, M.; Olson, P.; Hanahan, D.; Hanahan, D. Cancer-associated fibroblasts are activated in incipient neoplasia to orchestrate tumor-promoting inflammation in an nf-κb-dependent manner. Cancer Cell, 2010, 17(2), 135-147.
[http://dx.doi.org/10.1016/j.ccr.2009.12.041] [PMID: 20138012]
[8]
Shekhar, M.P.; Werdell, J.; Santner, S.J.; Pauley, R.J.; Tait, L. Breast stroma plays a dominant regulatory role in breast epithelial growth and differentiation: Implications for tumor development and progression. Cancer Res., 2001, 61(4), 1320-1326.
[PMID: 11245428]
[9]
Henry, L.R.; Lee, H.O.; Lee, J.S.; Klein-Szanto, A.; Watts, P.; Ross, E.A.; Chen, W.T.; Cheng, J.D. Clinical implications of fibroblast activation protein in patients with colon cancer. Clin. Cancer Res., 2007, 13(6), 1736-1741.
[http://dx.doi.org/10.1158/1078-0432.CCR-06-1746] [PMID: 17363526]
[10]
Paszek, M.J.; Zahir, N.; Johnson, K.R.; Lakins, J.N.; Rozenberg, G.I.; Gefen, A.; Reinhart-King, C.A.; Margulies, S.S.; Dembo, M.; Boettiger, D.; Hammer, D.A.; Weaver, V.M. Tensional homeostasis and the malignant phenotype. Cancer Cell, 2005, 8(3), 241-254.
[http://dx.doi.org/10.1016/j.ccr.2005.08.010] [PMID: 16169468]
[11]
Chaudhuri, O.; Koshy, S.T.; Branco da Cunha, C.; Shin, J.W.; Verbeke, C.S.; Allison, K.H.; Mooney, D.J. Extracellular matrix stiffness and composition jointly regulate the induction of malignant phenotypes in mammary epithelium. Nat. Mater., 2014, 13(10), 970-978.
[http://dx.doi.org/10.1038/nmat4009] [PMID: 24930031]
[12]
Samuel, M.S.; Lopez, J.I.; McGhee, E.J.; Croft, D.R.; Strachan, D.; Timpson, P.; Munro, J.; Schröder, E.; Zhou, J.; Brunton, V.G.; Barker, N.; Clevers, H.; Sansom, O.J.; Anderson, K.I.; Weaver, V.M.; Olson, M.F. Actomyosin-mediated cellular tension drives increased tissue stiffness and β-catenin activation to induce epidermal hyperplasia and tumor growth. Cancer Cell, 2011, 19(6), 776-791.
[http://dx.doi.org/10.1016/j.ccr.2011.05.008] [PMID: 21665151]
[13]
Acerbi, I.; Cassereau, L.; Dean, I.; Shi, Q.; Au, A.; Park, C.; Chen, Y.Y.; Liphardt, J.; Hwang, E.S.; Weaver, V.M. Human breast cancer invasion and aggression correlates with ECM stiffening and immune cell infiltration. Integr. Biol., 2015, 7(10), 1120-1134.
[http://dx.doi.org/10.1039/c5ib00040h] [PMID: 25959051]
[14]
von Bernstorff, W.; Voss, M.; Freichel, S.; Schmid, A.; Vogel, I.; Jöhnk, C.; Henne-Bruns, D.; Kremer, B.; Kalthoff, H. Systemic and local immunosuppression in pancreatic cancer patients. Clin. Cancer Res., 2001, 7(S3), 925s-932s.
[PMID: 11300493]
[15]
Lieubeau, B.; Heymann, M.F.; Henry, F.; Barbieux, I.; Meflah, K.; Grégoire, M. Immunomodulatory effects of tumor-associated fibroblasts in colorectal-tumor development. Int. J. Cancer, 1999, 81(4), 629-636.
[http://dx.doi.org/10.1002/(SICI)1097-0215(19990517)81:4<629::AID-IJC20>3.0.CO;2-8] [PMID: 10225455]
[16]
Ene-Obong, A.; Clear, A.J.; Watt, J.; Wang, J.; Fatah, R.; Riches, J.C.; Marshall, J.F.; Chin-Aleong, J.; Chelala, C.; Gribben, J.G.; Ramsay, A.G.; Kocher, H.M. Activated pancreatic stellate cells sequester CD8+ T cells to reduce their infiltration of the juxtatumoral compartment of pancreatic ductal adenocarcinoma. Gastroenterology, 2013, 145(5), 1121-1132.
[http://dx.doi.org/10.1053/j.gastro.2013.07.025] [PMID: 23891972]
[17]
Provenzano, P.P.; Cuevas, C.; Chang, A.E.; Goel, V.K.; Von Hoff, D.D.; Hingorani, S.R. Enzymatic targeting of the stroma ablates physical barriers to treatment of pancreatic ductal adenocarcinoma. Cancer Cell, 2012, 21(3), 418-429.
[http://dx.doi.org/10.1016/j.ccr.2012.01.007] [PMID: 22439937]
[18]
Olive, K.P.; Jacobetz, M.A.; Davidson, C.J.; Gopinathan, A.; McIntyre, D.; Honess, D.; Madhu, B.; Goldgraben, M.A.; Caldwell, M.E.; Allard, D.; Frese, K.K.; DeNicola, G.; Feig, C.; Combs, C.; Winter, S.P.; Ireland-Zecchini, H.; Reichelt, S.; Howat, W.J.; Chang, A.; Dhara, M.; Wang, L.; Rückert, F.; Grützmann, R.; Pilarsky, C.; Izeradjene, K.; Hingorani, S.R.; Huang, P.; Davies, S.E.; Plunkett, W.; Egorin, M.; Hruban, R.H.; Whitebread, N.; McGovern, K.; Adams, J.; Iacobuzio-Donahue, C.; Griffiths, J.; Tuveson, D.A. Inhibition of Hedgehog signaling enhances delivery of chemotherapy in a mouse model of pancreatic cancer. Science, 2009, 324(5933), 1457-1461.
[http://dx.doi.org/10.1126/science.1171362] [PMID: 19460966]
[19]
Feig, C.; Jones, J.O.; Kraman, M.; Wells, R.J.B.; Deonarine, A.; Chan, D.S.; Connell, C.M.; Roberts, E.W.; Zhao, Q.; Caballero, O.L.; Teichmann, S.A.; Janowitz, T.; Jodrell, D.I.; Tuveson, D.A.; Fearon, D.T. Targeting CXCL12 from FAP-expressing carcinoma-associated fibroblasts synergizes with anti–PD-L1 immunotherapy in pancreatic cancer. Proc. Natl. Acad. Sci., 2013, 110(50), 20212-20217.
[http://dx.doi.org/10.1073/pnas.1320318110] [PMID: 24277834]
[20]
Jiang, H.; Hegde, S.; Knolhoff, B.L.; Zhu, Y.; Herndon, J.M.; Meyer, M.A.; Nywening, T.M.; Hawkins, W.G.; Shapiro, I.M.; Weaver, D.T.; Pachter, J.A.; Wang-Gillam, A.; DeNardo, D.G. Targeting focal adhesion kinase renders pancreatic cancers responsive to checkpoint immunotherapy. Nat. Med., 2016, 22(8), 851-860.
[http://dx.doi.org/10.1038/nm.4123] [PMID: 27376576]
[21]
Chen, Z.; Wang, Z.; Jin, T.; Shen, G.; Wang, Y.; Tan, X.; Gan, Y.; Yang, F.; Liu, Y.; Huang, C.; Zhang, Y.; Fu, X.; Shi, C. Fibrogenic fibroblast-selective near-infrared phototherapy to control scarring. Theranostics, 2019, 9(23), 6797-6808.
[http://dx.doi.org/10.7150/thno.36375] [PMID: 31660069]
[22]
Luo, M.; Chen, L.; Zheng, J.; Wang, Q.; Huang, Y.; Liao, F.; Jiang, Z.; Zhang, C.; Shen, G.; Wu, J.; Wang, Y.; Wang, Y.; Leng, Y.; Han, S.; Zhang, A.; Wang, Z.; Shi, C. Mitigation of radiation-induced pulmonary fibrosis by small-molecule dye IR-780. Free Radic. Biol. Med., 2021, 164, 417-428.
[http://dx.doi.org/10.1016/j.freeradbiomed.2020.12.435] [PMID: 33418112]
[23]
Wang, Z.; Chen, L.; Huang, Y.; Luo, M.; Wang, H.; Jiang, Z.; Zheng, J.; Yang, Z.; Chen, Z.; Zhang, C.; Long, L.; Wang, Y.; Li, X.; Liao, F.; Gan, Y.; Luo, P.; Liu, Y.; Wang, Y.; XuTan; Zhou, Z.; Zhang, A.; Shi, C. Pharmaceutical targeting of succinate dehydrogenase in fibroblasts controls bleomycin-induced lung fibrosis. Redox Biol., 2021, 46, 102082.
[http://dx.doi.org/10.1016/j.redox.2021.102082] [PMID: 34343908]
[24]
Li, S.; Wang, P.; Zhang, G.; Ji, J.; Lv, T.; Wang, X.; Wang, H. The effect of ALA-PDT on reversing the activation of cancer-associated fibroblasts in cutaneous squamous cell carcinoma. Photodiagn. Photodyn. Ther., 2019, 27, 234-240.
[http://dx.doi.org/10.1016/j.pdpdt.2019.05.043] [PMID: 31163284]
[25]
Wang, Y.; Liu, T.; Zhang, E.; Luo, S.; Tan, X.; Shi, C. Preferential accumulation of the near infrared heptamethine dye IR-780 in the mitochondria of drug-resistant lung cancer cells. Biomaterials, 2014, 35(13), 4116-4124.
[http://dx.doi.org/10.1016/j.biomaterials.2014.01.061] [PMID: 24529902]
[26]
Mariathasan, S.; Turley, S.J.; Nickles, D.; Castiglioni, A.; Yuen, K.; Wang, Y.; Kadel, E.E., III; Koeppen, H.; Astarita, J.L.; Cubas, R.; Jhunjhunwala, S.; Banchereau, R.; Yang, Y.; Guan, Y.; Chalouni, C.; Ziai, J.; Şenbabaoğlu, Y.; Santoro, S.; Sheinson, D.; Hung, J.; Giltnane, J.M.; Pierce, A.A.; Mesh, K.; Lianoglou, S.; Riegler, J.; Carano, R.A.D.; Eriksson, P.; Höglund, M.; Somarriba, L.; Halligan, D.L.; van der Heijden, M.S.; Loriot, Y.; Rosenberg, J.E.; Fong, L.; Mellman, I.; Chen, D.S.; Green, M.; Derleth, C.; Fine, G.D.; Hegde, P.S.; Bourgon, R.; Powles, T. TGFβ attenuates tumour response to PD-L1 blockade by contributing to exclusion of T cells. Nature, 2018, 554(7693), 544-548.
[http://dx.doi.org/10.1038/nature25501] [PMID: 29443960]
[27]
Hamdy, S.; Haddadi, A.; Hung, R.W.; Lavasanifar, A. Targeting dendritic cells with nano-particulate PLGA cancer vaccine formulations. Adv. Drug Deliv. Rev., 2011, 63(10-11), 943-955.
[http://dx.doi.org/10.1016/j.addr.2011.05.021] [PMID: 21679733]
[28]
Ott, P.A.; Hodi, F.S.; Robert, C. CTLA-4 and PD-1/PD-L1 blockade: New immunotherapeutic modalities with durable clinical benefit in melanoma patients. Clin. Cancer Res., 2013, 19(19), 5300-5309.
[http://dx.doi.org/10.1158/1078-0432.CCR-13-0143] [PMID: 24089443]
[29]
Akbay, E.A.; Koyama, S.; Carretero, J.; Altabef, A.; Tchaicha, J.H.; Christensen, C.L.; Mikse, O.R.; Cherniack, A.D.; Beauchamp, E.M.; Pugh, T.J.; Wilkerson, M.D.; Fecci, P.E.; Butaney, M.; Reibel, J.B.; Soucheray, M.; Cohoon, T.J.; Janne, P.A.; Meyerson, M.; Hayes, D.N.; Shapiro, G.I.; Shimamura, T.; Sholl, L.M.; Rodig, S.J.; Freeman, G.J.; Hammerman, P.S.; Dranoff, G.; Wong, K.K. Activation of the PD-1 pathway contributes to immune escape in EGFR-driven lung tumors. Cancer Discov., 2013, 3(12), 1355-1363.
[http://dx.doi.org/10.1158/2159-8290.CD-13-0310] [PMID: 24078774]
[30]
De Jaeghere, E.A.; Denys, H.G.; De Wever, O. Fibroblasts fuel immune escape in the tumor microenvironment. Trends Cancer, 2019, 5(11), 704-723.
[http://dx.doi.org/10.1016/j.trecan.2019.09.009] [PMID: 31735289]
[31]
Desbois, M.; Wang, Y. Cancer-associated fibroblasts: Key players in shaping the tumor immune microenvironment. Immunol. Rev., 2021, 302(1), 241-258.
[http://dx.doi.org/10.1111/imr.12982] [PMID: 34075584]
[32]
Duperret, E.K.; Trautz, A.; Ammons, D.; Perales-Puchalt, A.; Wise, M.C.; Yan, J.; Reed, C.; Weiner, D.B. Alteration of the tumor stroma using a consensus DNA vaccine targeting fibroblast activation protein (FAP) synergizes with antitumor vaccine therapy in mice. Clin. Cancer Res., 2018, 24(5), 1190-1201.
[http://dx.doi.org/10.1158/1078-0432.CCR-17-2033] [PMID: 29269377]
[33]
Fang, J.; Xiao, L.; Joo, K.I.; Liu, Y.; Zhang, C.; Liu, S.; Conti, P.S.; Li, Z.; Wang, P. A potent immunotoxin targeting fibroblast activation protein for treatment of breast cancer in mice. Int. J. Cancer, 2016, 138(4), 1013-1023.
[http://dx.doi.org/10.1002/ijc.29831] [PMID: 26334777]
[34]
Horvath, L.; Thienpont, B.; Zhao, L.; Wolf, D.; Pircher, A. Overcoming immunotherapy resistance in non-small cell lung cancer (NSCLC) - novel approaches and future outlook. Mol. Cancer, 2020, 19(1), 141.
[http://dx.doi.org/10.1186/s12943-020-01260-z] [PMID: 32917214]
[35]
Carapuça, E.F.; Gemenetzidis, E.; Feig, C.; Bapiro, T.E.; Williams, M.D.; Wilson, A.S.; Delvecchio, F.R.; Arumugam, P.; Grose, R.P.; Lemoine, N.R.; Richards, F.M.; Kocher, H.M. Anti-stromal treatment together with chemotherapy targets multiple signalling pathways in pancreatic adenocarcinoma. J. Pathol., 2016, 239(3), 286-296.
[http://dx.doi.org/10.1002/path.4727] [PMID: 27061193]
[36]
Nishina, T.; Takahashi, S.; Iwasawa, R.; Noguchi, H.; Aoki, M.; Doi, T. Safety, pharmacokinetic, and pharmacodynamics of erdafitinib, a pan-fibroblast growth factor receptor (FGFR) tyrosine kinase inhibitor, in patients with advanced or refractory solid tumors. Invest. New Drugs, 2018, 36(3), 424-434.
[http://dx.doi.org/10.1007/s10637-017-0514-4] [PMID: 28965185]
[37]
Lan, Y.; Zhang, D.; Xu, C.; Hance, K.W.; Marelli, B.; Qi, J.; Yu, H.; Qin, G.; Sircar, A.; Hernández, V.M.; Jenkins, M.H.; Fontana, R.E.; Deshpande, A.; Locke, G.; Sabzevari, H.; Radvanyi, L.; Lo, K.M. Enhanced preclinical antitumor activity of M7824, a bifunctional fusion protein simultaneously targeting PD-L1 and TGF-β. Sci. Transl. Med., 2018, 10(424), eaan5488.
[http://dx.doi.org/10.1126/scitranslmed.aan5488] [PMID: 29343622]
[38]
Lefort, S.; Thuleau, A.; Kieffer, Y.; Sirven, P.; Bieche, I.; Marangoni, E.; Vincent-Salomon, A.; Mechta-Grigoriou, F. CXCR4 inhibitors could benefit to HER2 but not to triple-negative breast cancer patients. Oncogene, 2017, 36(9), 1211-1222.
[http://dx.doi.org/10.1038/onc.2016.284] [PMID: 27669438]
[39]
Winer, A.; Adams, S.; Mignatti, P. Matrix metalloproteinase inhibitors in cancer therapy: turning past failures into future successes. Mol. Cancer Ther., 2018, 17(6), 1147-1155.
[http://dx.doi.org/10.1158/1535-7163.MCT-17-0646] [PMID: 29735645]
[40]
Zhang, Z.; Tao, D.; Zhang, P.; Liu, X.; Zhang, Y.; Cheng, J.; Yuan, H.; Liu, L.; Jiang, H. Hyaluronan synthase 2 expressed by cancer-associated fibroblasts promotes oral cancer invasion. J. Exp. Clin. Cancer Res., 2016, 35(1), 181.
[http://dx.doi.org/10.1186/s13046-016-0458-0] [PMID: 27884164]
[41]
Chen, Y.; McAndrews, K.M.; Kalluri, R. Clinical and therapeutic relevance of cancer-associated fibroblasts. Nat. Rev. Clin. Oncol., 2021, 18(12), 792-804.
[http://dx.doi.org/10.1038/s41571-021-00546-5] [PMID: 34489603]
[42]
Jiang, Q.; Zhang, C.; Wang, H.; Peng, T.; Zhang, L.; Wang, Y.; Han, W.; Shi, C. Mitochondria-targeting immunogenic cell death inducer improves the adoptive t-cell therapy against solid tumor. Front. Oncol., 2019, 9, 1196.
[http://dx.doi.org/10.3389/fonc.2019.01196] [PMID: 31781498]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy