General Review Article

胆汁酸缀合物作为一种有前景的抗癌药物:最新进展

卷 31, 期 26, 2024

发表于: 02 January, 2024

页: [4160 - 4179] 页: 20

弟呕挨: 10.2174/0109298673274040231121113410

价格: $65

摘要

胆汁酸由于其两亲性而具有优异的化学性质,在过去几十年中在生物医学、药理学和超分子应用领域受到了广泛的关注。胆汁酸由于其手性、刚性和羟基而受到科学家们的高度追捧,以寻找多种有效的生物活性。羟基使得改变结构变得简单,从而提高生物活性和生物利用度。胆汁酸-生物活性分子偶联物是一种化合物,其中胆汁酸通过连接物与生物活性分子连接,以增加生物活性分子对靶癌细胞的生物活性。该方法已被用于提高细胞毒性药物的治疗效果,同时减少其不良副作用。这些新的胆汁酸缀合物正受到关注,因为它们克服了生物利用度和稳定性问题。本文综述了各种胆汁酸缀合物的设计、合成和抗癌效果,并对近年来的研究进展进行了综述。

关键词: 胆汁酸,胆汁酸缀合物,抗癌活性,生物利用度,超分子,细胞毒性药物。

[1]
Chabner, B.A.; Roberts, T.G., Jr Chemotherapy and the war on cancer. Nat. Rev. Cancer, 2005, 5(1), 65-72.
[http://dx.doi.org/10.1038/nrc1529] [PMID: 15630416]
[2]
Bach, P.B.; Jett, J.R.; Pastorino, U.; Tockman, M.S.; Swensen, S.J.; Begg, C.B. Computed tomography screening and lung cancer outcomes. JAMA, 2007, 297(9), 953-961.
[http://dx.doi.org/10.1001/jama.297.9.953] [PMID: 17341709]
[3]
Gibbs, J.B. Mechanism-based target identification and drug discovery in cancer research Science (80-), 2000, 287, 1969-1973.
[http://dx.doi.org/10.1126/science.287.5460.1969]
[4]
Arve, L.; Voigt, T.; Waldmann, H. Charting biological and chemical space: PSSC and SCONP as guiding principles for the development of compound collections based on natural product scaffolds. QSAR Comb. Sci., 2006, 25(5-6), 449-456.
[http://dx.doi.org/10.1002/qsar.200540213]
[5]
Gali, R.; Banothu, J.; Porika, M.; Velpula, R.; Hnamte, S.; Bavantula, R.; Abbagani, S.; Busi, S. Indolylmethylene benzo[h]thiazolo[2,3-b]quinazolinones: Synthesis, characterization and evaluation of anticancer and antimicrobial activities. Bioorg. Med. Chem. Lett., 2014, 24(17), 4239-4242.
[http://dx.doi.org/10.1016/j.bmcl.2014.07.030] [PMID: 25096298]
[6]
Sørlie, T. Molecular portraits of breast cancer: Tumour subtypes as distinct disease entities. Eur. J. Cancer, 2004, 40(18), 2667-2675.
[http://dx.doi.org/10.1016/j.ejca.2004.08.021] [PMID: 15571950]
[7]
Siegel, O.J.; Ward, R.; Brawley, E. Detection of occult tumor cells in peripheral blood from patients with small cell lung cancer by reverse transcriptase-polymerase chain reaction, A Cancer J. Cancer Clin., 2011, 61, 212-236.
[http://dx.doi.org/10.3322/caac.20121] [PMID: 21685461]
[8]
Chen, T.G.M.; Zeng, Q. G, G. Deisign thinking. Med. Res. Rev., 2008, 28, 954-974.
[http://dx.doi.org/10.1002/med.20131] [PMID: 18642351]
[9]
Martinez, J.D.; Stratagoules, E.D.; LaRue, J.M.; Powell, A.A.; Gause, P.R.; Craven, M.T.; Payne, C.M.; Powell, M.B.; Gerner, E.W.; Earnest, D.L. Different bile acids exhibit distinct biological effects: The tumor promoter deoxycholic acid induces apoptosis and the chemopreventive agent ursodeoxycholic acid inhibits cell proliferation. Nutr. Cancer, 1998, 31(2), 111-118.
[http://dx.doi.org/10.1080/01635589809514689] [PMID: 9770722]
[10]
Brady, B.H.; Brady, L.M.; W, David, D. Biochemical journal immediate publication. Biochem. J., 1996, 316, 765-769.
[http://dx.doi.org/10.1042/bj3160765] [PMID: 8670150]
[11]
Hunter, T. Protein kinases and phosphatases: The Yin and Yang of protein phosphorylation and signaling. Cell, 1995, 80(2), 225-236.
[http://dx.doi.org/10.1016/0092-8674(95)90405-0] [PMID: 7834742]
[12]
Bayewitch, M.L.; Nevo, I.; Avidor-Reiss, T.; Levy, R.; Simonds, W.F.; Vogel, Z. Alterations in detergent solubility of heterotrimeric G proteins after chronic activation of G(i/o)-coupled receptors: changes in detergent solubility are in correlation with onset of adenylyl cyclase superactivation. Mol. Pharmacol., 2000, 57(4), 820-825.
[http://dx.doi.org/10.1124/mol.57.4.820] [PMID: 10727531]
[13]
Faubion, W.A.; Guicciardi, M.E.; Miyoshi, H.; Bronk, S.F.; Roberts, P.J.; Svingen, P.A.; Kaufmann, S.H.; Gores, G.J. Toxic bile salts induce rodent hepatocyte apoptosis via direct activation of Fas. J. Clin. Invest., 1999, 103(1), 137-145.
[http://dx.doi.org/10.1172/JCI4765] [PMID: 9884343]
[14]
Mahmoud, N.N.; Dannenberg, A.J.; Bilinski, R.T.; Mestre, J.R.; Chadburn, A.; Churchill, M.; Martucci, C.; Bertagnolli, M.M. Administration of an unconjugated bile acid increases duodenal tumors in a murine model of familial adenomatous polyposis. Carcinogenesis, 1999, 20(2), 299-303.
[http://dx.doi.org/10.1093/carcin/20.2.299] [PMID: 10069468]
[15]
Sodeman, T.; Bronk, S.F.; Roberts, P.J.; Miyoshi, H.; Gores, G.J. Bile salts mediate hepatocyte apoptosis by increasing cell surface trafficking of Fas. Am. J. Physiol. Gastrointest. Liver Physiol., 2000, 278(6), G992-G999.
[http://dx.doi.org/10.1152/ajpgi.2000.278.6.G992] [PMID: 10859230]
[16]
Hirano, F.; Tanaka, H.; Hirano, Y.; Hiramoto, M.; Handa, H.; Makino, I.; Scheidereit, C. Functional interference of sp1 and nf-κb through the same DNA binding site. Carcinogenesis, 1996, 17, 427-433.
[http://dx.doi.org/10.1093/carcin/17.3.427] [PMID: 8631127]
[17]
Glinghammar, B.; Holmberg, K.; Rafter, J. Effects of colonic lumenal components on AP-1-dependent gene transcription in cultured human colon carcinoma cells. Carcinogenesis, 1999, 20(6), 969-976.
[http://dx.doi.org/10.1093/carcin/20.6.969] [PMID: 10357775]
[18]
Song, S.; Byrd, J.C.; Koo, J.S.; Bresalier, R.S. Bile acids induce MUC2 overexpression in human colon carcinoma cells. Cancer, 2005, 103(8), 1606-1614.
[http://dx.doi.org/10.1002/cncr.21015] [PMID: 15754327]
[19]
Makishima, M.; Okamoto, A.Y.; Repa, J.J.; Tu, H.; Learned, R.M.; Luk, A.; Hull, M.V.; Lustig, K.D.; Mangelsdorf, D.J.; Shan, B. Identification of a nuclear receptor for bile acids. Science, 1999, 284(5418), 1362-1365.
[http://dx.doi.org/10.1126/science.284.5418.1362] [PMID: 10334992]
[20]
Peet, D.J.; Janowski, B.A.; Dawson, A.; Shen, T.; Perlmutter, D.H. 17. C, j. Sippel, 16. j. R. Crowther, ELISA. Theory Pract., 1999, 8284, 1365-1368.
[http://dx.doi.org/ 10.1126/science.284.5418.1365]
[21]
Wang, H.; Chen, J.; Hollister, K.; Sowers, L.C.; Forman, B.M. Endogenous bile acids are ligands for the nuclear receptor FXR/BAR. Mol. Cell, 1999, 3, 543-553.
[http://dx.doi.org/10.1016/S1097-2765(00)80348-2] [PMID: 10360171]
[22]
Song, C.S.; Echchgadda, I.; Baek, B.S.; Ahn, S.C.; Oh, T.; Roy, A.K.; Chatterjee, B. Dehydroepiandrosterone sulfotransferase gene induction by bile acid activated farnesoid X receptor. J. Biol. Chem., 2001, 276(45), 42549-42556.
[http://dx.doi.org/10.1074/jbc.M107557200] [PMID: 11533040]
[23]
Zhang, F.; Subbaramaiah, K.; Altorki, N.; Dannenberg, A.J. Dihydroxy bile acids activate the transcription of cyclooxygenase-2. J. Biol. Chem., 1998, 273(4), 2424-2428.
[http://dx.doi.org/10.1074/jbc.273.4.2424] [PMID: 9442092]
[24]
Qiao, D.; Stratagouleas, E.D.; Martinez, J.D. Activation and role of mitogen-activated protein kinases in deoxycholic acid-induced apoptosis. Carcinogenesis, 2001, 22(1), 35-41.
[http://dx.doi.org/10.1093/carcin/22.1.35] [PMID: 11159738]
[25]
Qiao, D.; Chen, W.; Stratagoules, E.D.; Martinez, J.D. Bile acid-induced activation of activator protein-1 requires both extracellular signal-regulated kinase and protein kinase C signaling. J. Biol. Chem., 2000, 275(20), 15090-15098.
[http://dx.doi.org/10.1074/jbc.M908890199] [PMID: 10748108]
[26]
Powolny, A.; Xu, J.; Loo, G. Deoxycholate induces DNA damage and apoptosis in human colon epithelial cells expressing either mutant or wild-type p53. Int. J. Biochem. Cell Biol., 2001, 33(2), 193-203.
[http://dx.doi.org/10.1016/S1357-2725(00)00080-7] [PMID: 11240376]
[27]
Qiao, L.; Studer, E.; Leach, K.; McKinstry, R.; Gupta, S.; Decker, R.; Kukreja, R.; Valerie, K.; Nagarkatti, P.; Deiry, W.E.; Molkentin, J.; Schmidt-Ullrich, R.; Fisher, P.B.; Grant, S.; Hylemon, P.B.; Dent, P. Deoxycholic acid (DCA) causes ligand-independent activation of epidermal growth factor receptor (EGFR) and FAS receptor in primary hepatocytes: inhibition of EGFR/mitogen-activated protein kinase-signaling module enhances DCA-induced apoptosis. Mol. Biol. Cell, 2001, 12(9), 2629-2645.
[http://dx.doi.org/10.1091/mbc.12.9.2629] [PMID: 11553704]
[28]
Reinehr, R.; Becker, S.; Wettstein, M.; Häussinger, D. Involvement of the Src family kinase yes in bile salt-induced apoptosis. Gastroenterology, 2004, 127(5), 1540-1557.
[http://dx.doi.org/10.1053/j.gastro.2004.08.056] [PMID: 15521021]
[29]
Di Toro, R.; Campana, G.; Murari, G.; Spampinato, S. Effects of specific bile acids on c-fos messenger RNA levels in human colon carcinoma Caco-2 cells. Eur. J. Pharm. Sci., 2000, 11(4), 291-298.
[http://dx.doi.org/10.1016/S0928-0987(00)00111-1] [PMID: 11033072]
[30]
Rust, C.; Karnitz, L.M.; Paya, C.V.; Moscat, J.; Simari, R.D.; Gores, G.J. The bile acid taurochenodeoxycholate activates a phosphatidylinositol 3-kinase-dependent survival signaling cascade. J. Biol. Chem., 2000, 275(26), 20210-20216.
[http://dx.doi.org/10.1074/jbc.M909992199] [PMID: 10770953]
[31]
Yao, R.; Cooper, G.M. Requirement for phosphatidylinositol-3 kinase in the prevention of apoptosis by nerve growth factor. Science (80-), 1995, 267, , 2003-2006.
[http://dx.doi.org/ 10.1126/science.7701324]
[32]
Misra, S.; Ujházy, P.; Gatmaitan, Z.; Varticovski, L.; Arias, I.M. The role of phosphoinositide 3-kinase in taurocholate-induced trafficking of ATP-dependent canalicular transporters in rat liver. J. Biol. Chem., 1998, 273(41), 26638-26644.
[http://dx.doi.org/10.1074/jbc.273.41.26638] [PMID: 9756904]
[33]
Earnest, D.L.; Holubec, H.; Wali, R.K.; Jolley, C.S.; Bissonette, M.; Bhattacharyya, A.K.; Roy, H.; Khare, S.; Brasitus, T.A. Chemoprevention of azoxymethane-induced colonic carcinogenesis by supplemental dietary ursodeoxycholic acid. Cancer Res., 1994, 54(19), 5071-5074.
[PMID: 7923119]
[34]
Silva, R.F.M.; Rodrigues, C.M.P.; Brites, D. Bilirubin-induced apoptosis in cultured rat neural cells is aggravated by chenodeoxycholic acid but prevented by ursodeoxycholic acid. J. Hepatol., 2001, 34(3), 402-408.
[http://dx.doi.org/10.1016/S0168-8278(01)00015-0] [PMID: 11322201]
[35]
Heuman, D.M.; Mills, A.S.; McCall, J.; Hylemon, P.B.; Pandak, W.M.; Vlahcevic, Z.R. Conjugates of ursodeoxycholate protect against cholestasis and hepatocellular necrosis caused by more hydrophobic bile salts. Gastroenterology, 1991, 100(1), 203-211.
[http://dx.doi.org/10.1016/0016-5085(91)90602-H] [PMID: 1983822]
[36]
Heuman, D.M.; Bajaj, R. Ursodeoxycholate conjugates protect against disruption of cholesterol-rich membranes by bile salts. Gastroenterology, 1994, 106(5), 1333-1341.
[http://dx.doi.org/10.1016/0016-5085(94)90027-2] [PMID: 8174892]
[37]
Rodrigues, C.M.; Fan, G.; Ma, X.; Kren, B.T.; Steer, C.J. A novel role for ursodeoxycholic acid in inhibiting apoptosis by modulating mitochondrial membrane perturbation. J. Clin. Invest., 1998, 101(12), 2790-2799.
[http://dx.doi.org/10.1172/JCI1325] [PMID: 9637713]
[38]
Ikegami, T.; Matsuzaki, Y.; Al Rashid, M.; Ceryak, S.; Zhang, Y.; Bouscarel, B. Enhancement of DNA topoisomerase I inhibitor–induced apoptosis by ursodeoxycholic acid. Mol. Cancer Ther., 2006, 5(1), 68-79.
[http://dx.doi.org/10.1158/1535-7163.MCT-05-0107] [PMID: 16432164]
[39]
Kuhajda, K.; Kandrac, J.; Kevresan, S.; Mikov, M.; Fawcett, J.P. Structure and origin of bile acids: An overview. Eur. J. Drug Metab. Pharmacokinet., 2006, 31(3), 135-143.
[http://dx.doi.org/10.1007/BF03190710] [PMID: 17136858]
[40]
Virtanen, E.; Kolehmainen, E. Use of bile acids in pharmacological and supramolecular applications. Eur. J. Org. Chem., 2004, 2004(16), 3385-3399.
[http://dx.doi.org/10.1002/ejoc.200300699]
[41]
de Aguiar Vallim, T.Q.; Tarling, E.J.; Edwards, P.A. Pleiotropic roles of bile acids in metabolism. Cell Metab., 2013, 17(5), 657-669.
[http://dx.doi.org/10.1016/j.cmet.2013.03.013] [PMID: 23602448]
[42]
Monte, M.J.; Marin, J.J.G.; Antelo, A.; Vazquez-Tato, J. Bile acids: Chemistry, physiology, and pathophysiology. World J. Gastroenterol., 2009, 15(7), 804-816.
[http://dx.doi.org/10.3748/wjg.15.804] [PMID: 19230041]
[43]
Boyer, J.L. Bile formation and secretion. Compr. Physiol., 2013, 3(3), 1035-1078.
[http://dx.doi.org/10.1002/cphy.c120027] [PMID: 23897680]
[44]
Hofmann, A.F. The continuing importance of bile acids in liver and intestinal disease. Arch Inter Med, 1999, 159, 2647-2658. Available from: http://archinte.jamanetwork.com/
[45]
Nurunnabi, M.; Khatun, Z.; Revuri, V.; Nafiujjaman, M.; Cha, S.; Cho, S.; Moo Huh, K.; Lee, Y. Design and strategies for bile acid mediated therapy and imaging. RSC Advances, 2016, 6(78), 73986-74002.
[http://dx.doi.org/10.1039/C6RA10978K]
[46]
Enhsen, A.; Kramer, W.; Wess, G. Bile acids in drug discovery. Int. J. Immunopharmacol., 1998, 3, 409-418.
[http://dx.doi.org/10.1016/S1359-6446(96)10046-5]
[47]
Tamminen, J.; Kolehmainen, E. Bile acids as building blocks of supramolecular hosts. Molecules, 2001, 6(12), 21-46.
[http://dx.doi.org/10.3390/60100021]
[48]
Zhu, X.X.; Nichifor, M. Polymeric materials containing bile acids. Acc. Chem. Res., 2002, 35(7), 539-546.
[http://dx.doi.org/10.1021/ar0101180] [PMID: 12118993]
[49]
Fiorucci, S.; Distrutti, E. Chapter_ThePharmacologyOf BileAcids_REV.pdf, 2019, 256, 3-18. Available from:
[http://dx.doi.org/10.1007/164_2019_238]
[50]
Hegyi, P.; Maléth, J.; Walters, J.R.; Hofmann, A.F.; Keely, S.J. Guts and gall: Bile acids in regulation of intestinal epithelial function in health and disease. Physiol. Rev., 2018, 98(4), 1983-2023.
[http://dx.doi.org/10.1152/physrev.00054.2017] [PMID: 30067158]
[51]
Li, T.; Chiang, J.Y.L. Bile acid signaling in metabolic disease and drug therapy. Pharmacol. Rev., 2014, 66(4), 948-983.
[http://dx.doi.org/10.1124/pr.113.008201] [PMID: 25073467]
[52]
Fiorucci, S.; Baldoni, M.; Ricci, P.; Zampella, A.; Distrutti, E.; Biagioli, M. Bile acid-activated receptors and the regulation of macrophages function in metabolic disorders. Curr. Opin. Pharmacol., 2020, 53, 45-54.
[http://dx.doi.org/10.1016/j.coph.2020.04.008] [PMID: 32480317]
[53]
Zhou, H.; Hylemon, P.B. Bile acids are nutrient signaling hormones. Steroids, 2014, 86, 62-68.
[http://dx.doi.org/10.1016/j.steroids.2014.04.016] [PMID: 24819989]
[54]
Chávez-Talavera, O.; Tailleux, A.; Lefebvre, P.; Staels, B. Bile acid control of metabolism and inflammation in obesity, type 2 diabetes, dyslipidemia, and nonalcoholic fatty liver disease. Gastroenterology, 2017, 152(7), 1679-1694.e3.
[http://dx.doi.org/10.1053/j.gastro.2017.01.055] [PMID: 28214524]
[55]
Vítek, L.; Haluzík, M. The role of bile acids in metabolic regulation. J. Endocrinol., 2016, 228(3), R85-R96.
[http://dx.doi.org/10.1530/JOE-15-0469] [PMID: 26733603]
[56]
Sánchez-García, A.; Sahebkar, A.; Simental-Mendía, M.; Simental-Mendía, L.E. Effect of ursodeoxycholic acid on glycemic markers: A systematic review and meta-analysis of clinical trials. Pharmacol. Res., 2018, 135, 144-149.
[http://dx.doi.org/10.1016/j.phrs.2018.08.008] [PMID: 30099154]
[57]
Davis, A.P.; Cholaphanes et al.; steroids as structural components in molecular engineering. Chem. Soc. Rev., 1993, 22(4), 243-253.
[http://dx.doi.org/10.1039/cs9932200243]
[58]
Mukhopadhyay, S.; Maitra, U. Chemistry and biology of bile acids. Curr. Sci., 2004, 87, 1666-1683.
[59]
Maldonado-Valderrama, J.; Wilde, P.; MacIerzanka, A.; MacKie, A. The role of bile salts in digestion. Adv. Colloid Interface Sci., 2011, 36-46.
[http://dx.doi.org/10.1016/j.cis.2010.12.002]
[60]
Ticho, A.L.; Malhotra, P.; Dudeja, P.K.; Gill, R.K.; Alrefai, W.A. Intestinal absorption of bile acids in health and disease. Compr. Physiol., 2019, 10(1), 21-56.
[http://dx.doi.org/10.1002/cphy.c190007] [PMID: 31853951]
[61]
Sarkar, A.; Ye, A.; Singh, H. On the role of bile salts in the digestion of emulsified lipids ood Hydrocoll, 2016, 60, 77-84.
[http://dx.doi.org/ 10.1016/j.foodhyd.2016.03.018]
[62]
Sharma, R.; Long, A.; Gilmer, J.F. Advances in bile acid medicinal chemistry. Curr. Med. Chem., 2011, 18(26), 4029-4052.
[http://dx.doi.org/10.2174/092986711796957266] [PMID: 21824088]
[63]
Yamanashi, Y.; Tazuma, H. Takikawa, Bile acids in gastroenterology: Basic and clinical, bile acids gastroenterol; Basic Clin, 2017, pp. 1-209.
[http://dx.doi.org/10.1007/978-4-431-56062-3]
[64]
Mishra, R.; Mishra, S. Updates in bile acid-bioactive molecule conjugates and their applications. Steroids, 2020, 159, 108639.
[http://dx.doi.org/10.1016/j.steroids.2020.108639] [PMID: 32222373]
[65]
Singh, C.; Hassam, M.; Verma, V.P.; Singh, A.S.; Naikade, N.K.; Puri, S.K.; Maulik, P.R.; Kant, R. Bile acid-based 1,2,4-trioxanes: Synthesis and antimalarial assessment. J. Med. Chem., 2012, 55(23), 10662-10673.
[http://dx.doi.org/10.1021/jm301323k] [PMID: 23163291]
[66]
Tolle-Sander, S.; Lentz, K.A.; Maeda, D.Y.; Coop, A.; Polli, J.E. Increased acyclovir oral bioavailability via a bile acid conjugate. Mol. Pharm., 2004, 1(1), 40-48.
[http://dx.doi.org/10.1021/mp034010t] [PMID: 15832499]
[67]
Evangelakos, I.; Heeren, J.; Verkade, E.; Kuipers, F. Role of bile acids in inflammatory liver diseases. Semin. Immunopathol., 2021, 43(4), 577-590.
[http://dx.doi.org/10.1007/s00281-021-00869-6] [PMID: 34236487]
[68]
Antinarelli, L.M.R.; Carmo, A.M.L.; Pavan, F.R.; Leite, C.Q.F.; Da Silva, A.D.; Coimbra, E.S.; Salunke, D.B. Increase of leishmanicidal and tubercular activities using steroids linked to aminoquinoline. Org. Med. Chem. Lett., 2012, 2(1), 16.
[http://dx.doi.org/10.1186/2191-2858-2-16] [PMID: 22551300]
[69]
Santos, J.A.; Polonini, H.C.; Suzuki, É.Y.; Raposo, N.R.B.; da Silva, A.D. Synthesis of conjugated bile acids/azastilbenes as potential antioxidant and photoprotective agents. Steroids, 2015, 98, 114-121.
[http://dx.doi.org/10.1016/j.steroids.2015.03.009] [PMID: 25814069]
[70]
Agarwal, D.S.; Anantaraju, H.S.; Sriram, D.; Yogeeswari, P.; Nanjegowda, S.H.; Mallu, P.; Sakhuja, R. Synthesis, characterization and biological evaluation of bile acid-aromatic/heteroaromatic amides linked via amino acids as anti-cancer agents. Steroids, 2016, 107, 87-97.
[http://dx.doi.org/10.1016/j.steroids.2015.12.022] [PMID: 26748355]
[71]
Brossard, D.; El Kihel, L.; Clément, M.; Sebbahi, W.; Khalid, M.; Roussakis, C.; Rault, S. Synthesis of bile acid derivatives and in vitro cytotoxic activity with pro-apoptotic process on multiple myeloma (KMS-11), glioblastoma multiforme (GBM), and colonic carcinoma (HCT-116) human cell lines. Eur. J. Med. Chem., 2010, 45(7), 2912-2918.
[http://dx.doi.org/10.1016/j.ejmech.2010.03.016] [PMID: 20381215]
[72]
Navacchia, M.; Marchesi, E.; Mari, L.; Chinaglia, N.; Gallerani, E.; Gavioli, R.; Capobianco, M.; Perrone, D. Rational design of nucleoside-bile acid conjugates incorporating a triazole moiety for anticancer evaluation and SAR exploration. Molecules, 2017, 22(10), 1710.
[http://dx.doi.org/10.3390/molecules22101710] [PMID: 29023408]
[73]
Agarwal, D.S.; Siva Krishna, V.; Sriram, D.; Yogeeswari, P.; Sakhuja, R. Clickable conjugates of bile acids and nucleosides: Synthesis, characterization, in vitro anticancer and antituberculosis studies. Steroids, 2018, 139, 35-44.
[http://dx.doi.org/10.1016/j.steroids.2018.09.006] [PMID: 30236620]
[74]
Yan Li; Zhen Zhang; Yong Ju; Chang-Qi Zhao. Design, synthesis and antitumor activity of dimeric bile acid-amino acid conjugates. Lett. Org. Chem., 2007, 4(6), 414-418.
[http://dx.doi.org/10.2174/157017807781467542]
[75]
Patel, S.; Challagundla, N.; Rajput, R.A.; Mishra, S. Design, synthesis, characterization and anticancer activity evaluation of deoxycholic acid-chalcone conjugates. Bioorg. Chem., 2022, 127, 106036.
[http://dx.doi.org/10.1016/j.bioorg.2022.106036] [PMID: 35878450]
[76]
Sreekanth, V.; Bansal, S.; Motiani, R.K.; Kundu, S.; Muppu, S.K.; Majumdar, T.D.; Panjamurthy, K.; Sengupta, S.; Bajaj, A. Design, synthesis, and mechanistic investigations of bile acid-tamoxifen conjugates for breast cancer therapy. Bioconjug. Chem., 2013, 24(9), 1468-1484.
[http://dx.doi.org/10.1021/bc300664k] [PMID: 23909664]
[77]
Varshosaz, J.; Sadri, F.; Rostami, M.; Mirian, M.; Taymouri, S. Synthesis of pectin-deoxycholic acid conjugate for targeted delivery of anticancer drugs in hepatocellular carcinoma. Int. J. Biol. Macromol., 2019, 139, 665-677.
[http://dx.doi.org/10.1016/j.ijbiomac.2019.07.225] [PMID: 31377298]
[78]
Agarwal, D.S.; Singh, R.P.; Lohitesh, K.; Jha, P.N.; Chowdhury, R.; Sakhuja, R. Synthesis and evaluation of bile acid amides of α-cyanostilbenes as anticancer agents. Mol. Divers., 2018, 22(2), 305-321.
[http://dx.doi.org/10.1007/s11030-017-9797-9] [PMID: 29238888]
[79]
Sievänen, E. Exploitation of bile acid transport systems in prodrug design. Molecules, 2007, 12(8), 1859-1889.
[http://dx.doi.org/10.3390/12081859] [PMID: 17960093]
[80]
von Geldern, T.W.; Tu, N.; Kym, P.R.; Link, J.T.; Jae, H.S.; Lai, C.; Apelqvist, T.; Rhonnstad, P.; Hagberg, L.; Koehler, K.; Grynfarb, M.; Goos-Nilsson, A.; Sandberg, J.; Österlund, M.; Barkhem, T.; Höglund, M.; Wang, J.; Fung, S.; Wilcox, D.; Nguyen, P.; Jakob, C.; Hutchins, C.; Färnegårdh, M.; Kauppi, B.; Öhman, L.; Jacobson, P.B. Liver-selective glucocorticoid antagonists: A novel treatment for type 2 diabetes. J. Med. Chem., 2004, 47(17), 4213-4230.
[http://dx.doi.org/10.1021/jm0400045] [PMID: 15293993]
[81]
Gabano, E.; Ravera, M.; Osella, D. The drug targeting and delivery approach applied to pt-antitumour complexes. A coordination point of view. Curr. Med. Chem., 2009, 16(34), 4544-4580.
[http://dx.doi.org/10.2174/092986709789760661] [PMID: 19903151]
[82]
Jurček, O.; Wimmer, Z.; Svobodová, H.; Bennettová, B.; Kolehmainen, E.; Drašar, P. Preparation and preliminary biological screening of cholic acid–juvenoid conjugates. Steroids, 2009, 74(9), 779-785.
[http://dx.doi.org/10.1016/j.steroids.2009.04.006] [PMID: 19394354]
[83]
Rohacova, J.; Marín, M.L.; Martinez-Romero, A.; Diaz, L.; O’Connor, J.E.; Gomez-Lechon, M.J.; Donato, M.T.; Castell, J.V.; Miranda, M.A. Fluorescent benzofurazan-cholic acid conjugates for in vitro assessment of bile acid uptake and its modulation by drugs. ChemMedChem, 2009, 4(3), 466-472.
[http://dx.doi.org/10.1002/cmdc.200800383] [PMID: 19173214]
[84]
Chen, D.; Wang, X.; Chen, L.; He, J.; Miao, Z.; Shen, J. Novel liver-specific cholic acid-cytarabine conjugates with potent antitumor activities: Synthesis and biological characterization. Acta Pharmacol. Sin., 2011, 32(5), 664-672.
[http://dx.doi.org/10.1038/aps.2011.7] [PMID: 21516131]
[85]
Popadyuk, I.I.; Markov, A.V.; Morozova, E.A.; Babich, V.O.; Salomatina, O.V.; Logashenko, E.B.; Zenkova, M.A.; Tolstikova, T.G.; Salakhutdinov, N.F. Synthesis and evaluation of antitumor, anti-inflammatory and analgesic activity of novel deoxycholic acid derivatives bearing aryl- or hetarylsulfanyl moieties at the C-3 position. Steroids, 2017, 127, 1-12.
[http://dx.doi.org/10.1016/j.steroids.2017.08.016] [PMID: 28887170]
[86]
de Sena Pereira, V.S.; Silva de Oliveira, C.B.; Fumagalli, F.; da Silva Emery, F.; da Silva, N.B.; de Andrade-Neto, V.F. Cytotoxicity, hemolysis and in vivo acute toxicity of 2-hydroxy-3-anilino-1,4-naphthoquinone derivatives. Toxicol. Rep., 2016, 3, 756-762.
[http://dx.doi.org/10.1016/j.toxrep.2016.09.007] [PMID: 28959602]
[87]
Singh, M.; Bansal, S.; Kundu, S.; Bhargava, P.; Singh, A.; Motiani, R.K.; Shyam, R.; Sreekanth, V.; Sengupta, S.; Bajaj, A. Synthesis, structure–activity relationship, and mechanistic investigation of lithocholic acidamphiphiles for colon cancer therapy. MedChemComm, 2015, 6(1), 192-201.
[http://dx.doi.org/10.1039/C4MD00223G] [PMID: 25685308]
[88]
Kuhajda, K.N.; Cvjetićanin, S.M.; Djurendić, E.A.; Sakač, M.N.; Gaši, K.M.P.; Kojić, V.V.; Bogdanović, G.M. Sinteza i citotoksična aktivnost serije novih derivata žučnih kiselina. Hem. Ind., 2009, 63, 313-318.
[http://dx.doi.org/10.2298/HEMIND0904313K]
[89]
Ren, J.; Wang, Y.; Wang, J.; Lin, J.; Wei, K.; Huang, R. Synthesis and antitumor activity of N-sulfonyl-3,7-dioxo-5β-cholan-24-amides, ursodeoxycholic acid derivatives. Steroids, 2013, 78(1), 53-58.
[http://dx.doi.org/10.1016/j.steroids.2012.09.009] [PMID: 23127818]
[90]
Májer, F.; Sharma, R.; Mullins, C.; Keogh, L.; Phipps, S.; Duggan, S.; Kelleher, D.; Keely, S.; Long, A.; Radics, G.; Wang, J.; Gilmer, J.F. New highly toxic bile acids derived from deoxycholic acid, chenodeoxycholic acid and lithocholic acid. Bioorg. Med. Chem., 2014, 22(1), 256-268.
[http://dx.doi.org/10.1016/j.bmc.2013.11.029] [PMID: 24332653]
[91]
Huang, Y.; Chen, S.; Cui, J.; Gan, C.; Liu, Z.; Wei, Y.; Song, H. Synthesis and cytotoxicity of A-homo-lactam derivatives of cholic acid and 7-deoxycholic acid. Steroids, 2011, 76(7), 690-694.
[http://dx.doi.org/10.1016/j.steroids.2011.03.009] [PMID: 21440565]
[92]
Kramer, W. Transporters, Trojan horses and therapeutics: Suitability of bile acid and peptide transporters for drug delivery. Biol. Chem., 2011, 392(1-2), 77-94.
[http://dx.doi.org/10.1515/bc.2011.017] [PMID: 21194371]
[93]
Stojančević, M.; Pavlović, N.; Goločorbin-Kon, S.; Mikov, M. Application of bile acids in drug formulation and delivery. Front. Life Sci., 2013, 7(3-4), 112-122.
[http://dx.doi.org/10.1080/21553769.2013.879925]
[94]
Garidel, P.; Hildebrand, A.; Knauf, K.; Blume, A. Membranolytic activity of bile salts: Influence of biological membrane properties and composition. Molecules, 2007, 12(10), 2292-2326.
[http://dx.doi.org/10.3390/12102292] [PMID: 17978759]
[95]
Moghimipour, E.; Ameri, A.; Handali, S. Absorption-enhancing effects of bile salts. Molecules, 2015, 20(8), 14451-14473.
[http://dx.doi.org/10.3390/molecules200814451] [PMID: 26266402]
[96]
Aburahma, M.H. Bile salts-containing vesicles: Promising pharmaceutical carriers for oral delivery of poorly water-soluble drugs and peptide/protein-based therapeutics or vaccines. Drug Deliv., 2014, 23(6), 1-21.
[http://dx.doi.org/10.3109/10717544.2014.976892] [PMID: 25390191]
[97]
Pinto Reis, C.; Silva, C.; Martinho, N.; Rosado, C. Drug carriers for oral delivery of peptides and proteins: Accomplishments and future perspectives. Ther. Deliv., 2013, 4(2), 251-265.
[http://dx.doi.org/10.4155/tde.12.143] [PMID: 23343163]
[98]
Elnaggar, Y. Multifaceted applications of bile salts in pharmacy: An emphasis on nanomedicine. Int. J. Nanomedicine, 2015, 10, 3955-3971.
[http://dx.doi.org/10.2147/IJN.S82558] [PMID: 26109855]
[99]
Wu, D.; Ji, S.; Wu, Y.; Ju, Y.; Zhao, Y. Design, synthesis, and antitumor activity of bile acid–polyamine–nucleoside conjugates. Bioorg. Med. Chem. Lett., 2007, 17(11), 2983-2986.
[http://dx.doi.org/10.1016/j.bmcl.2007.03.067] [PMID: 17416522]
[100]
Letis, A.S.; Seo, E.J.; Nikolaropoulos, S.S.; Efferth, T.; Giannis, A.; Fousteris, M.A. Synthesis and cytotoxic activity of new artemisinin hybrid molecules against human leukemia cells. Bioorg. Med. Chem., 2017, 25(13), 3357-3367.
[http://dx.doi.org/10.1016/j.bmc.2017.04.021] [PMID: 28456567]
[101]
Marchesi, E.; Chinaglia, N.; Capobianco, M.L.; Marchetti, P.; Huang, T.E.; Weng, H.C.; Guh, J.H.; Hsu, L.C.; Perrone, D.; Navacchia, M.L. Dihydroartemisinin–bile acid hybridization as an effective approach to enhance dihydroartemisinin anticancer activity. ChemMedChem, 2019, 14(7), 779-787.
[http://dx.doi.org/10.1002/cmdc.201800756] [PMID: 30724466]
[102]
Huang, T.E.; Deng, Y.N.; Hsu, J.L.; Leu, W.J.; Marchesi, E.; Capobianco, M.L.; Marchetti, P.; Navacchia, M.L.; Guh, J.H.; Perrone, D.; Hsu, L.C. Evaluation of the anticancer activity of a bile acid-dihydroartemisinin hybrid ursodeoxycholic-dihydroartemisinin in hepatocellular carcinoma cells. Front. Pharmacol., 2020, 11, 599067.
[http://dx.doi.org/10.3389/fphar.2020.599067] [PMID: 33343369]
[103]
Jurášek, M.; Džubák, P.; Sedlák, D.; Dvořáková, H.; Hajdúch, M.; Bartůněk, P.; Drašar, P. Preparation, preliminary screening of new types of steroid conjugates and their activities on steroid receptors. Steroids, 2013, 78(3), 356-361.
[http://dx.doi.org/10.1016/j.steroids.2012.11.016]
[104]
Brard, L.; Granai, C.O.; Swamy, N. Iron chelators deferoxamine and diethylenetriamine pentaacetic acid induce apoptosis in ovarian carcinoma. Gynecol. Oncol., 2006, 100(1), 116-127.
[http://dx.doi.org/10.1016/j.ygyno.2005.07.129] [PMID: 16203029]
[105]
Chong, H.S.; Song, H.A.; Ma, X.; Lim, S.; Sun, X.; Mhaske, S.B. Bile acid-based polyaminocarboxylate conjugates as targeted antitumor agents. Chem. Commun. , 2009, 21(21), 3011-3013.
[http://dx.doi.org/10.1039/b823000e] [PMID: 19462070]
[106]
Incerti, M.; Tognolini, M.; Russo, S.; Pala, D.; Giorgio, C.; Hassan-Mohamed, I.; Noberini, R.; Pasquale, E.B.; Vicini, P.; Piersanti, S.; Rivara, S.; Barocelli, E.; Mor, M.; Lodola, A. Amino acid conjugates of lithocholic acid as antagonists of the EphA2 receptor. J. Med. Chem., 2013, 56(7), 2936-2947.
[http://dx.doi.org/10.1021/jm301890k] [PMID: 23489211]
[107]
Liu, Y.Q.; Li, W.Q.; Morris-Natschke, S.L.; Qian, K.; Yang, L.; Zhu, G.X.; Wu, X.B.; Chen, A.L.; Zhang, S.Y.; Nan, X.; Lee, K.H. Perspectives on biologically active camptothecin derivatives. Med. Res. Rev., 2015, 35(4), 753-789.
[http://dx.doi.org/10.1002/med.21342] [PMID: 25808858]
[108]
Xiao, L.; Zhou, Y.; Zhang, X.; Ding, Y.; Li, Q. Transporter-targeted bile acid-camptothecin conjugate for improved oral absorptio. Chem. Pharm. Bull. , 2019, 67(10), 1082-1087.
[http://dx.doi.org/10.1248/cpb.c19-00341]
[109]
Rais, R.; Fletcher, S.; Polli, J.E. Synthesis and in vitro evaluation of gabapentin prodrugs that target the human apical sodium-dependent bile acid transporter (hASBT). J. Pharm. Sci., 2011, 100(3), 1184-1195.
[http://dx.doi.org/10.1002/jps.22332] [PMID: 20848648]
[110]
Bennett, M.I.; Simpson, K.H. Gabapentin in the treatment of neuropathic pain. Palliat. Med., 2004, 18(1), 5-11.
[http://dx.doi.org/10.1191/0269216304pm845ra] [PMID: 14982201]
[111]
Publication, A. Collaborative Innovation Center of Yangtze River Region Green Pharmaceuticals, Zhejiang University of Technology; Hangzhou 310014. China, , 2019.
[http://dx.doi.org/10.1248/cpb.c19-00341]
[112]
Kullak-Ublick, G.A.; Glasa, J.; Böker, C.; Oswald, M.; Grützner, U.; Hagenbuch, B.; Stieger, B.; Meier, P.J.; Beuers, U.; Kramer, W.; Wess, G.; Paumgartner, G. Chlorambucil-taurocholate is transported by bile acid carriers expressed in human hepatocellular carcinomas. Gastroenterology, 1997, 113(4), 1295-1305.
[http://dx.doi.org/10.1053/gast.1997.v113.pm9322525] [PMID: 9322525]
[113]
Roda, A.; Cerrè, C.; Manetta, A.C.; Cainelli, G.; Umani-Ronchi, A.; Panunzio, M. Synthesis and physicochemical, biological, and pharmacological properties of new bile acids amidated with cyclic amino acids. J. Med. Chem., 1996, 39(11), 2270-2276.
[http://dx.doi.org/10.1021/jm9508503] [PMID: 8667370]
[114]
Navacchia, M.L.; Fraix, A.; Chinaglia, N.; Gallerani, E.; Perrone, D.; Cardile, V.; Graziano, A.C.E.; Capobianco, M.L.; Sortino, S. NO photoreleaser-deoxyadenosine and - bile acid derivative bioconjugates as novel potential photochemotherapeutics 2016, 2-6.
[http://dx.doi.org/10.1021/acsmedchemlett.6b00257]
[115]
Dalpiaz, A.; Paganetto, G.; Pavan, B.; Fogagnolo, M.; Medici, A.; Beggiato, S.; Perrone, D. Zidovudine and ursodeoxycholic acid conjugation: Design of a new prodrug potentially able to bypass the active efflux transport systems of the central nervous system. Mol. Pharm., 2012, 9(4), 957-968.
[http://dx.doi.org/10.1021/mp200565g] [PMID: 22356133]
[116]
Hryniewicka, A.; Łotowski, Z.; Seroka, B.; Witkowski, S.; Morzycki, J.W. Synthesis of a cisplatin derivative from lithocholic acid. Tetrahedron, 2018, 74(38), 5392-5398.
[http://dx.doi.org/10.1016/j.tet.2018.01.007]
[117]
Park, K.; Kim, Y.S.; Lee, G.Y.; Nam, J.O.; Lee, S.K.; Park, R.W.; Kim, S.Y.; Kim, I.S.; Byun, Y. Antiangiogenic effect of bile acid acylated heparin derivative. Pharm. Res., 2006, 24(1), 176-185.
[http://dx.doi.org/10.1007/s11095-006-9139-6] [PMID: 17109210]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy