Generic placeholder image

当代肿瘤药物靶点

Editor-in-Chief

ISSN (Print): 1568-0096
ISSN (Online): 1873-5576

Research Article

CT109-SN-38,一种具有CEACAM5和6双重特异性的新型抗体-药物偶联物,诱导胰腺癌细胞的有效杀伤

卷 24, 期 7, 2024

发表于: 04 January, 2024

页: [720 - 732] 页: 13

弟呕挨: 10.2174/0115680096260614231115192343

open access plus

Open Access Journals Promotions 2
摘要

背景:CEACAM5和CEACAM6是癌胚抗原相关细胞粘附分子(CEACAM)家族中与糖基磷脂酰肌醇(GPI)相关的成员,在上皮性癌症中经常上调,参与侵袭、转移、免疫逃避和对肿瘤的抵抗。CT109是一种对CEACAM5和CEACAM6具有双重特异性的新型抗体 目的:在本研究中,我们旨在对CT109及其抗体-药物偶联衍生物进行临床前表征,重点是CT109-SN-38。 方法:用扫描诱变法对CT109的同源表位进行了鉴定。采用免疫印迹和流式细胞术分别评价CT109的特异性和内化动力学。采用免疫组化方法测定同源抗原在结直肠癌和正常组织阵列中的表达率。CT109缀合物是由还原的CT109半胱氨酸与马来酰亚胺功能化的负载连接物反应而产生的。采用荧光活力测定法对抗原阳性和阴性胰腺导管腺癌细胞(PDAC)细胞系进行体外细胞毒活性研究。以10和25 mg/kg浓度的CT109-SN-38在PDAC肿瘤异种移植模型上的体内疗效进行了评估。 结果:CT109与以N309为中心的糖表位结合。CT109内化于CEACAM5+/CEACAM6+双阳性PDAC线BxPC-3, t1/2为2.3小时。CT109 ADC可引起剂量依赖性和抗原依赖性的细胞毒性作用,CT109-SN-38对BxPC-3细胞的IC50值为21 nM。在BxPC-3肿瘤异种移植模型中,CT109-SN-38在25 mg/kg浓度下可抑制3/10小鼠的肿瘤生长并诱导肿瘤消退。 结论:这些数据表明CT109-SN-38的进一步临床前和临床开发是有必要的。

关键词: CEACAM6, CEACAM5,胰腺导管腺癌,抗体-药物偶联物,ADC, cn -38。

图形摘要
[1]
Kleist, S.V.; Chavanel, G.; Burtin, P. Identification of an antigen from normal human tissue that crossreacts with the carcinoembryonic antigen. Proc. Natl. Acad. Sci. USA, 1972, 69(9), 2492-2494.
[http://dx.doi.org/10.1073/pnas.69.9.2492] [PMID: 4115954]
[2]
Moore, T.L.; Kupchik, H.Z.; Marcon, N.; Zamcheck, N. Carcinoembryonic antigen assay in cancer of the colon and pancreas and other digestive tract disorders. Am. J. Dig. Dis., 1971, 16(1), 1-7.
[http://dx.doi.org/10.1007/BF02233781] [PMID: 5539559]
[3]
Coligan, J.E.; Lautenschleger, J.T.; Egan, M.L.; Todd, C.W. Isolation and characterization for carcinoembryonic antigen. Immunochemistry, 1972, 9(4), 377-386.
[http://dx.doi.org/10.1016/0019-2791(72)90308-4] [PMID: 4624559]
[4]
Gold, P.; Freedman, S.O. Specific carcinoembryonic antigens of the human digestive system. J. Exp. Med., 1965, 122(3), 467-481.
[http://dx.doi.org/10.1084/jem.122.3.467] [PMID: 4953873]
[5]
Blumenthal, R.D.; Leon, E.; Hansen, H.J.; Goldenberg, D.M. Expression patterns of CEACAM5 and CEACAM6 in primary and metastatic cancers. BMC Cancer, 2007, 7(1), 2.
[http://dx.doi.org/10.1186/1471-2407-7-2] [PMID: 17201906]
[6]
Zhang, X.; Han, X.; Zuo, P.; Zhang, X.; Xu, H. CEACAM5 stimulates the progression of non-small-cell lung cancer by promoting cell proliferation and migration. J. Int. Med. Res., 2020, 48(9)
[http://dx.doi.org/10.1177/0300060520959478] [PMID: 32993395]
[7]
Kuespert, K.; Pils, S.; Hauck, C.R. CEACAMs: their role in physiology and pathophysiology. Curr. Opin. Cell Biol., 2006, 18(5), 565-571.
[http://dx.doi.org/10.1016/j.ceb.2006.08.008] [PMID: 16919437]
[8]
Isacke, C.M.; Horton, M.A. CEACAM family; In: Adhes. Mol. FactsBook, 2000, pp. 103-107.
[http://dx.doi.org/10.1016/B978-012356505-1/50031-9]
[9]
Beauchemin, N.; Arabzadeh, A. Carcinoembryonic antigen-related cell adhesion molecules (CEACAMs) in cancer progression and metastasis. Cancer Metastasis Rev., 2013, 32(3-4), 643-671.
[http://dx.doi.org/10.1007/s10555-013-9444-6] [PMID: 23903773]
[10]
Pavlopoulou, A.; Scorilas, A. A comprehensive phylogenetic and structural analysis of the carcinoembryonic antigen (CEA) gene family. Genome Biol. Evol., 2014, 6(6), 1314-1326.
[http://dx.doi.org/10.1093/gbe/evu103] [PMID: 24858421]
[11]
Rizeq, B.; Zakaria, Z.; Ouhtit, A. Towards understanding the mechanisms of actions of carcinoembryonic antigen‐related cell adhesion molecule 6 in cancer progression. Cancer Sci., 2018, 109(1), 33-42.
[http://dx.doi.org/10.1111/cas.13437] [PMID: 29110374]
[12]
Zhu, R.; Ge, J.; Ma, J.; Zheng, J. Carcinoembryonic antigen related cell adhesion molecule 6 promotes the proliferation and migration of renal cancer cells through the ERK/AKT signaling pathway. Transl. Androl. Urol., 2019, 8(5), 457-466.
[http://dx.doi.org/10.21037/tau.2019.09.02] [PMID: 31807423]
[13]
Kim, E.Y.; Cha, Y.J.; Jeong, S.; Chang, Y.S. Overexpression of CEACAM6 activates Src-FAK signaling and inhibits anoikis, through homophilic interactions in lung adenocarcinomas. Transl. Oncol., 2022, 20, 101402.
[http://dx.doi.org/10.1016/j.tranon.2022.101402] [PMID: 35358791]
[14]
Duxbury, M.S.; Ito, H.; Benoit, E.; Waseem, T.; Ashley, S.W.; Whang, E.E. A novel role for carcinoembryonic antigen-related cell adhesion molecule 6 as a determinant of gemcitabine chemoresistance in pancreatic adenocarcinoma cells. Cancer Res., 2004, 64(11), 3987-3993.
[http://dx.doi.org/10.1158/0008-5472.CAN-04-0424] [PMID: 15173012]
[15]
Brümmer, J.; Ebrahimnejad, A.; Flayeh, R.; Schumacher, U.; Löning, T.; Bamberger, A.M.; Wagener, C. cis Interaction of the cell adhesion molecule CEACAM1 with integrin β(3). Am. J. Pathol., 2001, 159(2), 537-546.
[http://dx.doi.org/10.1016/S0002-9440(10)61725-7] [PMID: 11485912]
[16]
Camacho-Leal, P.; Zhai, A.B.; Stanners, C.P. A co-clustering model involving α5β1 integrin for the biological effects of GPI-anchored human carcinoembryonic antigen (CEA). J. Cell. Physiol., 2007, 211(3), 791-802.
[http://dx.doi.org/10.1002/jcp.20989] [PMID: 17286276]
[17]
Bonsor, D.A.; Günther, S.; Beadenkopf, R.; Beckett, D.; Sundberg, E.J. Diverse oligomeric states of CEACAM IgV domains. Proc. Natl. Acad. Sci. USA, 2015, 112(44), 13561-13566.
[http://dx.doi.org/10.1073/pnas.1509511112] [PMID: 26483485]
[18]
Pinkert, J.; Boehm, H.H.; Trautwein, M.; Doecke, W.D.; Wessel, F.; Ge, Y.; Gutierrez, E.M.; Carretero, R.; Freiberg, C.; Gritzan, U.; Luetke-Eversloh, M.; Golfier, S.; Von Ahsen, O.; Volpin, V.; Sorrentino, A.; Rathinasamy, A.; Xydia, M.; Lohmayer, R.; Sax, J.; Nur-Menevse, A.; Hussein, A.; Stamova, S.; Beckmann, G.; Glueck, J.M.; Schoenfeld, D.; Weiske, J.; Zopf, D.; Offringa, R.; Kreft, B.; Beckhove, P.; Willuda, J. T cell-mediated elimination of cancer cells by blocking CEACAM6–CEACAM1 interaction. OncoImmunology, 2022, 11(1), 2008110.
[http://dx.doi.org/10.1080/2162402X.2021.2008110] [PMID: 35141051]
[19]
Fantini, M.; David, J.M.; Annunziata, C.M.; Morelli, M.P.; Arlen, P.M.; Tsang, K.Y. The monoclonal antibody neo-201 enhances natural killer cell cytotoxicity against tumor cells through blockade of the inhibitory CEACAM5/CEACAM1 immune checkpoint pathway. Cancer Biother. Radiopharm., 2020, 35(3), 190-198.
[http://dx.doi.org/10.1089/cbr.2019.3141] [PMID: 31928422]
[20]
Kim, W.M.; Huang, Y.H.; Gandhi, A.; Blumberg, R.S. CEACAM1 structure and function in immunity and its therapeutic implications. Semin. Immunol., 2019, 42, 101296.
[http://dx.doi.org/10.1016/j.smim.2019.101296] [PMID: 31604530]
[21]
Kammerer, R.; Hahn, S.; Singer, B.B.; Jian, S. Luo; von Kleist, S. Biliary glycoprotein (CD66a), a cell adhesion molecule of the immunoglobulin superfamily, on human lymphocytes: structure, expression and involvement in T cell activation. Eur. J. Immunol., 1998, 28(11), 3664-3674.
[http://dx.doi.org/10.1002/(SICI)1521-4141(199811)28:11<3664:AID-IMMU3664>3.0.CO;2-D] [PMID: 9842909]
[22]
Chen, Z.; Chen, L.; Qiao, S.-W.; Nagaishi, T.; Blumberg, R. S. Carcinoembryonic antigen-related cell adhesion molecule 1 inhibits proximal TCR signaling by targeting ZAP-70 J. Immunol. Baltim. Md 1950, 1950, 180(9), 6085-6093.
[http://dx.doi.org/10.4049/jimmunol.180.9.6085]
[23]
Ru, G.Q.; Han, Y.; Wang, W.; Chen, Y.; Wang, H.J.; Xu, W.J.; Ma, J.; Ye, M.; Chen, X.; He, X.L. Győrffy, B.; Zhao, Z.S.; Huang, D. CEACAM6 is a prognostic biomarker and potential therapeutic target for gastric carcinoma. Oncotarget, 2017, 8(48), 83673-83683.
[http://dx.doi.org/10.18632/oncotarget.19415] [PMID: 29137373]
[24]
Zhou, J.; Fan, X.; Chen, N.; Zhou, F.; Dong, J.; Nie, Y.; Fan, D. Identification of CEACAM5 as a biomarker for prewarning and prognosis in gastric cancer. J. Histochem. Cytochem., 2015, 63(12), 922-930.
[http://dx.doi.org/10.1369/0022155415609098] [PMID: 26374829]
[25]
Jantscheff, P.; Terracciano, L.; Lowy, A.; Glatz-Krieger, K.; Grunert, F.; Micheel, B.; Brümmer, J.; Laffer, U.; Metzger, U.; Herrmann, R.; Rochlitz, C. Expression of CEACAM6 in resectable colorectal cancer: a factor of independent prognostic significance. J. Clin. Oncol., 2003, 21(19), 3638-3646.
[http://dx.doi.org/10.1200/JCO.2003.55.135] [PMID: 14512395]
[26]
Vardakis, N.; Messaritakis, I.; Papadaki, C.; Agoglossakis, G.; Sfakianaki, M.; Saridaki, Z.; Apostolaki, S.; Koutroubakis, I.; Perraki, M.; Hatzidaki, D.; Mavroudis, D.; Georgoulias, V.; Souglakos, J. Prognostic significance of the detection of peripheral blood CEACAM5mRNA-positive cells by real-time polymerase chain reaction in operable colorectal cancer. Clin. Cancer Res., 2011, 17(1), 165-173.
[http://dx.doi.org/10.1158/1078-0432.CCR-10-0565] [PMID: 21071514]
[27]
Duxbury, M.S.; Matros, E.; Clancy, T.; Bailey, G.; Doff, M.; Zinner, M.J.; Ashley, S.W.; Maitra, A.; Redston, M.; Whang, E.E. CEACAM6 is a novel biomarker in pancreatic adenocarcinoma and PanIN lesions. Ann. Surg., 2005, 241(3), 491-496.
[http://dx.doi.org/10.1097/01.sla.0000154455.86404.e9] [PMID: 15729073]
[28]
Lu, Y.; Li, D.; Liu, G.; Xiao, E.; Mu, S.; Pan, Y.; Qin, F.; Zhai, Y.; Duan, S.; Li, D.; Yan, G. Identification of critical pathways and potential key genes in poorly differentiated pancreatic adenocarcinoma. OncoTargets Ther., 2021, 14, 711-723.
[http://dx.doi.org/10.2147/OTT.S279287] [PMID: 33536763]
[29]
Tsang, J.Y.S.; Kwok, Y.K.; Chan, K.W.; Ni, Y.B.; Chow, W.N.V.; Lau, K.F.; Shao, M.M.; Chan, S.K.; Tan, P.H.; Tse, G.M. Expression and clinical significance of carcinoembryonic antigen-related cell adhesion molecule 6 in breast cancers. Breast Cancer Res. Treat., 2013, 142(2), 311-322.
[http://dx.doi.org/10.1007/s10549-013-2756-y] [PMID: 24186057]
[30]
Ring, B.Z.; Seitz, R.S.; Beck, R.; Shasteen, W.J.; Tarr, S.M.; Cheang, M.C.U.; Yoder, B.J.; Budd, G.T.; Nielsen, T.O.; Hicks, D.G.; Estopinal, N.C.; Ross, D.T. Novel prognostic immunohistochemical biomarker panel for estrogen receptor-positive breast cancer. J. Clin. Oncol., 2006, 24(19), 3039-3047.
[http://dx.doi.org/10.1200/JCO.2006.05.6564] [PMID: 16809728]
[31]
Kobayashi, M.; Miki, Y.; Ebina, M.; Abe, K.; Mori, K.; Narumi, S.; Suzuki, T.; Sato, I.; Maemondo, M.; Endo, C.; Inoue, A.; Kumamoto, H.; Kondo, T.; Yamada-Okabe, H.; Nukiwa, T.; Sasano, H. Carcinoembryonic antigen-related cell adhesion molecules as surrogate markers for EGFR inhibitor sensitivity in human lung adenocarcinoma. Br. J. Cancer, 2012, 107(10), 1745-1753.
[http://dx.doi.org/10.1038/bjc.2012.422] [PMID: 23099808]
[32]
Benlloch, S.; Galbis-Caravajal, J.M.; Alenda, C.; Peiró, F.M.; Sanchez-Ronco, M.; Rodríguez-Paniagua, J.M.; Baschwitz, B.; Rojas, E.; Massutí, B. Expression of molecular markers in mediastinal nodes from resected stage I non-small-cell lung cancer (NSCLC): prognostic impact and potential role as markers of occult micrometastases. Ann. Oncol., 2009, 20(1), 91-97.
[http://dx.doi.org/10.1093/annonc/mdn538] [PMID: 18664559]
[33]
DeLucia, D.C.; Cardillo, T.M.; Ang, L.; Labrecque, M.P.; Zhang, A.; Hopkins, J.E.; De Sarkar, N.; Coleman, I.; da Costa, R.M.G.; Corey, E.; True, L.D.; Haffner, M.C.; Schweizer, M.T.; Morrissey, C.; Nelson, P.S.; Lee, J.K. Regulation of CEACAM5 and therapeutic efficacy of an anti-CEACAM5–SN38 antibody–drug conjugate in neuroendocrine prostate cancer. Clin. Cancer Res., 2021, 27(3), 759-774.
[http://dx.doi.org/10.1158/1078-0432.CCR-20-3396] [PMID: 33199493]
[34]
Ameur, N.; Lacroix, L.; Roucan, S.; Roux, V.; Broutin, S.; Talbot, M.; Dupuy, C.; Caillou, B.; Schlumberger, M.; Bidart, J.M. Aggressive inherited and sporadic medullary thyroid carcinomas display similar oncogenic pathways. Endocr. Relat. Cancer, 2009, 16(4), 1261-1272.
[http://dx.doi.org/10.1677/ERC-08-0289] [PMID: 19675075]
[35]
Krueger, P.; Nitz, C.; Foster, R.; MacDonald, C.; Gelber, O.; Lalehzadeh, G.; Goodson, R.; Winter, J.; Gelber, C. A new small cell lung cancer (SCLC)-specific marker discovered through antigenic subtraction of neuroblastoma cells. Cancer Immunol. Immunother., 2003, 52(6), 367-377.
[http://dx.doi.org/10.1007/s00262-003-0376-9] [PMID: 12669243]
[36]
Hatakeyama, K.; Wakabayashi-Nakao, K.; Ohshima, K.; Sakura, N.; Yamaguchi, K.; Mochizuki, T. Novel protein isoforms of carcinoembryonic antigen are secreted from pancreatic, gastric and colorectal cancer cells. BMC Res. Notes, 2013, 6(1), 381.
[http://dx.doi.org/10.1186/1756-0500-6-381] [PMID: 24070190]
[37]
Eaton, J.S.; Miller, P.E.; Mannis, M.J.; Murphy, C.J. Ocular adverse events associated with antibody–drug conjugates in human clinical trials. J. Ocul. Pharmacol. Ther., 2015, 31(10), 589-604.
[http://dx.doi.org/10.1089/jop.2015.0064] [PMID: 26539624]
[38]
Bechmann, M.B.; Brydholm, A.V.; Codony, V.L.; Kim, J.; Villadsen, R. Heterogeneity of CEACAM5 in breast cancer. Oncotarget, 2020, 11(43), 3886-3899.
[http://dx.doi.org/10.18632/oncotarget.27778] [PMID: 33196697]
[39]
Han, S-U.; Kwak, T-H.; Her, K.H.; Cho, Y-H.; Choi, C.; Lee, H-J.; Hong, S.; Park, Y.S.; Kim, Y-S.; Kim, T-A.; Kim, S-J. CEACAM5 and CEACAM6 are major target genes for Smad3-mediated TGF-β signaling. Oncogene, 2008, 27(5), 675-683.
[http://dx.doi.org/10.1038/sj.onc.1210686] [PMID: 17653079]
[40]
Schmidt, M.M.; Thurber, G.M.; Wittrup, K.D. Kinetics of anti-carcinoembryonic antigen antibody internalization: effects of affinity, bivalency, and stability. Cancer Immunol. Immunother., 2008, 57(12), 1879-1890.
[http://dx.doi.org/10.1007/s00262-008-0518-1] [PMID: 18408925]
[41]
Oba, A.; Ho, F.; Bao, Q.R.; Al-Musawi, M.H.; Schulick, R.D.; Del Chiaro, M. Neoadjuvant treatment in pancreatic cancer. Front. Oncol., 2020, 10, 245.
[http://dx.doi.org/10.3389/fonc.2020.00245] [PMID: 32185128]
[42]
Huang, L.; Li, T.J.; Zhang, J.W.; Liu, S.; Fu, B.S.; Liu, W. Neoadjuvant chemotherapy followed by surgery versus surgery alone for colorectal cancer: meta-analysis of randomized controlled trials. Medicine (Baltimore), 2014, 93(28), e231.
[http://dx.doi.org/10.1097/MD.0000000000000231] [PMID: 25526442]
[43]
Goldenberg, D.M.; Sharkey, R.M. Antibody-drug conjugates targeting TROP-2 and incorporating SN-38: A case study of anti-TROP-2 sacituzumab govitecan. MAbs, 2019, 11(6), 987-995.
[http://dx.doi.org/10.1080/19420862.2019.1632115] [PMID: 31208270]
[44]
Hirose, K.; Kozu, C.; Yamashita, K.; Maruo, E.; Kitamura, M.; Hasegawa, J.; Omoda, K.; Murakami, T.; Maeda, Y. Correlation between plasma concentration ratios of SN-38 glucuronide and SN-38 and neutropenia induction in patients with colorectal cancer and wild-type UGT1A1 gene. Oncol. Lett., 2012, 3(3), 694-698.
[http://dx.doi.org/10.3892/ol.2011.533] [PMID: 22740978]
[45]
Yurkovetskiy, A.V.; Yin, M.; Bodyak, N.; Stevenson, C.A.; Thomas, J.D.; Hammond, C.E.; Qin, L.; Zhu, B.; Gumerov, D.R.; Ter-Ovanesyan, E.; Uttard, A.; Lowinger, T.B. A polymer-based antibody–vinca drug conjugate platform: characterization and preclinical efficacy. Cancer Res., 2015, 75(16), 3365-3372.
[http://dx.doi.org/10.1158/0008-5472.CAN-15-0129] [PMID: 26113086]
[46]
Schellenberger, V.; Wang, C.; Geething, N.C.; Spink, B.J.; Campbell, A.; To, W.; Scholle, M.D.; Yin, Y.; Yao, Y.; Bogin, O.; Cleland, J.L.; Silverman, J.; Stemmer, W.P.C. A recombinant polypeptide extends the in vivo half-life of peptides and proteins in a tunable manner. Nat. Biotechnol., 2009, 27(12), 1186-1190.
[http://dx.doi.org/10.1038/nbt.1588] [PMID: 19915550]
[47]
Zacharias, N.; Podust, V.N.; Kajihara, K.K.; Leipold, D.; Del Rosario, G.; Thayer, D.; Dong, E.; Paluch, M.; Fischer, D.; Zheng, K.; Lei, C.; He, J.; Ng, C.; Su, D.; Liu, L.; Masih, S.; Sawyer, W.; Tinianow, J.; Marik, J.; Yip, V.; Li, G.; Chuh, J.; Morisaki, J.H.; Park, S.; Zheng, B.; Hernandez-Barry, H.; Loyet, K.M.; Xu, M.; Kozak, K.R.; Phillips, G.L.; Shen, B.Q.; Wu, C.; Xu, K.; Yu, S.F.; Kamath, A.; Rowntree, R.K.; Reilly, D.; Pillow, T.; Polson, A.; Schellenberger, V.; Hazenbos, W.L.W.; Sadowsky, J. A homogeneous high-DAR antibody–drug conjugate platform combining THIOMAB antibodies and XTEN polypeptides. Chem. Sci., 2022, 13(11), 3147-3160.
[http://dx.doi.org/10.1039/D1SC05243H] [PMID: 35414872]
[48]
Junutula, J.R.; Bhakta, S.; Raab, H.; Ervin, K.E.; Eigenbrot, C.; Vandlen, R.; Scheller, R.H.; Lowman, H.B. Rapid identification of reactive cysteine residues for site-specific labeling of antibody-Fabs. J. Immunol. Methods, 2008, 332(1-2), 41-52.
[http://dx.doi.org/10.1016/j.jim.2007.12.011] [PMID: 18230399]
[49]
Chen, X.N.; Nguyen, M.; Jacobson, F.; Ouyang, J. Charge-based analysis of antibodies with engineered cysteines. MAbs, 2009, 1(6), 563-571.
[http://dx.doi.org/10.4161/mabs.1.6.10058] [PMID: 20068389]
[50]
Ackerman, S.E.; Pearson, C.I.; Gregorio, J.D.; Gonzalez, J.C.; Kenkel, J.A.; Hartmann, F.J.; Luo, A.; Ho, P.Y.; LeBlanc, H.; Blum, L.K.; Kimmey, S.C.; Luo, A.; Nguyen, M.L.; Paik, J.C.; Sheu, L.Y.; Ackerman, B.; Lee, A.; Li, H.; Melrose, J.; Laura, R.P.; Ramani, V.C.; Henning, K.A.; Jackson, D.Y.; Safina, B.S.; Yonehiro, G.; Devens, B.H.; Carmi, Y.; Chapin, S.J.; Bendall, S.C.; Kowanetz, M.; Dornan, D.; Engleman, E.G.; Alonso, M.N. Immune-stimulating antibody conjugates elicit robust myeloid activation and durable antitumor immunity. Nat. Can., 2020, 2(1), 18-33.
[http://dx.doi.org/10.1038/s43018-020-00136-x] [PMID: 35121890]
[51]
Fang, S.; Brems, B.M.; Olawode, E.O.; Miller, J.T.; Brooks, T.A.; Tumey, L.N. Design and characterization of immune-stimulating imidazo[4,5-c]quinoline antibody-drug conjugates. Mol. Pharm., 2022, 19(9), 3228-3241.
[http://dx.doi.org/10.1021/acs.molpharmaceut.2c00392] [PMID: 35904247]
[52]
Huehls, A.M.; Coupet, T.A.; Sentman, C.L. Bispecific T‐cell engagers for cancer immunotherapy. Immunol. Cell Biol., 2015, 93(3), 290-296.
[http://dx.doi.org/10.1038/icb.2014.93] [PMID: 25367186]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy