Generic placeholder image

Current Pharmaceutical Design

Editor-in-Chief

ISSN (Print): 1381-6128
ISSN (Online): 1873-4286

Review Article

Microbubbles: Revolutionizing Biomedical Applications with Tailored Therapeutic Precision

Author(s): Mohit Kumar, Devesh Kumar, Shruti Chopra, Syed Mahmood and Amit Bhatia*

Volume 29, Issue 44, 2023

Published on: 27 December, 2023

Page: [3532 - 3545] Pages: 14

DOI: 10.2174/0113816128282478231219044000

Price: $65

Open Access Journals Promotions 2
Abstract

Background: Over the past ten years, tremendous progress has been made in microbubble-based research for a variety of biological applications. Microbubbles emerged as a compelling and dynamic tool in modern drug delivery systems. They are employed to deliver drugs or genes to targeted regions of interest, and then ultrasound is used to burst the microbubbles, causing site-specific delivery of the bioactive materials.

Objective: The objective of this article is to review the microbubble compositions and physiochemical characteristics in relation to the development of innovative biomedical applications, with a focus on molecular imaging and targeted drug/gene delivery.

Methods: The microbubbles are prepared by using various methods, which include cross-linking polymerization, emulsion solvent evaporation, atomization, and reconstitution. In cross-linking polymerization, a fine foam of the polymer is formed, which serves as a bubble coating agent and colloidal stabilizer, resulting from the vigorous stirring of a polymeric solution. In the case of emulsion solvent evaporation, there are two solutions utilized in the production of microbubbles. In atomization and reconstitution, porous spheres are created by atomising a surfactant solution into a hot gas. They are encapsulated in primary modifier gas. After the addition of the second gas or gas osmotic agent, the package is placed into a vial and sealed after reconstituting with sterile saline solution.

Results: Microbubble-based drug delivery is an innovative approach in the field of drug delivery that utilizes microbubbles, which are tiny gas-filled bubbles, act as carriers for therapeutic agents. These microbubbles can be loaded with drugs, imaging agents, or genes and then guided to specific target sites.

Conclusion: The potential utility of microbubbles in biomedical applications is continually growing as novel formulations and methods. The versatility of microbubbles allows for customization, tailoring the delivery system to various medical applications, including cancer therapy, cardiovascular treatments, and gene therapy.

Keywords: Microbubble, drug delivery, gene delivery, ligands, ultrasound, dynamic tool.

[1]
Kumar M, Hilles AR, Ge Y, Bhatia A, Mahmood S. A review on polysaccharides mediated electrospun nanofibers for diabetic wound healing: Their current status with regulatory perspective. Int J Biol Macromol 2023; 234: 123696.
[http://dx.doi.org/10.1016/j.ijbiomac.2023.123696] [PMID: 36801273]
[2]
Xu RX, Povoski SP, Martin EW Jr. Targeted delivery of microbubbles and nanobubbles for image-guided thermal ablation therapy of tumors. Expert Rev Med Devices 2010; 7(3): 303-6.
[http://dx.doi.org/10.1586/erd.10.9] [PMID: 20420552]
[3]
Huang C, Zhang H, Bai R. Advances in ultrasound-targeted microbubble-mediated gene therapy for liver fibrosis. Acta Pharm Sin B 2017; 7(4): 447-52.
[http://dx.doi.org/10.1016/j.apsb.2017.02.004] [PMID: 28752029]
[4]
Zhou X, Guo L, Shi D, Duan S, Li J. Biocompatible chitosan nanobubbles for ultrasound-mediated targeted delivery of doxorubicin. Nanoscale Res Lett 2019; 14(1): 24.
[http://dx.doi.org/10.1186/s11671-019-2853-x] [PMID: 30649655]
[5]
Prabha J, Kumar M, Kumar D, Chopra S, Bhatia A. Nano-platform strategies of herbal components for the management of rheumatoid arthritis: A review on the battle for next-generation formulations. Curr Drug Deliv 2024.
[PMID: 37622715]
[6]
Kumar M, Mandal UK, Mahmood S. Novel drug delivery system. Advanced and Modern Approaches for Drug Delivery. Academic Press 2023; pp. 1-32.
[http://dx.doi.org/10.1016/B978-0-323-91668-4.00012-5]
[7]
Kumar M, Keshwania P, Chopra S, Mahmood S, Bhatia A. Therapeutic potential of nanocarrier-mediated delivery of phytoconstituents for wound healing: Their current status and future perspective. AAPS PharmSciTech 2023; 24(6): 155.
[http://dx.doi.org/10.1208/s12249-023-02616-6] [PMID: 37468691]
[8]
Kumar M, Dogra R, Mandal UK. Novel formulation approaches used for the management of osteoarthritis: A recent review. Curr Drug Deliv 2023; 20(7): 841-56.
[http://dx.doi.org/10.2174/1567201819666220901092832] [PMID: 36056857]
[9]
Chatterjee S, Ghosal K, Kumar M, Mahmood S, Thomas S. A detailed discussion on interpenetrating polymer network (IPN) based drug delivery system for the advancement of health care system. J Drug Deliv Sci Technol 2022; 79: 104095.
[10]
Kumar M, Kumar D, Kumar S, Kumar A, Mandal UK. A recent review on bio-availability enhancement of poorly water-soluble drugs by using bioenhancer and nanoparticulate drug delivery system. Curr Pharm Des 2022; 28(39): 3212-24.
[http://dx.doi.org/10.2174/1381612829666221021152354] [PMID: 36281868]
[11]
Sirsi S, Feshitan J, Kwan J, Homma S, Borden M. Effect of microbubble size on fundamental mode high frequency ultrasound imaging in mice. Ultrasound Med Biol 2010; 36(6): 935-48.
[http://dx.doi.org/10.1016/j.ultrasmedbio.2010.03.015] [PMID: 20447755]
[12]
Unnikrishnan S, Klibanov AL. Microbubbles as ultrasound contrast agents for molecular imaging: Preparation and application. AJR Am J Roentgenol 2012; 199(2): 292-9.
[http://dx.doi.org/10.2214/AJR.12.8826] [PMID: 22826389]
[13]
Kumar M, Mahmood S, Mandal UK. An updated account on formulations and strategies for the treatment of burn infection – A review. Curr Pharm Des 2022; 28(18): 1480-92.
[http://dx.doi.org/10.2174/1381612828666220519145859] [PMID: 35598231]
[14]
Kumar M, Dogra R, Mandal UK. Nanomaterial-based delivery of vaccine through nasal route: Opportunities, challenges, advantages, and limitations. J Drug Deliv Sci Technol 2022; 74: 103533.
[http://dx.doi.org/10.1016/j.jddst.2022.103533]
[15]
Stride E. Physical principles of microbubbles for ultrasound imaging and therapy. Cerebrovasc Dis 2009; 27(S2): 1-13.
[http://dx.doi.org/10.1159/000203122] [PMID: 19372656]
[16]
Lindsey BD, Shelton SE, Dayton PA. Optimization of contrast- to-tissue ratio through pulse windowing in dual-frequency “acoustic angiography” imaging. Ultrasound Med Biol 2015; 41(7): 1884-95.
[http://dx.doi.org/10.1016/j.ultrasmedbio.2015.02.011] [PMID: 25819467]
[17]
Kumar M, Sharma A, Mahmood S, Thakur A, Mirza MA, Bhatia A. Franz diffusion cell and its implication in skin permeation studies. J Dispers Sci Technol 2023; 1-14.
[http://dx.doi.org/10.1080/01932691.2023.2188923]
[18]
Pulsipher KW, Hammer DA, Lee D, Sehgal CM. Engineering theranostic microbubbles using microfluidics for ultrasound imaging and therapy: A review. Ultrasound Med Biol 2018; 44(12): 2441-60.
[http://dx.doi.org/10.1016/j.ultrasmedbio.2018.07.026] [PMID: 30241729]
[19]
De Jong N, Bouakaz A, Frinking P. Basic acoustic properties of microbubbles. Echocardiography 2002; 19(3): 229-40.
[http://dx.doi.org/10.1046/j.1540-8175.2002.00229.x] [PMID: 12022933]
[20]
Sonaye HV, Shaikh RY, Doifode CA. Using microbubbles as targeted drug delivery to improve AIDS. Pharmaceutical Formulation Design. IntechOpen 2019.
[21]
Garg S, Thomas AA, Borden MA. The effect of lipid monolayer in-plane rigidity on in vivo microbubble circulation persistence. Biomaterials 2013; 34(28): 6862-70.
[http://dx.doi.org/10.1016/j.biomaterials.2013.05.053] [PMID: 23787108]
[22]
Ebina K, Shi K, Hirao M, et al. Oxygen and air nanobubble water solution promote the growth of plants, fishes, and mice. PLoS One 2013; 8(6): e65339.
[http://dx.doi.org/10.1371/journal.pone.0065339] [PMID: 23755221]
[23]
Liu X, Bao L, Dipalo M, De Angelis F, Zhang X. Formation and dissolution of microbubbles on highly-ordered plasmonic nanopillar arrays. Sci Rep 2015; 5(1): 18515.
[http://dx.doi.org/10.1038/srep18515] [PMID: 26687143]
[24]
Zhao YZ, Du LN, Lu CT, Jin YG, Ge SP. Potential and problems in ultrasound-responsive drug delivery systems. Int J Nanomedicine 2013; 8: 1621-33.
[PMID: 23637531]
[25]
Das D, Sivasubramanian K, Yang C, Pramanik M. On-chip generation of microbubbles in photoacoustic contrast agents for dual modal ultrasound/photoacoustic in vivo animal imaging. Sci Rep 2018; 8(1): 6401.
[http://dx.doi.org/10.1038/s41598-018-24713-4] [PMID: 29686407]
[26]
Lammertink BHA, Bos C, Deckers R, Storm G, Moonen CTW, Escoffre JM. Sonochemotherapy: From bench to bedside. Front Pharmacol 2015; 6: 138.
[http://dx.doi.org/10.3389/fphar.2015.00138] [PMID: 26217226]
[27]
Ma J, Xu CS, Gao F, Chen M, Li F, Du LF. Diagnostic and therapeutic research on ultrasound microbubble/nanobubble contrast agents (Review). Mol Med Rep 2015; 12(3): 4022-8.
[http://dx.doi.org/10.3892/mmr.2015.3941] [PMID: 26081968]
[28]
Zimmerman W, Tesar V, Butler S, Bandulasena H. Microbubble generation. Recent Pat Eng 2008; 2(1): 1-8.
[http://dx.doi.org/10.2174/187221208783478598]
[29]
de Saint Victor M, Crake C, Coussios CC, Stride E. Properties, characteristics and applications of microbubbles for sonothrombolysis. Expert Opin Drug Deliv 2014; 11(2): 187-209.
[http://dx.doi.org/10.1517/17425247.2014.868434] [PMID: 24400730]
[30]
Sennoga CA, Yeh JSM, Alter J, et al. Evaluation of methods for sizing and counting of ultrasound contrast agents. Ultrasound Med Biol 2012; 38(5): 834-45.
[http://dx.doi.org/10.1016/j.ultrasmedbio.2012.01.012] [PMID: 22402020]
[31]
Wang S, Hossack JA, Klibanov AL. Targeting of microbubbles: Contrast agents for ultrasound molecular imaging. J Drug Target 2018; 26(5-6): 420-34.
[http://dx.doi.org/10.1080/1061186X.2017.1419362] [PMID: 29258335]
[32]
Bhattacharya S, Prajapati BG, Paul AA. A conceptual review on micro bubbles. Biomed J Sci Tech Res 2017.
[33]
Hernot S, Klibanov AL. Microbubbles in ultrasound-triggered drug and gene delivery. Adv Drug Deliv Rev 2008; 60(10): 1153-66.
[http://dx.doi.org/10.1016/j.addr.2008.03.005] [PMID: 18486268]
[34]
Kumar M, Kumar D, Garg Y, Mahmood S, Chopra S, Bhatia A. Marine-derived polysaccharides and their therapeutic potential in wound healing application - A review. Int J Biol Macromol 2023; 253(Pt 6): 127331.
[http://dx.doi.org/10.1016/j.ijbiomac.2023.127331] [PMID: 37820901]
[35]
Kumar M, Hilles AR, Almurisi SHA, Bhatia A, Mahmood S. Micro and nano-carriers-based pulmonary drug delivery system: Their current updates, challenges, and limitations–A review. JCIS Open 2023; 12(10): 100095.
[36]
M.Kumar UKM. Asiaticoside: A wonderful herbal component of versatile therapeutic benefits with special reference to wound healing activity. J Clin Exp Dermatol Res 2021; 12: 1-7.
[37]
Jin J, Yang L, Chen F, Gu N. Drug delivery system based on nanobubbles. Interdiscip Mater 2022; 1(4): 471-94.
[http://dx.doi.org/10.1002/idm2.12050]
[38]
Chaplin M. A conceptual review on micro bubbles. Biomed J Sci Tech Res 2019; 1(2): 2017.
[39]
Meegoda JN, Aluthgun Hewage S, Batagoda JH. Stability of nanobubbles. Environ Eng Sci 2018; 35(11): 1216-27.
[http://dx.doi.org/10.1089/ees.2018.0203]
[40]
Borkent BM, de Beer S, Mugele F, Lohse D. On the shape of surface nanobubbles. Langmuir 2010; 26(1): 260-8.
[http://dx.doi.org/10.1021/la902121x] [PMID: 20038172]
[41]
Jadhav AJ, Barigou M. Bulk nanobubbles or not nanobubbles: That is the question. Langmuir 2020; 36(7): 1699-708.
[http://dx.doi.org/10.1021/acs.langmuir.9b03532] [PMID: 32040327]
[42]
Yusoff AHM, Salimi MN. Superparamagnetic nanoparticles for drug delivery. Applications of Nanocomposite Materials in Drug Delivery. Woodhead Publishing Series in Biomaterials 2018; pp. 843-59.
[43]
Feigenbaum H, Stone JM, Lee DA, Nasser WK, Chang S. Identification of ultrasound echoes from the left ventricle by use of intracardiac injections of indocyanine green. Circulation 1970; 41(4): 615-21.
[http://dx.doi.org/10.1161/01.CIR.41.4.615] [PMID: 4245151]
[44]
Gramiak R, Shah PM. Echocardiography of the aortic root. Invest Radiol 1968; 3(5): 356-66.
[http://dx.doi.org/10.1097/00004424-196809000-00011] [PMID: 5688346]
[45]
Kremkau FW, Gramiak R, Carstensen EL, Shah PM, Kramer DH. Ultrasonic detection of cavitation at catheter tips. J Acoust Soc Am 1969; 45(1_Supplement): 340.
[http://dx.doi.org/10.1121/1.1972228]
[46]
Feinstein SB, Ten Cate FJ, Zwehl W, et al. Two-dimensional contrast echocardiography. I. in vitro development and quantitative analysis of echo contrast agents. J Am Coll Cardiol 1984; 3(1): 14-20.
[http://dx.doi.org/10.1016/S0735-1097(84)80424-6] [PMID: 6690542]
[47]
Patel R. Microbubble: An ultrasound contrast agent in molecular imaging. Pharm Times 2008; 40: 15.
[48]
Maliwal D, Patidar V. Microbubble contrast agents using ultrasound. Res J Pharm Technol 2008; 1(3): 152-4.
[49]
Omolola Eniola A, Hammer DA. In vitro characterization of leukocyte mimetic for targeting therapeutics to the endothelium using two receptors. Biomaterials 2005; 26(34): 7136-44.
[http://dx.doi.org/10.1016/j.biomaterials.2005.05.005] [PMID: 15953632]
[50]
Al-Mansour HA, Mulvagh SL, Pumper GM, Klarich KW, Foley DA. Usefulness of harmonic imaging for left ventricular opacification and endocardial border delineation by optison. Am J Cardiol 2000; 85(6): 795-799, A10.
[http://dx.doi.org/10.1016/S0002-9149(99)00868-1] [PMID: 12000067]
[51]
Strauss AL, Beller KD. Persistent opacification of the left ventricle and myocardium with a new echo contrast agent. Ultrasound Med Biol 1999; 25(5): 763-9.
[http://dx.doi.org/10.1016/S0301-5629(99)00017-4] [PMID: 10414894]
[52]
Majumdar S, Chowdhury S. Novel therapeutic application of microbubbles for targeted drug delivery. Int J Pharma Bio Sci 2010; 1(3): 1-9.
[53]
Borden MA, Martinez GV, Ricker J, et al. Lateral phase separation in lipid-coated microbubbles. Langmuir 2006; 22(9): 4291-7.
[http://dx.doi.org/10.1021/la052841v] [PMID: 16618177]
[54]
Unger EC, Porter T, Culp W, Labell R, Matsunaga T, Zutshi R. Therapeutic applications of lipid-coated microbubbles. Adv Drug Deliv Rev 2004; 56(9): 1291-314.
[http://dx.doi.org/10.1016/j.addr.2003.12.006] [PMID: 15109770]
[55]
Klibanov A, Du Z, Diakova G. Ultrasound-triggered tumor therapy with doxorubicin-liposome-microbubble complexes in a subcutaneous murine colon adenocarcinoma model. J Ther Ultrasound 2015; 3(S1): P66.
[http://dx.doi.org/10.1186/2050-5736-3-S1-P66] [PMID: 25635224]
[56]
Liufu C, Li Y, Tu J, et al. Echogenic PEGylated PEI-loaded microbubble as efficient gene delivery system. Int J Nanomedicine 2019; 14: 8923-41.
[http://dx.doi.org/10.2147/IJN.S217338] [PMID: 31814720]
[57]
Lindner JR. Microbubbles in medical imaging: Current applications and future directions. Nat Rev Drug Discov 2004; 3(6): 527-33.
[http://dx.doi.org/10.1038/nrd1417] [PMID: 15173842]
[58]
Weller GER, Villanueva FS, Tom EM, Wagner WR. Targeted ultrasound contrast agents: In vitro assessment of endothelial dysfunction and multi-targeting to ICAM-1 and sialyl Lewisx. Biotechnol Bioeng 2005; 92(6): 780-8.
[http://dx.doi.org/10.1002/bit.20625] [PMID: 16121392]
[59]
Takalkar AM, Klibanov AL, Rychak JJ, Lindner JR, Ley K. Binding and detachment dynamics of microbubbles targeted to P-selectin under controlled shear flow. J Control Release 2004; 96(3): 473-82.
[http://dx.doi.org/10.1016/j.jconrel.2004.03.002] [PMID: 15120903]
[60]
Leong-Poi H, Christiansen J, Klibanov AL, Kaul S, Lindner JR. Noninvasive assessment of angiogenesis by ultrasound and microbubbles targeted to α(v)-integrins. Circulation 2003; 107(3): 455-60.
[http://dx.doi.org/10.1161/01.CIR.0000044916.05919.8B] [PMID: 12551871]
[61]
Kheirolomoom A, Dayton PA, Lum AFH, et al. Acoustically-active microbubbles conjugated to liposomes: Characterization of a proposed drug delivery vehicle. J Control Release 2007; 118(3): 275-84.
[http://dx.doi.org/10.1016/j.jconrel.2006.12.015] [PMID: 17300849]
[62]
Eniola AO, Willcox PJ, Hammer DA. Interplay between rolling and firm adhesion elucidated with a cell-free system engineered with two distinct receptor-ligand pairs. Biophys J 2003; 85(4): 2720-31.
[http://dx.doi.org/10.1016/S0006-3495(03)74695-5] [PMID: 14507735]
[63]
Liu Y, Miyoshi H, Nakamura M. Encapsulated ultrasound microbubbles: Therapeutic application in drug/gene delivery. J Control Release 2006; 114(1): 89-99.
[http://dx.doi.org/10.1016/j.jconrel.2006.05.018] [PMID: 16824637]
[64]
Bjerknes K, Sontum PC, Smistad G, Agerkvist I. Preparation of polymeric microbubbles: Formulation studies and product characterisation. Int J Pharm 1997; 158(2): 129-36.
[http://dx.doi.org/10.1016/S0378-5173(97)00228-7]
[65]
Klibanov A. Targeted delivery of gas-filled microspheres, contrast agents for ultrasound imaging. Adv Drug Deliv Rev 1999; 37(1-3): 139-57.
[http://dx.doi.org/10.1016/S0169-409X(98)00104-5] [PMID: 10837732]
[66]
Hall RL, Juan-Sing ZD, Hoyt K, Sirsi SR. Formulation and characterization of chemically cross-linked microbubble clusters. Langmuir 2019; 35(33): 10977-86.
[http://dx.doi.org/10.1021/acs.langmuir.9b00475] [PMID: 31310715]
[67]
Cavalieri F, El Hamassi A, Chiessi E, Paradossi G, Villa R, Zaffaroni N. Tethering functional ligands onto shell of ultrasound active polymeric microbubbles. Biomacromolecules 2006; 7(2): 604-11.
[http://dx.doi.org/10.1021/bm050723g] [PMID: 16471937]
[68]
Pancholi KP, Farook U, Moaleji R, Stride E, Edirisinghe MJ. Novel methods for preparing phospholipid coated microbubbles. Eur Biophys J 2008; 37(4): 515-20.
[http://dx.doi.org/10.1007/s00249-007-0211-x] [PMID: 17687548]
[69]
Cui W, Bei J, Wang S, et al. Preparation and evaluation of poly(L-lactide-co-glycolide) (PLGA) microbubbles as a contrast agent for myocardial contrast echocardiography. J Biomed Mater Res B Appl Biomater 2005; 73B(1): 171-8.
[http://dx.doi.org/10.1002/jbm.b.30189] [PMID: 15678494]
[70]
Yan WC, Ong XJ, Pun KT, et al. Preparation of tPA-loaded microbubbles as potential theranostic agents: A novel one-step method via coaxial electrohydrodynamic atomization technique. Chem Eng J 2017; 307: 168-80.
[http://dx.doi.org/10.1016/j.cej.2016.08.081]
[71]
Prajapati JV, Agrawal YK. Synthesis, characterization and application of microbubbles: A review. Int J Pharm Sci Res 2012; 3(6): 1532.
[72]
Sirsi SR, Borden MA. Microbubble compositions, properties and biomedical applications. Bubble Sci Eng Technol 2009; 1(1-2): 3-17.
[http://dx.doi.org/10.1179/175889709X446507] [PMID: 20574549]
[73]
Tesař V. Interesting properties of microbubbles. Proc of 27th symposium on Anemometry. Litice, Czech Republic. 2013; pp. 4-5.
[74]
Maoming FAN, Daniel TAO, Honaker R, Zhenfu LUO. Nanobubble generation and its application in froth flotation (part I): Nanobubble generation and its effects on properties of microbubble and millimeter scale bubble solutions. Min Sci Technol 2010; 20(1): 1-19.
[75]
Shi WT, Forsberg F. Ultrasonic characterization of the nonlinear properties of contrast microbubbles. Ultrasound Med Biol 2000; 26(1): 93-104.
[http://dx.doi.org/10.1016/S0301-5629(99)00117-9] [PMID: 10687797]
[76]
Xu Q, Nakajima M, Liu Z, Shiina T. Biosurfactants for microbubble preparation and application. Int J Mol Sci 2011; 12(1): 462-75.
[http://dx.doi.org/10.3390/ijms12010462] [PMID: 21339998]
[77]
Tsuge H. Characteristics of microbubbles. Micro- and Nanobubbles: Fundamentals and Applications. Pan Stanford Publishing Pte. Ltd. 2014.
[78]
Klibanov AL. Microbubble contrast agents: Targeted ultrasound imaging and ultrasound-assisted drug-delivery applications. Invest Radiol 2006; 41(3): 354-62.
[http://dx.doi.org/10.1097/01.rli.0000199292.88189.0f] [PMID: 16481920]
[79]
Meijering BDM, Juffermans LJM, van Wamel A, et al. Ultrasound and microbubble-targeted delivery of macromolecules is regulated by induction of endocytosis and pore formation. Circ Res 2009; 104(5): 679-87.
[http://dx.doi.org/10.1161/CIRCRESAHA.108.183806] [PMID: 19168443]
[80]
Lindner JR, Song J, Xu F, et al. Noninvasive ultrasound imaging of inflammation using microbubbles targeted to activated leukocytes. Circulation 2000; 102(22): 2745-50.
[http://dx.doi.org/10.1161/01.CIR.102.22.2745] [PMID: 11094042]
[81]
Lindner JR, Dayton PA, Coggins MP, et al. Noninvasive imaging of inflammation by ultrasound detection of phagocytosed microbubbles. Circulation 2000; 102(5): 531-8.
[http://dx.doi.org/10.1161/01.CIR.102.5.531] [PMID: 10920065]
[82]
Osada H, Ward CA, Duffin J, Nelems JM, Cooper JD. Microbubble elimination during priming improves biocompatibility of membrane oxygenators. Am J Physiol 1978; 234(5): H646-52.
[PMID: 645932]
[83]
Lima EG, Durney KM, Sirsi SR, et al. Microbubbles as biocompatible porogens for hydrogel scaffolds. Acta Biomater 2012; 8(12): 4334-41.
[http://dx.doi.org/10.1016/j.actbio.2012.07.007] [PMID: 22868194]
[84]
Bernier M, Abdelmoneim SS, Stuart Moir W, et al. CUTE-CV: A prospective study of enhanced left atrial appendage visualization with microbubble contrast agent use during transesophageal echocardiography guided cardioversion. Echocardiography 2013; 30(9): 1091-7.
[http://dx.doi.org/10.1111/echo.12240] [PMID: 23662846]
[85]
Zhao C, Ma L, Luo Y, et al. In vivo visualization and characterization of inflamed intestinal wall: The exploration of targeted microbubbles in assessing NF-κB expression. J Cell Mol Med 2021; 25(18): 8973-84.
[http://dx.doi.org/10.1111/jcmm.16858] [PMID: 34409723]
[86]
Sennoga CA, Kanbar E, Auboire L, et al. Microbubble-mediated ultrasound drug-delivery and therapeutic monitoring. Expert Opin Drug Deliv 2017; 14(9): 1031-43.
[http://dx.doi.org/10.1080/17425247.2017.1266328] [PMID: 27892760]
[87]
Dauba A, Delalande A, Kamimura HAS, et al. Recent advances on ultrasound contrast agents for blood-brain barrier opening with focused ultrasound. Pharmaceutics 2020; 12(11): 1125.
[http://dx.doi.org/10.3390/pharmaceutics12111125] [PMID: 33233374]
[88]
Song KH, Harvey BK, Borden MA. State-of-the-art of microbubble-assisted blood-brain barrier disruption. Theranostics 2018; 8(16): 4393-408.
[http://dx.doi.org/10.7150/thno.26869] [PMID: 30214628]
[89]
van Elburg B, Collado-Lara G, Bruggert GW, Segers T, Versluis M, Lajoinie G. Feedback-controlled microbubble generator producing one million monodisperse bubbles per second. Rev Sci Instrum 2021; 92(3): 035110.
[http://dx.doi.org/10.1063/5.0032140] [PMID: 33820052]
[90]
Tan KL, Yeo SH. Bubble dynamics and cavitation intensity in milli-scale channels under an ultrasonic horn. Ultrason Sonochem 2019; 58: 104666.
[http://dx.doi.org/10.1016/j.ultsonch.2019.104666] [PMID: 31450291]
[91]
Gaitan DF, Tessien RA, Hiller RA, et al. Transient cavitation in high-quality-factor resonators at high static pressures. J Acoust Soc Am 2010; 127(6): 3456-65.
[http://dx.doi.org/10.1121/1.3377062] [PMID: 20550245]
[92]
Hwang JH, Tu J, Brayman AA, Matula TJ, Crum LA. Correlation between inertial cavitation dose and endothelial cell damage in vivo. Ultrasound Med Biol 2006; 32(10): 1611-9.
[http://dx.doi.org/10.1016/j.ultrasmedbio.2006.07.016] [PMID: 17045882]
[93]
Cramer HC III, Estrada JB, Scimone MT, Franck C. Inertial microcavitation as a neural cell damage mechanism in a 3D in vitro model of blast traumatic brain injury. Biophys J 2018; 114(3): 518a.
[http://dx.doi.org/10.1016/j.bpj.2017.11.2828]
[94]
Chen H, Brayman AA, Evan AP, Matula TJ. Preliminary observations on the spatial correlation between short-burst microbubble oscillations and vascular bioeffects. Ultrasound Med Biol 2012; 38(12): 2151-62.
[http://dx.doi.org/10.1016/j.ultrasmedbio.2012.08.014] [PMID: 23069136]
[95]
Novell A, Kamimura HAS, Cafarelli A, et al. A new safety index based on intrapulse monitoring of ultra-harmonic cavitation during ultrasound-induced blood-brain barrier opening procedures. Sci Rep 2020; 10(1): 10088.
[http://dx.doi.org/10.1038/s41598-020-66994-8] [PMID: 32572103]
[96]
Tung YS, Choi JJ, Baseri B, Konofagou EE. Identifying the inertial cavitation threshold and skull effects in a vessel phantom using focused ultrasound and microbubbles. Ultrasound Med Biol 2010; 36(5): 840-52.
[http://dx.doi.org/10.1016/j.ultrasmedbio.2010.02.009] [PMID: 20420973]
[97]
Zhang N, Yan F, Liang X, et al. Localized delivery of curcumin into brain with polysorbate 80-modified cerasomes by ultrasound- targeted microbubble destruction for improved Parkinson’s disease therapy. Theranostics 2018; 8(8): 2264-77.
[http://dx.doi.org/10.7150/thno.23734] [PMID: 29721078]
[98]
Aryal M, Fischer K, Gentile C, Gitto S, Zhang YZ, McDannold N. Effects on P-glycoprotein expression after blood-brain barrier disruption using focused ultrasound and microbubbles. PLoS One 2017; 12(1): e0166061.
[http://dx.doi.org/10.1371/journal.pone.0166061] [PMID: 28045902]
[99]
Unger EC, Matsunaga TO, McCreery T, Schumann P, Sweitzer R, Quigley R. Therapeutic applications of microbubbles. Eur J Radiol 2002; 42(2): 160-8.
[http://dx.doi.org/10.1016/S0720-048X(01)00455-7] [PMID: 11976013]
[100]
Klibanov AL. Ligand-carrying gas-filled microbubbles: Ultrasound contrast agents for targeted molecular imaging. Bioconjug Chem 2005; 16(1): 9-17.
[http://dx.doi.org/10.1021/bc049898y] [PMID: 15656569]
[101]
McCulloch M, Gresser C, Moos S, et al. Ultrasound contrast physics: A series on contrast echocardiography, article 3. J Am Soc Echocardiogr 2000; 13(10): 959-67.
[http://dx.doi.org/10.1067/mje.2000.107004] [PMID: 11029724]
[102]
Lawrie A, Brisken AF, Francis SE, Cumberland DC, Crossman DC, Newman CM. Microbubble-enhanced ultrasound for vascular gene delivery. Gene Ther 2000; 7(23): 2023-7.
[http://dx.doi.org/10.1038/sj.gt.3301339] [PMID: 11175314]
[103]
Bjorn TG. Multimodal imaging and ultrasound microbubble drug delivery in targeted cancer therapy. Inst Med 2002; 16(11): 292-301.
[104]
Chen S, Shohet RV, Bekeredjian R, Frenkel P, Grayburn PA. Optimization of ultrasound parameters for cardiac gene delivery of adenoviral or plasmid deoxyribonucleic acid by ultrasound-targeted microbubble destruction. J Am Coll Cardiol 2003; 42(2): 301-8.
[http://dx.doi.org/10.1016/S0735-1097(03)00627-2] [PMID: 12875768]
[105]
Sun L, Huang CW, Wu J, et al. The use of cationic microbubbles to improve ultrasound-targeted gene delivery to the ischemic myocardium. Biomaterials 2013; 34(8): 2107-16.
[http://dx.doi.org/10.1016/j.biomaterials.2012.11.041] [PMID: 23245332]
[106]
Pochon S, Tardy I, Bussat P, et al. BR55: A lipopeptide-based VEGFR2-targeted ultrasound contrast agent for molecular imaging of angiogenesis. Invest Radiol 2010; 45(2): 89-95.
[http://dx.doi.org/10.1097/RLI.0b013e3181c5927c] [PMID: 20027118]
[107]
Wang J, Qin B, Chen X, Wagner WR, Villanueva FS. Ultrasound molecular imaging of angiogenesis using vascular endothelial growth factor-conjugated microbubbles. Mol Pharm 2017; 14(3): 781-90.
[http://dx.doi.org/10.1021/acs.molpharmaceut.6b01033] [PMID: 28165246]
[108]
Zhang YJ, Bai DN, Du JX, et al. Ultrasound-guided imaging of junctional adhesion molecule-A-targeted microbubbles identifies vulnerable plaque in rabbits. Biomaterials 2016; 94: 20-30.
[http://dx.doi.org/10.1016/j.biomaterials.2016.03.049] [PMID: 27088407]
[109]
Wang C, Yang S, Chen X, He Q, Zhao K, Hu J. Molecular imaging diagnosis of atherosclerotic vulnerable plaque in rabbit carotid artery using a self-assembled nanoscale ultrasound microbubble contrast agent. Rev Cardiovasc Med 2021; 22(4): 1657-66.
[http://dx.doi.org/10.31083/j.rcm2204173] [PMID: 34957808]
[110]
Yuan H, Hu H, Sun J, Shi M, Yu H, Li C. Ultrasound microbubble delivery targeting intraplaque neovascularization inhibits atherosclerotic plaque in an APOE-deficient mouse model. In Vivo 2018; 32(5): 1025-32.
[111]
Unger E, Matsunaga TO, Schumann PA, Zutshi R. Microbubbles in molecular imaging and therapy. Kontraste 2003; 47(1): 58-65.
[112]
Petit B, Gaud E, Colevret D, et al. In vitro sonothrombolysis of human blood clots with BR38 microbubbles. Ultrasound Med Biol 2012; 38(7): 1222-33.
[http://dx.doi.org/10.1016/j.ultrasmedbio.2012.02.023] [PMID: 22542261]
[113]
de Saint Victor M, Barnsley LC, Carugo D, Owen J, Coussios CC, Stride E. Sonothrombolysis with magnetically targeted microbubbles. Ultrasound Med Biol 2019; 45(5): 1151-63.
[http://dx.doi.org/10.1016/j.ultrasmedbio.2018.12.014] [PMID: 30773375]
[114]
Schleicher N, Tomkins AJ, Kampschulte M, et al. Sonothrombolysis with BR38 microbubbles improves microvascular patency in a rat model of stroke. PLoS One 2016; 11(4): e0152898.
[http://dx.doi.org/10.1371/journal.pone.0152898] [PMID: 27077372]
[115]
Frausher F, klauser A, Halpern EJ, Horninger W, Bartsch G. Detection of prostate cancer with a microbubble ultrasound contrast agent. Lancet 2001; 357(9271): 1849-50.
[http://dx.doi.org/10.1016/S0140-6736(00)04970-9] [PMID: 11410195]
[116]
Vlaskou D, Mykhaylyk O, Giunta R, et al. 751. Magnetic microbubbles: New carriers for localized gene and drug delivery. Mol Ther 2006; 13: S290.
[http://dx.doi.org/10.1016/j.ymthe.2006.08.834]
[117]
Hitesh J, Parth P, Suraj F, Prachi P, Shikha Y. Microbubbles-A potential ultrasound tool in drug delivery. Asian J Pharm Clin Res 2011; 4(2): 6.
[118]
Wheatley MA, Lathia JD, Oum KL. Polymeric ultrasound contrast agents targeted to integrins: Importance of process methods and surface density of ligands. Biomacromolecules 2007; 8(2): 516-22.
[http://dx.doi.org/10.1021/bm060659i] [PMID: 17291076]
[119]
Franco-Urquijo CA, Navarro-Becerra JÁ, Ríos A, Escalante B. Release of vascular agonists from liposome-microbubble conjugate by ultrasound-mediated microbubble destruction: Effect on vascular function. Drug Deliv Transl Res 2022; 12(5): 1175-86.
[http://dx.doi.org/10.1007/s13346-021-00994-7] [PMID: 33939122]
[120]
Li X, Yue X, Wang J, et al. Prussian blue nanoparticle-loaded microbubbles for photothermally enhanced gene delivery through ultrasound-targeted microbubble destruction. Sci Bull 2016; 61(2): 148-56.
[http://dx.doi.org/10.1007/s11434-015-0988-4]
[121]
Liao AH, Hung CR, Chen HK, Chiang CP. Ultrasound-mediated EGF-coated-microbubble cavitation in dressings for wound-healing applications. Sci Rep 2018; 8(1): 8327.
[http://dx.doi.org/10.1038/s41598-018-26702-z] [PMID: 29844469]
[122]
Delaney LJ, Eisenbrey JR, Brown D, et al. Gemcitabine-loaded microbubble system for ultrasound imaging and therapy. Acta Biomater 2021; 130: 385-94.
[http://dx.doi.org/10.1016/j.actbio.2021.05.046] [PMID: 34082100]
[123]
Zhu JX, Zhu WT, Hu JH, et al. Curcumin-loaded poly (L-lactide- co-glycolide) microbubble-mediated sono-photodynamic therapy in liver cancer cells. Ultrasound Med Biol 2020; 46(8): 2030-43.
[http://dx.doi.org/10.1016/j.ultrasmedbio.2020.03.030] [PMID: 32475714]
[124]
Jintao X, Nanqian Z, Yuping Y, et al. Puerarin-loaded ultrasound microbubble contrast agent used as sonodynamic therapy for diabetic cardiomyopathy rats. Colloids Surf B Biointerfaces 2020; 190: 110887.
[http://dx.doi.org/10.1016/j.colsurfb.2020.110887] [PMID: 32113166]
[125]
Zheng J, Huang J, Zhang L, et al. Drug-loaded microbubble delivery system to enhance PD-L1 blockade immunotherapy with remodeling immune microenvironment. Biomater Res 2023; 27(1): 9.
[http://dx.doi.org/10.1186/s40824-023-00350-5] [PMID: 36759928]
[126]
Kancheva M, Aronson L, Pattilachan T, et al. Bubble-based drug delivery systems: Next-generation diagnosis to therapy. J Funct Biomater 2023; 14(7): 373.
[http://dx.doi.org/10.3390/jfb14070373] [PMID: 37504868]
[127]
Patel M, Lalan MS, Shah P, Prajapatid B. Microbubbles. Lipid-Based Drug Delivery Systems. Jenny Stanford Publishing 2024; pp. 387-421.
[128]
Kim K, Lee J, Park MH. Microbubble delivery platform for ultrasound-mediated therapy in brain cancers. Pharmaceutics 2023; 15(2): 698.
[http://dx.doi.org/10.3390/pharmaceutics15020698] [PMID: 36840020]
[129]
Huang B, Yang L, Yu W, Li Y, Li L, Gu N. Advances of therapeutic microbubbles and nanobubbles. Natl Sci Rev 2023; 2(5): 20220062.
[http://dx.doi.org/10.1360/nso/20220062]
[130]
Tsutsui JM, Xie F, Porter RT. The use of microbubbles to target drug delivery. Cardiovasc Ultrasound 2004; 2(1): 23.
[http://dx.doi.org/10.1186/1476-7120-2-23] [PMID: 15546496]
[131]
Geis N, Katus H, Bekeredjian R. Microbubbles as a vehicle for gene and drug delivery: Current clinical implications and future perspectives. Curr Pharm Des 2012; 18(15): 2166-83.
[http://dx.doi.org/10.2174/138161212800099946] [PMID: 22352771]
[132]
Delalande A, Postema M, Mignet N, Midoux P, Pichon C. Ultrasound and microbubble-assisted gene delivery: Recent advances and ongoing challenges. Ther Deliv 2012; 3(10): 1199-215.
[http://dx.doi.org/10.4155/tde.12.100] [PMID: 23116012]
[133]
Lindner J. Molecular imaging with contrast ultrasound and targeted microbubbles. J Nucl Cardiol 2004; 11(2): 215-21.
[http://dx.doi.org/10.1016/j.nuclcard.2004.01.003] [PMID: 15052252]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy