Generic placeholder image

Current Microwave Chemistry

Editor-in-Chief

ISSN (Print): 2213-3356
ISSN (Online): 2213-3364

Editorial

Microwave-assisted Synthesis of Bioactive Heterocycles

Author(s): Bubun Banerjee

Volume 10, Issue 2, 2023

Published on: 27 December, 2023

Page: [67 - 69] Pages: 3

DOI: 10.2174/221333561002231227185523

[1]
Sharma, R.K.; Banerjee, B. Green bond forming reactions: Synthesis of bioactive scaffolds; De Gruyter: Berlin, Boston, 2022.
[http://dx.doi.org/10.1515/9783110797428]
[2]
Banik, B.K.; Banerjee, B. Heterocyclic anticancer agents; De Gruyter: Berlin, Boston, 2022.
[http://dx.doi.org/10.1515/9783110735772]
[3]
Keglevich, G.; Banerjee, B. Non-conventional synthesis: Bioactive heterocycles; De Gruyter: Berlin, Boston, 2023.
[http://dx.doi.org/10.1515/9783110980189]
[4]
Mukhopadhyay, C.; Banerjee, B. Non-conventional solvents: Organic synthesis, natural products isolation, drug design, industry and the environment; De Gruyter: Berlin, Boston, 2023.
[http://dx.doi.org/10.1515/9783111243993]
[5]
Mukhopadhyay, C.; Banerjee, B. Non-conventional solvents: Ionic liquids, deep eutectic solvents, crown ethers, fluorinated solvents, glycols and glycerol; De Gruyter: Berlin, Boston, 2023.
[http://dx.doi.org/10.1515/9783110788129]
[6]
Kaur, G.; Devi, P.; Thakur, S.; Kumar, A.; Chandel, R.; Banerjee, B. Magnetically separable transition metal ferrites: Versatile heterogeneous nano-catalysts for the synthesis of diverse bioactive heterocycles. ChemistrySelect, 2019, 4(7), 2181-2199.
[http://dx.doi.org/10.1002/slct.201803600]
[7]
Banerjee, B. Non-conventional approaches towards various organic transformations – (Part II). Curr. Org. Chem., 2023, 27(12), 983-984.
[http://dx.doi.org/10.2174/138527282712231023164926]
[8]
Banerjee, B. Ultrasound and nano-catalysts: An ideal and sustainable combination to carry out diverse organic transformations. ChemistrySelect, 2019, 4(8), 2484-2500.
[http://dx.doi.org/10.1002/slct.201803081]
[9]
Banerjee, B. Non-conventional approaches towards various organic transformations – (Part I). Curr. Org. Chem., 2023, 27(7), 557-558.
[http://dx.doi.org/10.2174/138527282707230725111644]
[10]
Banerjee, B. Microwave-assisted catalyst as well as solvent-free synthesis of bioactive heterocycles. In: Solid state synthetic methods; Inamuddin, R.B.; Rahman, M.M.; Asiri, A.M., Eds.; Elsevier: Netherlands, 2021, pp. 225-244.
[http://dx.doi.org/10.1016/B978-0-12-819720-2.00014-X]
[11]
Sharma, A.; Priya, A.; Kaur, M.; Singh, A.; Kaur, G.; Banerjee, B. Ultrasound-assisted synthesis of bioactive S -heterocycles. Synth. Commun., 2021, 51(21), 3209-3236.
[http://dx.doi.org/10.1080/00397911.2021.1970775]
[12]
Banerjee, B.; Kaur, G. Recent advances in photo-irradiated synthesis of bioactive heterocycles in Sustainable organic synthesis. Inamuddin, Dr.; Rajender, B; Elsevier: Netherlands, 2020.
[http://dx.doi.org/10.1016/B978-0-12-819539-0.00016-6]
[13]
Polshettiwar, V.; Varma, R.S. Microwave-assisted organic synthesis and transformations using benign reaction media. Acc. Chem. Res., 2008, 41(5), 629-639.
[http://dx.doi.org/10.1021/ar700238s] [PMID: 18419142]
[14]
Lidström, P.; Tierney, J.; Wathey, B.; Westman, J. Microwave assisted organic synthesis—a review. Tetrahedron, 2001, 57(45), 9225-9283.
[http://dx.doi.org/10.1016/S0040-4020(01)00906-1]
[15]
Frecentese, F.; Saccone, I.; Caliendo, G.; Corvino, A.; Fiorino, F.; Magli, E.; Perissutti, E.; Severino, B.; Santagada, V. Microwave assisted organic synthesis of heterocycles in aqueous media: Recent advances in medicinal chemistry. Med. Chem., 2016, 12(8), 720-732.
[http://dx.doi.org/10.2174/1573406412666160502153553] [PMID: 27140185]
[16]
Kremsner, J.M.; Stadler, A.; Kappe, C.O. The scale-up of microwave-assisted organic synthesis. Top. Curr. Chem., 2006, 266, 233-278.
[http://dx.doi.org/10.1007/128_048]
[17]
Keglevich, G.; Grun, A.; Balint, E.; Zsuzsa Kiss, N.; Jablonkai, E. Microwave-assisted organophosphorus synthesis. Curr. Org. Chem., 2013, 17(5), 545-554.
[http://dx.doi.org/10.2174/1385272811317050009]
[18]
Sahoo, B.M.; Banik, B.K.; Mazaharunnisa,; Rao, N.S.; Raju, B. Mazaharunnisa, Rao, N.S.; Raju, B. Microwave assisted green synthesis of benzimidazole derivatives and evaluation of their anticonvulsant activity. Curr. Microw. Chem., 2019, 6(1), 23-29.
[http://dx.doi.org/10.2174/2213335606666190429124745]
[19]
Banerjee, B.; Kaur, G. Microwave assisted catalyst-free synthesis of bioactive heterocycles. Curr. Microw. Chem., 2020, 7(1), 5-22.
[http://dx.doi.org/10.2174/2213335607666200226102010]
[20]
Banerjee, B. Microwave-assisted carbon-carbon and carbon-heteroatom bond forming reactions - Part 1A. Curr. Microw. Chem., 2020, 7(1), 3-4.
[http://dx.doi.org/10.2174/221333560701200422091717]
[21]
Banerjee, B. Microwave-assisted carbon-carbon and carbon-heteroatom bond forming reactions - part 1B. Curr. Microw. Chem., 2020, 7(2), 84-85.
[http://dx.doi.org/10.2174/221333560702200714141435]
[22]
Kamanna, K.; Khatavi, S.Y. Microwave-accelerated carbon-carbon and carbon-heteroatom bond formation via multi-component reactions: A brief overview. Curr. Microw. Chem., 2020, 7(1), 23-39.
[http://dx.doi.org/10.2174/2213346107666200218124147]
[23]
Ranu, B.C.; Ghosh, T.; Adak, L. _Recent progress on carbon-chalcogen bond formation reaction under microwave irradiation. Curr. Microw. Chem., 2020, 7(1), 40-49.
[http://dx.doi.org/10.2174/2213335607666200214130544]
[24]
Pal, R.; Mukhopadhyay, C. Microwave-assisted carbon-carbon and carbon-heteroatom cross-coupling reactions in organic synthesis. Curr. Microw. Chem., 2020, 7(2), 86-98.
[http://dx.doi.org/10.2174/2213335607666200310121337]
[25]
Singh, J.; Lathwal, A.; Agarwal, S.; Nath, M. Microwave-accelerated approaches to diverse xanthenes: A review. Curr. Microw. Chem., 2020, 7(2), 99-111.
[http://dx.doi.org/10.2174/2213335607999200417173336]
[26]
Ghosh, S.; Biswas, K.; Basu, B. Recent advances in microwave promoted C-P cross-coupling reactions. Curr. Microw. Chem., 2020, 7(2), 112-122.
[http://dx.doi.org/10.2174/2213335607666200401144724]
[27]
Ghosh, A.; Chattopadhyay, S.K. Microwave-mediated synthesis of medium ring-sized heterocyclic compounds. Curr. Microw. Chem., 2020, 7(2), 123-144.
[http://dx.doi.org/10.2174/2213335607666200226101602]
[28]
Saha, M.; Das, A.R. Microwave-assisted palladium-catalyzed C-H bond functionalizations towards the synthesis of bio-inspired heterocycles. Curr. Microw. Chem., 2021, 8(2), 58-95.
[http://dx.doi.org/10.2174/2213335608666210917121004]
[29]
Yadav, M.; Dutta, M.; Tanwar, P.; Jain, R.; Srivastava, A.; Sharma, R.K. Microwave-assisted C-C, C-O, C-N, C-S bond formation and multicomponent reactions using magnetic retrievable nanocatalysts. Curr. Microw. Chem., 2021, 8(2), 96-116.
[http://dx.doi.org/10.2174/2213335608666210804144559]
[30]
Geetanjali, S.; Singh, R.R. Microwave-assisted organic synthesis in water. Curr. Microw. Chem., 2021, 8(2), 117-127.
[http://dx.doi.org/10.2174/2213335608666210623151121]
[31]
Mitra, B.; Ghosh, P. Microwave-assisted C-C and C-heteroatom bond formations in an aqueous medium. Curr. Microw. Chem., 2021, 8(2), 128-136.
[http://dx.doi.org/10.2174/2213335608666210823093626]
[32]
Banerjee, B. Microwave-assisted carbon-carbon and carbon-heteroatom bond forming reactions - Part 2A. Curr. Microw. Chem., 2021, 8(2), 56-57.
[http://dx.doi.org/10.2174/221333560802211028163413]
[33]
Banerjee, B. Microwave-assisted carbon-carbon and carbon-heteroatom bond forming reactions: Part 2B. Curr. Microw. Chem., 2021, 8(3), 138-139.
[http://dx.doi.org/10.2174/221333560803211230153553]
[34]
Wagh, Y.B.; Dalal, D.S. Microwave-assisted domino cyclization reactions. Curr. Microw. Chem., 2021, 8(3), 140-172.
[http://dx.doi.org/10.2174/2213335608666211006121803]
[35]
Kamanna, K.; Amaregouda, Y. Microwave-assisted organo-catalyzed C-C and C-X (heteroatom) bond-forming reactions-An overview. Curr. Microw. Chem., 2021, 8(3), 173-203.
[http://dx.doi.org/10.2174/2213335608666210922155503]
[36]
Banik, B.K.; Sahoo, B.M.; Kumar, B.V.V.R.; Panda, K.C. Microwave induced green chemistry approach towards synthesis of heterocyclic compounds via C-N bond forming reactions. Curr. Microw. Chem., 2021, 8(3), 204-214.
[http://dx.doi.org/10.2174/2213335608666210923144201]
[37]
Panda, K.C.; Kumar, B.V.V.R.; Sahoo, B.M. Synthesis of Schiff’s bases of 1,2,4-triazole derivatives under microwave irradiation technique and evaluation of their anti-diabetic activity. Curr. Microw. Chem., 2021, 8(3), 215-224.
[http://dx.doi.org/10.2174/2213335608666210930201144]
[38]
De, A.; Sarkar, S.; Majee, A. Microwave-assisted synthesis of bioactive six-membered O-heterocycles. Curr. Microw. Chem., 2023, 10.
[39]
Kamboj, M.; Bajpai, S.; Pandey, G.; Yadav, M.; Banik, B.K. Microwave-assisted synthesis of biologically relevant six-membered N-heterocycles. Curr. Microw. Chem., 2023, 10, 10.
[http://dx.doi.org/10.2174/0122133356268693231114052121]
[40]
Dos-Santos, P.H.C.; Souza, V.L.G.; Santos, A.C.C.; Esteves, H.; Modolo, L.V.; de Fátima, A. Synthesis of Biginelli compounds using microwave-assisted methods. Curr. Microw. Chem., 2023, 10.
[41]
Basu, S.; Mukhopadhyay, C. Microwave-activated synthetic route to various biologically important heterocycles involving transition metal catalysts. Curr. Microw. Chem., 2023, 10, 10.
[http://dx.doi.org/10.2174/0122133356267427231120062925]
[42]
Hadole, P.; Shingda, S.; Mondal, A.; Lal, K.; Chaudhary, R.G.; Mondal, S. Infusion of magnetic nanocatalyst to microwave propped synthesis of bioactive azaheterocycles. Curr. Microw. Chem., 2023, 10, 10.
[http://dx.doi.org/10.2174/0122133356269940231116134734]
[43]
Majhi, S.; Mondal, P.K. Microwave-assisted synthesis of heterocycles and their anti-cancer activities. Curr. Microw. Chem., 2023, 10, 10.
[http://dx.doi.org/10.2174/0122133356264446230925173123]
[44]
Mukhia, M.; Pradhan, K.; Biswas, K. Microwave-assisted solid phase synthesis of different peptide bonds: Recent advancements. Curr. Microw. Chem., 2023, 10, 10.
[http://dx.doi.org/10.2174/0122133356271504231020050826]

© 2024 Bentham Science Publishers | Privacy Policy