Generic placeholder image

Current Pharmaceutical Design

Editor-in-Chief

ISSN (Print): 1381-6128
ISSN (Online): 1873-4286

Mini-Review Article

Role of Amphotericin B in the Treatment of Mucormycosis

Author(s): Alisha Sachdeva, Monika Targhotra, Meenakshi Kanwar Chauhan* and Monica Chopra

Volume 30, Issue 1, 2024

Published on: 04 January, 2024

Page: [1 - 9] Pages: 9

DOI: 10.2174/0113816128272443231221101415

Price: $65

Abstract

Background: Regardless of the most recent inclusion of mold-active agents (isavuconazole and posaconazole) to antifungal agents against mucormycosis, in conjunction with amphotericin B (AMB) items, numerous uncertainties still exist regarding the treatment of this rare infection. The order Mucorales contains a variety of fungi that cause the serious but uncommon fungal illness known as mucormycosis. The moulds are prevalent in nature and typically do not pose significant risks to people. Immunocompromised people are affected by it.

Objective: This article's primary goal is to highlight the integral role that AMB plays in this condition.

Methods : Like sinusitis (including pansinusitis, rhino-orbital, or rhino-cerebral sinusitis) is one of the many signs and symptoms of mucormycosis. The National Center for Biotechnology Information (NCBI) produces a variety of online information resources for review articles on the topic-based mucormycosis, AMB, diagnosis of mucormycosis and the PubMed® database of citations and abstracts published in life science journals. These resources can be accessed through the NCBI home page at https://www.ncbi.nlm.nih.gov.

Results: The article provides a summary of the pharmacological attributes of the various AMB compositions accessible for systemic use.

Conclusion: The article demonstrates the traits of the drug associated with its chemical, pharmacokinetics, stability, and other features, and illustrates their most useful characteristics for clinical application.

Keywords: Mucormycosis, lipid formulation, amphotericin B (AMB), fungal infection, antifungal agents, sinusitis.

Next »
[1]
Gomes MZR, Lewis RE, Kontoyiannis DP. Mucormycosis caused by unusual mucormycetes, non-Rhizopus, -Mucor, and -Lichtheimia species. Clin Microbiol Rev 2011; 24(2): 411-45.
[http://dx.doi.org/10.1128/CMR.00056-10] [PMID: 21482731]
[2]
Fürbringer P. Beobachtungen über lungenmycose beim menschen. Virchows Arch 1876; 66(3): 330-65.
[http://dx.doi.org/10.1007/BF01878266]
[3]
Kauffman CA. Zygomycosis: Reemergence of an old pathogen. Clin Infect Dis 2004; 39(4): 588-90.
[http://dx.doi.org/10.1086/422729] [PMID: 15356828]
[4]
Patel A, Agarwal R, Rudramurthy SM, et al. Multicenter epidemiologic study of coronavirus disease–associated mucormycosis, India. Emerg Infect Dis 2021; 27(9): 2349-59.
[http://dx.doi.org/10.3201/eid2709.210934] [PMID: 34087089]
[5]
Prakash H, Skiada A, Paul RA, Chakrabarti A, Rudramurthy SM. Connecting the dots: Interplay of pathogenic mechanisms between COVID-19 disease and mucormycosis. J Fungi 2021; 7(8): 616.
[http://dx.doi.org/10.3390/jof7080616] [PMID: 34436155]
[6]
Hoenigl M, Seidel D, Carvalho A, et al. The emergence of COVID-19 associated mucormycosis: A review of cases from 18 countries. Lancet Microbe 2022; 3: e543-2.
[http://dx.doi.org/10.1016/S2666-5247(21)00237-8]
[7]
Lanternier F, Dannaoui E, Morizot G, et al. A global analysis of mucormycosis in france: The retrozygo study (2005-2007). ClinInfect Dis 2012; 54: S35-43.
[http://dx.doi.org/10.1093/cid/cir880]
[8]
Walsh TJ, Gamaletsou MN, McGinnis MR, Hayden RT, Kontoyiannis DP. Early clinical and laboratory diagnosis of invasive pulmonary, extrapulmonary, and disseminated mucormycosis (zygomycosis). Clin Infect Dis 2012; 54: S55-60.
[http://dx.doi.org/10.1093/cid/cir868] [PMID: 22247446]
[9]
Petrikkos G, Tsioutis C. Recent advances in the pathogenesis of mucormycoses. Clin Ther 2018; 40(6): 894-902.
[http://dx.doi.org/10.1016/j.clinthera.2018.03.009] [PMID: 29631910]
[10]
Hassan MIA, Voigt K. Pathogenicity patterns of mucormycosis: Epidemiology, interaction with immune cells and virulence factors. Med Mycol 2019; 57(Suppl. 2): S245-56.
[http://dx.doi.org/10.1093/mmy/myz011] [PMID: 30816980]
[11]
Fu Y, Lee H, Collins M, et al. Cloning and functional characterization of the Rhizopus oryzae high affinity iron permease (rFTR1) gene*1. FEMS Microbiol Lett 2004; 235(1): 169-76.
[http://dx.doi.org/10.1016/j.femsle.2004.04.031] [PMID: 15158278]
[12]
Gebremariam T, Liu M, Luo G, et al. CotH3 mediates fungal invasion of host cells during mucormycosis. J Clin Invest 2014; 124(1): 237-50.
[http://dx.doi.org/10.1172/JCI71349] [PMID: 24355926]
[13]
Patiño-Medina JA, Maldonado-Herrera G, Pérez-Arques C, et al. Control of morphology and virulence by ADP-ribosylation factors (Arf) in Mucor circinelloides. Curr Genet 2018; 64(4): 853-69.
[http://dx.doi.org/10.1007/s00294-017-0798-0] [PMID: 29264641]
[14]
Lionakis MS, Kontoyiannis DP. Glucocorticoids and invasive fungal infections. Lancet 2003; 362(9398): 1828-38.
[http://dx.doi.org/10.1016/S0140-6736(03)14904-5] [PMID: 14654323]
[15]
Binder U, Maurer E, Lass-Flörl C. Mucormycosis - From the pathogens to the disease. Clin Microbiol Infect 2014; 20(Suppl. 6): 60-6.
[http://dx.doi.org/10.1111/1469-0691.12566] [PMID: 24476149]
[16]
Lackner G, Partida-Martinez LP, Hertweck C. Endofungal bacteria as producers of mycotoxins. Trends Microbiol 2009; 17(12): 570-6.
[http://dx.doi.org/10.1016/j.tim.2009.09.003] [PMID: 19800796]
[17]
Partida-Martinez LP, Hertweck C. Pathogenic fungus Harbours endosymbiotic bacteria for toxin production. Nature 2005; 437(7060): 884-8.
[http://dx.doi.org/10.1038/nature03997] [PMID: 16208371]
[18]
Lamaris GA, Ben-Ami R, Lewis RE, Chamilos G, Samonis G, Kontoyiannis DP. Increased virulence of Zygomycetes organisms following exposure to voriconazole: A study involving fly and murine models of zygomycosis. J Infect Dis 2009; 199(9): 1399-406.
[http://dx.doi.org/10.1086/597615] [PMID: 19358672]
[19]
Lewis RE, Liao G, Wang W, Prince RA, Kontoyiannis DP. Voriconazole pre-exposure selects for breakthrough mucormycosis in a mixed model of Aspergillus fumigatus-Rhizopus oryzae pulmonary infection. Virulence 2011; 2(4): 348-55.
[http://dx.doi.org/10.4161/viru.2.4.17074] [PMID: 21788730]
[20]
Rees JR, Pinner RW, Hajjeh RA, Brandt ME, Reingold AL. The epidemiological features of invasive mycotic infections in the San Francisco Bay area, 1992-1993: Results of population-based laboratory active surveillance. Clin Infect Dis 1998; 27(5): 1138-47.
[http://dx.doi.org/10.1093/clinids/27.5.1138] [PMID: 9827260]
[21]
Torres-Narbona M, Guinea J, Martínez-Alarcón J, Muñoz P, Gadea I, Bouza E. Impact of zygomycosis on microbiology workload: A survey study in Spain. J Clin Microbiol 2007; 45(6): 2051-3.
[http://dx.doi.org/10.1128/JCM.02473-06] [PMID: 17392438]
[22]
Bitar D, Van Cauteren D, Lanternier F, et al. Increasing incidence of zygomycosis (mucormycosis), France, 1997-2006. Emerg Infect Dis 2009; 15(9): 1395-401.
[http://dx.doi.org/10.3201/eid1509.090334] [PMID: 19788806]
[23]
Ambrosioni J, Bouchuiguir-Wafa K, Garbino J. Emerging invasive zygomycosis in a tertiary care center: Epidemiology and associated risk factors. Int J Infect Dis 2010; 14(Suppl. 3): e100-3.
[http://dx.doi.org/10.1016/j.ijid.2009.11.024] [PMID: 20335060]
[24]
Saegeman V, Maertens J, Meersseman W, Spriet I, Verbeken E, Lagrou K. Increasing incidence of mucormycosis in University Hospital, Belgium. Emerg Infect Dis 2010; 16(9): 1456-8.
[http://dx.doi.org/10.3201/eid1609.100276] [PMID: 20735932]
[25]
Kontoyiannis DP, Yang H, Song J, et al. Prevalence, clinical and economic burden of mucormycosis-related hospitalizations in the United States: A retrospective study BMC Infect Dis 2016; 16(1): 730.
[http://dx.doi.org/10.1186/s12879-016-2023-z]
[26]
Guinea J, Escribano P, Vena A, et al. Increasing incidence of mucormycosis in a large Spanish hospital from 2007 to 2015: Epidemiology and microbiological characterization of the isolates. PLoS One 2017; 12(6): e0179136.
[http://dx.doi.org/10.1371/journal.pone.0179136] [PMID: 28591186]
[27]
Prakash H, Ghosh AK, Rudramurthy SM, et al. A prospective multicenter study on mucormycosis in India: Epidemiology, diagnosis, and treatment. Med Mycol 2019; 57(4): 395-402.
[http://dx.doi.org/10.1093/mmy/myy060] [PMID: 30085158]
[28]
Chakrabarti A, Das A, Mandal J, et al. The rising trend of invasive zygomycosis in patients with uncontrolled diabetes mellitus. Med Mycol 2006; 44(4): 335-42.
[http://dx.doi.org/10.1080/13693780500464930] [PMID: 16772227]
[29]
Chakrabarti A, Das A, Sharma A, et al. Ten years’ experience in zygomycosis at a tertiary care centre in India. J Infect 2001; 42(4): 261-6.
[http://dx.doi.org/10.1053/jinf.2001.0831] [PMID: 11545569]
[30]
Chakrabarti A, Chatterjee SS, Das A, et al. Invasive zygomycosis in India: Experience in a tertiary care hospital. Postgrad Med J 2009; 85(1009): 573-81.
[http://dx.doi.org/10.1136/pgmj.2008.076463] [PMID: 19892892]
[31]
Lin E, Moua T, Limper AH. Pulmonary mucormycosis: Clinical features and outcomes. Infection 2017; 45(4): 443-8.
[http://dx.doi.org/10.1007/s15010-017-0991-6] [PMID: 28220379]
[32]
Jeong W, Keighley C, Wolfe R, et al. The epidemiology and clinical manifestations of mucormycosis: A systematic review and meta-analysis of case reports. Clin Microbiol Infect 2019; 25(1): 26-34.
[http://dx.doi.org/10.1016/j.cmi.2018.07.011] [PMID: 30036666]
[33]
Chander J, Singla N, Kaur M, et al. Saksenaea erythrospora, an emerging mucoralean fungus causing severe necrotizing skin and soft tissue infections - A study from a tertiary care hospital in North India. Infect Dis 2017; 49(3): 170-7.
[http://dx.doi.org/10.1080/23744235.2016.1239027] [PMID: 27701965]
[34]
Chakrabarti A, Marak RSK, Shivaprakash MR, et al. Cavitary pulmonary zygomycosis caused by Rhizopus homothallicus. J Clin Microbiol 2010; 48(5): 1965-9.
[http://dx.doi.org/10.1128/JCM.01272-09] [PMID: 20200286]
[35]
Xess I, Mohapatra S, Shivaprakash MR, et al. Evidence implicating Thamnostylum lucknowense as an etiological agent of rhino-orbital mucormycosis. J Clin Microbiol 2012; 50(4): 1491-4.
[http://dx.doi.org/10.1128/JCM.06611-11] [PMID: 22301030]
[36]
Sipsas NV, Gamaletsou MN, Anastasopoulou A, Kontoyiannis DP. Therapy of mucormycosis. J Fungi 2018; 4: 90.
[http://dx.doi.org/10.3390/jof4030090]
[37]
Key facts mucormycosis. Available from: https://www.who.int/india/home/emergencies/coronavirus-disease-(covid-19)/mucormycosis (Cited 2023 Oct 10).
[38]
Mucormycosis statistics. Available from: https://www.cdc.gov/fungal/diseases/mucormycosis/statistics.html (Cited 2023 Oct 10).
[39]
Dismukes WE. Introduction to antifungal drugs. Clin Infect Dis 2000; 30(4): 653-7.
[http://dx.doi.org/10.1086/313748] [PMID: 10770726]
[40]
Donovick R, Gold W, Pagano JF, Stout HA. Amphotericins A and B, antifungal antibiotics produced by a streptomycete I. in vitro studies. Antibiot Annu 1955-1956; 3: 579-86.
[PMID: 13355330]
[41]
Filippin FB, Souza LC. Therapeutic efficacy of amphotericin B lipid formulations. Braz J Pharm Sci 2006; 42: 27.
[42]
Almeida MVAd. Amphotericin B and its lipid formulations. Faculty of Health Sciences, University Fernand-o Pessoa 2013; pp. 58.
[43]
Martinez R. An update on the use of antifungal agents. J Bras Pneumol 2006; 32(5): 449-60.
[http://dx.doi.org/10.1590/S1806-37132006000500013] [PMID: 17268750]
[44]
O’Neil MJ. The merck index: An encyclopedia of chemicals, drugs, and biologicals. J Am Chem Society 2007; 2197.
[45]
Adler-Moore JP, Gangneux JP, Pappas PG. Comparison between liposomal formulations of amphotericin B. Med Mycol 2016; 54(3): 223-31.
[http://dx.doi.org/10.1093/mmy/myv111] [PMID: 26768369]
[46]
Bergold AMGS. New antifungic drugs: A review. Visão Acadêmica 2004; 5: 13.
[47]
Finkelstein A, Holz R. Aqueous pores created in thin lipid membranes by the polyene antibiotics nystatin and amphotericin B. Membranes 1973; 2: 377-408.
[PMID: 4585230]
[48]
Georgopapadakou NH. Antifungals: Mechanism of action and resistance, established and novel drugs. Curr Opin Microbiol 1998; 1(5): 547-57.
[http://dx.doi.org/10.1016/S1369-5274(98)80087-8] [PMID: 10066533]
[49]
Mesa-Arango AC, Scorzoni L, Zaragoza O. It only takes one to do many jobs: Amphotericin B as antifungal and immunomodulatory drug. Front Microbiol 2012; 3: 286.
[http://dx.doi.org/10.3389/fmicb.2012.00286] [PMID: 23024638]
[50]
Gonzalez JM, Rodriguez CA, Agudelo M, Zuluaga AF, Vesga O. Antifungal pharmacodynamics: Latin America’s perspective. Braz J Infect Dis 2017; 21(1): 79-87.
[http://dx.doi.org/10.1016/j.bjid.2016.09.009] [PMID: 27821250]
[51]
Hong Y, Shaw PJ, Nath CE, et al. Population pharmacokinetics of liposomal amphotericin B in pediatric patients with malignant diseases. Antimicrob Agents Chemother 2006; 50(3): 935-42.
[http://dx.doi.org/10.1128/AAC.50.3.935-942.2006] [PMID: 16495254]
[52]
Bellmann R, Smuszkiewicz P. Pharmacokinetics of antifungal drugs: Practical implications for optimized treatment of patients. Infection 2017; 45(6): 737-79.
[http://dx.doi.org/10.1007/s15010-017-1042-z] [PMID: 28702763]
[53]
Lepak A, Andes D. Antifungal PK/PD considerations in fungal pulmonary infections. Semin Respir Crit Care Med 2011; 32(6): 783-94.
[http://dx.doi.org/10.1055/s-0031-1295726] [PMID: 22167406]
[54]
Ayestarán A, López RM, Montoro JB, et al. Pharmacokinetics of conventional formulation versus fat emulsion formulation of amphotericin B in a group of patients with neutropenia. Antimicrob Agents Chemother 1996; 40(3): 609-12.
[http://dx.doi.org/10.1128/AAC.40.3.609] [PMID: 8851579]
[55]
Kan VL, Bennett JE, Amantea MA, et al. Comparative safety, tolerance, and pharmacokinetics of amphotericin B lipid complex and amphotericin B desoxycholate in healthy male volunteers. J Infect Dis 1991; 164(2): 418-21.
[http://dx.doi.org/10.1093/infdis/164.2.418] [PMID: 1856491]
[56]
Hoeprich PD. Elimination half-life of amphotericin B. J Infect 1990; 20(2): 173-5.
[http://dx.doi.org/10.1016/0163-4453(90)93626-4] [PMID: 2319153]
[57]
Atkinson AJ Jr, Bennett JE. Amphotericin B pharmacokinetics in humans. Antimicrob Agents Chemother 1978; 13(2): 271-6.
[http://dx.doi.org/10.1128/AAC.13.2.271] [PMID: 646348]
[58]
Gondal JA, Swartz RP, Rahman A. Therapeutic evaluation of free and liposome-encapsulated amphotericin B in the treatment of systemic candidiasis in mice. Antimicrob Agents Chemother 1989; 33(9): 1544-8.
[http://dx.doi.org/10.1128/AAC.33.9.1544] [PMID: 2684010]
[59]
van Etten EWM, Otte-Lambillion M, van Vianen W, Kate MT, Bakker-Woudenberg IAJM. Biodistribution of liposomal amphotericin B (AmBisome) and amphotericin B-desoxycholate (Fungizone) in uninfected immunocompetent mice and leucopenic mice infected with Candida albicans. J Antimicrob Chemother 1995; 35(4): 509-19.
[http://dx.doi.org/10.1093/jac/35.4.509] [PMID: 7628985]
[60]
Saravolatz LD, Ostrosky-Zeichner L, Marr KA, Rex JH, Cohen SH. Amphotericin B: Time for a new “gold standard”. Clin Infect Dis 2003; 37(3): 415-25.
[http://dx.doi.org/10.1086/376634] [PMID: 12884167]
[61]
Walsh TJ, Yeldandi V, McEvoy M, et al. Safety, tolerance, and pharmacokinetics of a small unilamellar liposomal formulation of amphotericin B (AmBisome) in neutropenic patients. Antimicrob Agents Chemother 1998; 42(9): 2391-8.
[http://dx.doi.org/10.1128/AAC.42.9.2391] [PMID: 9736569]
[62]
Adedoyin A, Bernardo JF, Swenson CE, et al. Pharmacokinetic profile of ABELCET (amphotericin B lipid complex injection): Combined experience from phase I and phase II studies. Antimicrob Agents Chemother 1997; 41: 2201-8.
[http://dx.doi.org/10.1128/AAC.41.10.2201] [PMID: 9333048]
[63]
Hollister LE. AMA drug evaluations annual 1991. JAMA 1991; 266(3): 424.
[http://dx.doi.org/10.1001/jama.1991.03470030126039]
[64]
World Health Organization. Accelerated stability studies of widely used pharmaceutical substances under simulated tropical conditions. 1986. Available from: https://iris.who.int/handle/10665/ 61480 (Cited 2023 Sep10).
[65]
National Toxicology Program. Amphotericin B. National Institutes of Health North Carolina 1992.
[66]
Montenegro MB. Methodology development and validation of amphotericin B stability by HPLC-DAD. J Braz Chem Soc 2020; 916-26.
[67]
Hung CT, Lam FC, Perrier DG, Souter A. A stability study of amphotericin B in aqueous media using factorial design. Int J Pharm 1988; 44(1-3): 117-23.
[http://dx.doi.org/10.1016/0378-5173(88)90107-X]
[68]
Wiest DB, Maish WA, Garner SS, El-Chaar GM. Stability of amphotericin B in four concentrations of dextrose injection. Am J Health Syst Pharm 1991; 48(11): 2430-3.
[http://dx.doi.org/10.1093/ajhp/48.11.2430] [PMID: 1746578]
[69]
Cifani C, Costantino S, Massi M, Berrino L. Commercially available lipid formulations of amphotericin b: Are they bioequivalent and therapeutically equivalent? Acta Biomed 2012; 83(2): 154-63.
[PMID: 23393924]
[70]
Dannaoui E, Meletiadis J, Mouton JW, Meis JF, Verweij PE. In vitro susceptibilities of zygomycetes to conventional and new antifungals. J Antimicrob Chemother 2003; 51(1): 45-52.
[http://dx.doi.org/10.1093/jac/dkg020] [PMID: 12493786]
[71]
Lamoth F, Damonti L, Alexander BD. Role of antifungal susceptibility testing in non-Aspergillus invasive mold infections. J Clin Microbiol 2016; 54(6): 1638-40.
[http://dx.doi.org/10.1128/JCM.00318-16] [PMID: 27008871]
[72]
Gleissner B, Schilling A, Anagnostopolous I, Siehl I, Thiel E. Improved outcome of zygomycosis in patients with hematological diseases? Leuk Lymphoma 2004; 45(7): 1351-60.
[http://dx.doi.org/10.1080/10428190310001653691] [PMID: 15359632]
[73]
Groll AH, Giri N, Petraitis V, et al. Comparative efficacy and distribution of lipid formulations of amphotericin B in experimental Candida albicans infection of the central nervous system. J Infect Dis 2000; 182(1): 274-82.
[http://dx.doi.org/10.1086/315643] [PMID: 10882607]
[74]
Ribes JA, Vanover-Sams CL, Baker DJ. Zygomycetes in human disease. Clin Microbiol Rev 2000; 13(2): 236-301.
[http://dx.doi.org/10.1128/CMR.13.2.236] [PMID: 10756000]
[75]
Espinel-Ingroff A, Chakrabarti A, Chowdhary A, et al. Multicenter evaluation of MIC distributions for epidemiologic cutoff value definition to detect amphotericin B, posaconazole, and itraconazole resistance among the most clinically relevant species of Mucorales. Antimicrob Agents Chemother 2015; 59(3): 1745-50.
[http://dx.doi.org/10.1128/AAC.04435-14] [PMID: 25583714]
[76]
Lewis RE, Albert ND, Liao G, Hou J, Prince RA, Kontoyiannis DP. Comparative pharmacodynamics of amphotericin B lipid complex and liposomal amphotericin B in a murine model of pulmonary mucormycosis. Antimicrob Agents Chemother 2010; 54(3): 1298-304.
[http://dx.doi.org/10.1128/AAC.01222-09] [PMID: 20038620]
[77]
Kontoyiannis DP, Lewis RE. How I treat mucormycosis. Blood 2011; 118(5): 1216-24.
[http://dx.doi.org/10.1182/blood-2011-03-316430] [PMID: 21622653]
[78]
Lanternier F, Poiree S, Elie C, et al. Prospective pilot study of high-dose (10 mg/kg/day) liposomal amphotericin B (L-AMB) for the initial treatment of mucormycosis. J Antimicrob Chemother 2015; 70(11): 3116-23.
[http://dx.doi.org/10.1093/jac/dkv236] [PMID: 26316385]
[79]
Ritesh A. Amphotericin versus posaconazole for pulmonary mucormycosis. NCT05468372, 2022.
[80]
Ritesh A. Combined inhalational with intravenous amphotericin B versus intravenous amphotericin B alone for pulmonary mucormycosis. NCT04502381, 2022.
[81]
Assistance Publique. Pilot study of high dose liposomal amphotericin B efficacy in initial zygomycosis treatment (AMBIZYGO). NCT00467883, 2014.
[82]
Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center. The deferasirox-ambisome therapy for mucormycosis (DEFEAT Mucor) study. NCT00419770, 2023.
[83]
Reed C, Bryant R, Ibrahim AS, et al. Combination polyene-caspofungin treatment of rhino-orbital-cerebral mucormycosis. Clin Infect Dis 2008; 47(3): 364-71.
[http://dx.doi.org/10.1086/589857] [PMID: 18558882]
[84]
Ibrahim AS, Gebremariam T, Fu Y, Edwards JE Jr, Spellberg B. Combination echinocandin-polyene treatment of murine mucormycosis. Antimicrob Agents Chemother 2008; 52(4): 1556-8.
[http://dx.doi.org/10.1128/AAC.01458-07] [PMID: 18212099]
[85]
Ibrahim AS, Gebermariam T, Fu Y, et al. The iron chelator deferasirox protects mice from mucormycosis through iron starvation. J Clin Invest 2007; 117(9): 2649-57.
[http://dx.doi.org/10.1172/JCI32338] [PMID: 17786247]
[86]
Reed C, Ibrahim A, Edwards JE Jr, Walot I, Spellberg B. Deferasirox, an iron-chelating agent, as salvage therapy for rhinocerebral mucormycosis. Antimicrob Agents Chemother 2006; 50(11): 3968-9.
[http://dx.doi.org/10.1128/AAC.01065-06] [PMID: 17000743]
[87]
Gebremariam T, Gu Y, Singh S, Kitt TM, Ibrahim AS. Combination treatment of liposomal amphotericin B and isavuconazole is synergistic in treating experimental mucormycosis. J Antimicrob Chemother 2021; 76(10): 2636-9.
[http://dx.doi.org/10.1093/jac/dkab233] [PMID: 34263306]
[88]
Gil-Lamaignere C, Simitsopoulou M, Roilides E, Maloukou A, Winn RM, Walsh TJ. Interferon-γ and granulocyte-macrophage colony-stimulating factor augment the activity of polymorphonuclear leukocytes against medically important zygomycetes. J Infect Dis 2005; 191(7): 1180-7.
[http://dx.doi.org/10.1086/428503] [PMID: 15747255]
[89]
Kocoglu H, Yazici Z, Hursitoglu M, et al. Successful treatment of rhinocerebralmucormycosis with combination of liposomal amphotericin B and caspofungin (LAmB-C): An anecdotal clinical experience that deserves further investigations. Eurasian J Med Oncol 2017; 1: 172-4.
[90]
Sheybani F, Naderi H, Sarvghad M, Ghabouli M, Arian M. How should we manage a patient with invasive mucoromycosis who develops life-threatening reaction to amphotericin B? Report of two cases and literature review. Med Mycol Case Rep 2015; 8(8): 29-31.
[http://dx.doi.org/10.1016/j.mmcr.2015.03.003] [PMID: 25834786]
[91]
Kazak E, Aslan E, Akalın H, et al. A mucormycosis case treated with a combination of caspofungin and amphotericin B. J Mycol Med 2013; 23(3): 179-84.
[http://dx.doi.org/10.1016/j.mycmed.2013.06.003] [PMID: 23856448]
[92]
Ibrahim AS, Gebremariam T, Schwartz JA, Edwards JE Jr, Spellberg B. Posaconazole mono- or combination therapy for treatment of murine zygomycosis. Antimicrob Agents Chemother 2009; 53(2): 772-5.
[http://dx.doi.org/10.1128/AAC.01124-08] [PMID: 18936190]
[93]
Ojeda-Uribe M, Herbrecht R, Kiefer MH, et al. Lessons from a case of oromandibular mucormycosis treated with surgery and a combination of amphotericin B lipid formulation plus caspofungin. Acta Haematol 2010; 124(2): 98-102.
[http://dx.doi.org/10.1159/000315675] [PMID: 20689269]
[94]
Vazquez L, Mateos JJ, Sanz-Rodriguez C, Perez E, Caballero D, San Miguel JF. Successful treatment of rhinocerebral zygomycosis with a combination of caspofungin and liposomal amphotericin B. Haematologica 2005; 90(12): ECR39.
[PMID: 16464754]
[95]
Spellberg B, Fu Y, Edwards JE Jr, Ibrahim AS. Combination therapy with amphotericin B lipid complex and caspofungin acetate of disseminated zygomycosis in diabetic ketoacidotic mice. Antimicrob Agents Chemother 2005; 49(2): 830-2.
[http://dx.doi.org/10.1128/AAC.49.2.830-832.2005] [PMID: 15673781]
[96]
Gargouri M, Marrakchi C, Feki W, et al. Combination of amphotericin B and caspofungin in the treatment of mucormycosis. Med Mycol Case Rep 2019; 26: 32-7.
[http://dx.doi.org/10.1016/j.mmcr.2019.09.006] [PMID: 31667058]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy