Generic placeholder image

Current Pharmaceutical Design

Editor-in-Chief

ISSN (Print): 1381-6128
ISSN (Online): 1873-4286

Review Article

Understanding the Therapeutic Approaches for Neuroprotection

Author(s): Nazrana Payal, Lalit Sharma*, Aditi Sharma, Yahya Hosan Hobanii, Mashael Ahmed Hakami, Nemat Ali, Summya Rashid, Monika Sachdeva, Monica Gulati, Shivam Yadav, Sridevi Chigurupati, Abhiav Singh, Haroon Khan and Tapan Behl*

Volume 29, Issue 42, 2023

Published on: 26 December, 2023

Page: [3368 - 3384] Pages: 17

DOI: 10.2174/0113816128275761231103102125

Price: $65

Open Access Journals Promotions 2
Abstract

The term “neurodegenerative disorders” refers to a group of illnesses in which deterioration of nerve structure and function is a prominent feature. Cognitive capacities such as memory and decision-making deteriorate as a result of neuronal damage. The primary difficulty that remains is safeguarding neurons since they do not proliferate or regenerate spontaneously and are therefore not substituted by the body after they have been damaged. Millions of individuals throughout the world suffer from neurodegenerative diseases. Various pathways lead to neurodegeneration, including endoplasmic reticulum stress, calcium ion overload, mitochondrial dysfunction, reactive oxygen species generation, and apoptosis. Although different treatments and therapies are available for neuroprotection after a brain injury or damage, the obstacles are inextricably connected. Several studies have revealed the pathogenic effects of hypothermia, different breathed gases, stem cell treatments, mitochondrial transplantation, multi-pharmacological therapy, and other therapies that have improved neurological recovery and survival outcomes after brain damage. The present review highlights the use of therapeutic approaches that can be targeted to develop and understand significant therapies for treating neurodegenerative diseases.

Keywords: Neurodegenerative diseases, oxidative stress, drug targeting, brain injury/damage, neurodegeneration, therapeutics.

[1]
Sarkar S, Chegu KM. Nutritional, dietary, and lifestyle approaches for prevention and management of Alzheimer’s disease. Role of Nutrients in Neurological Disorders. Springer 2022; pp. 61-84.
[http://dx.doi.org/10.1007/978-981-16-8158-5_3]
[2]
Han F, Da T, Riobo NA, Becker LB. Early mitochondrial dysfunction in electron transfer activity and reactive oxygen species generation after cardiac arrest. Crit Care Med 2008; 36(S11): S447-53.
[http://dx.doi.org/10.1097/CCM.0b013e31818a8a51] [PMID: 20449909]
[3]
Shoaib M, Choudhary RC, Choi J, et al. Plasma metabolomics supports the use of long-duration cardiac arrest rodent model to study human disease by demonstrating similar metabolic alterations. Sci Rep 2020; 10(1): 19707.
[http://dx.doi.org/10.1038/s41598-020-76401-x] [PMID: 31913322]
[4]
Choudhary R, Shoaib M, Miyara S, et al. Metformin improves cell viability after in vitro ischemia-reperfusion and improves survival with neuroprotection after rodent cardiac arrest. FASEB J 2021; 35(S1): fasebj.2021.35.S1.05447.
[http://dx.doi.org/10.1096/fasebj.2021.35.S1.05447]
[5]
Takegawa R, Hayashida K, Choudhary R, Rolston DM, Becker LB. Brain monitoring using near-infrared spectroscopy to predict outcome after cardiac arrest: A novel phenotype in a rat model of cardiac arrest. J Intensive Care 2021; 9(1): 4.
[http://dx.doi.org/10.1186/s40560-020-00521-9] [PMID: 33413628]
[6]
Cacabelos R, Teijido O, Carril JC. Can cloud-based tools accelerate Alzheimer’s disease drug discovery? Expert Opin Drug Discov 2016; 11(3): 215-23.
[http://dx.doi.org/10.1517/17460441.2016.1141892] [PMID: 26766514]
[7]
Alam J, Jaiswal V, Sharma L. Screening of antibiotics against β-amyloid as anti-amyloidogenic agents: A drug repurposing approach. Curr Computeraided Drug Des 2021; 17(5): 647-54.
[http://dx.doi.org/10.2174/1573409916666200703171732] [PMID: 32619176]
[8]
Kuriakose D, Xiao Z. Pathophysiology and treatment of stroke: Present status and future perspectives. Int J Mol Sci 2020; 21(20): 7609.
[http://dx.doi.org/10.3390/ijms21207609] [PMID: 33076218]
[9]
Mozaffarian D, Benjamin EJ, Go AS, et al. Executive summary: Heart disease and stroke statistics-2016 update. Circulation 2016; 133(4): 447-54.
[http://dx.doi.org/10.1161/CIR.0000000000000366] [PMID: 26811276]
[10]
Sirdani M, Zohreh-Vand F, Torabi M. Stroke as a neurodegenerative disease; A review of the introduction, epidemiology, diagnosis, complications and causes. Cent Asian J Medical Pharm Sci Innov 2021; 1(3): 156-64.
[11]
Eme R. Neurobehavioral outcomes of mild traumatic brain injury: A mini review. Brain Sci 2017; 7(12): 46.
[http://dx.doi.org/10.3390/brainsci7050046] [PMID: 28441336]
[12]
Peeters W, van den Brande R, Polinder S, et al. Epidemiology of traumatic brain injury in Europe. Acta Neurochir 2015; 157(10): 1683-96.
[http://dx.doi.org/10.1007/s00701-015-2512-7] [PMID: 26269030]
[13]
James SL, Theadom A, Ellenbogen RG, et al. Global, regional, and national burden of traumatic brain injury and spinal cord injury, 1990–2016: A systematic analysis for the Global Burden of Disease Study 2016. Lancet Neurol 2019; 18(1): 56-87.
[http://dx.doi.org/10.1016/S1474-4422(18)30415-0] [PMID: 30497965]
[14]
Nolfi-Donegan D, Braganza A, Shiva S. Mitochondrial electron transport chain: Oxidative phosphorylation, oxidant production, and methods of measurement. Redox Biol 2020; 37: 101674.
[http://dx.doi.org/10.1016/j.redox.2020.101674] [PMID: 32811789]
[15]
Picca A, Calvani R, Coelho-Junior HJ, Landi F, Bernabei R, Marzetti E. Mitochondrial dysfunction, oxidative stress, and neuroinflammation: Intertwined roads to neurodegeneration. Antioxidants 2020; 9(8): 647.
[http://dx.doi.org/10.3390/antiox9080647] [PMID: 32707949]
[16]
Hayashida K, Takegawa R, Shoaib M, et al. Mitochondrial transplantation therapy for ischemia reperfusion injury: A systematic review of animal and human studies. J Transl Med 2021; 19(1): 214.
[http://dx.doi.org/10.1186/s12967-021-02878-3] [PMID: 33397399]
[17]
Kim GH, Kim JE, Rhie SJ, Yoon S. The role of oxidative stress in neurodegenerative diseases. Exp Neurobiol 2015; 24(4): 325-40.
[http://dx.doi.org/10.5607/en.2015.24.4.325] [PMID: 26713080]
[18]
Thangaraj A, Sil S, Tripathi A, Chivero ET, Periyasamy P, Buch S. Targeting endoplasmic reticulum stress and autophagy as therapeutic approaches for neurological diseases. Int Rev Cell Mol Biol 2020; 350: 285-325.
[http://dx.doi.org/10.1016/bs.ircmb.2019.11.001] [PMID: 32138902]
[19]
Logsdon AF, Lucke-Wold BP, Rosen CL, Huber JD. Disparity among neural injury models and the unfolded protein response. J Neurol Disord Stroke 2014; 2(3): 1074.
[20]
Carbone F, Bonaventura A, Montecucco F. Neutrophil-related oxidants drive heart and brain remodeling after ischemia/reperfusion injury. Front Physiol 2020; 10: 1587.
[http://dx.doi.org/10.3389/fphys.2019.01587] [PMID: 32116732]
[21]
Luheshi NM, Rothwell NJ, Brough D. Dual functionality of interleukin-1 family cytokines: Implications for anti-interleukin-1 therapy. Br J Pharmacol 2009; 157(8): 1318-29.
[http://dx.doi.org/10.1111/j.1476-5381.2009.00331.x] [PMID: 19681864]
[22]
Sangaran PG, Ibrahim ZA, Chik Z, Mohamed Z, Ahmadiani A. LPS preconditioning attenuates apoptosis mechanism by inhibiting nf-κb and caspase-3 activity: TLR4 pre-activation in the signaling pathway of LPS-induced neuroprotection. Mol Neurobiol 2021; 58(5): 2407-22.
[http://dx.doi.org/10.1007/s12035-020-02227-3] [PMID: 33421016]
[23]
Bartels K, McDonagh DL, Newman MF, Mathew JP. Neurocognitive outcomes after cardiac surgery. Curr Opin Anaesthesiol 2013; 26(1): 91-7.
[http://dx.doi.org/10.1097/ACO.0b013e32835bf24c] [PMID: 23235523]
[24]
Kumar S, Saigal S, Sharma J, Dhurwe R, Gurjar M. Targeted temperature management: Current evidence and practices in critical care. Indian J Crit Care Med 2015; 19(9): 537-46.
[http://dx.doi.org/10.4103/0972-5229.164806] [PMID: 26430341]
[25]
Sun YJ, Zhang ZY, Fan B, Li GY. Neuroprotection by therapeutic hypothermia. Front Neurosci 2019; 13: 586.
[http://dx.doi.org/10.3389/fnins.2019.00586] [PMID: 31244597]
[26]
Kurisu K, Yenari MA. Therapeutic hypothermia for ischemic stroke; pathophysiology and future promise. Neuropharmacology 2018; 134(Pt B): 302-9.
[http://dx.doi.org/10.1016/j.neuropharm.2017.08.025] [PMID: 28830757]
[27]
Andresen M, Gazmuri JT, Marín A, Regueira T, Rovegno M. Therapeutic hypothermia for acute brain injuries. Scand J Trauma Resusc Emerg Med 2015; 23(1): 42.
[http://dx.doi.org/10.1186/s13049-015-0121-3] [PMID: 26043908]
[28]
Pegoli M, Zurlo Z, Bilotta F. Temperature management in acute brain injury: A systematic review of clinical evidence. Clin Neurol Neurosurg 2020; 197: 106165.
[http://dx.doi.org/10.1016/j.clineuro.2020.106165] [PMID: 32937217]
[29]
Choudhary RC, Jia X. Hypothalamic or extrahypothalamic modulation and targeted temperature management after brain injury. Ther Hypothermia Temp Manag 2017; 7(3): 125-33.
[http://dx.doi.org/10.1089/ther.2017.0003] [PMID: 28467285]
[30]
Che D, Li L, Kopil CM, Liu Z, Guo W, Neumar RW. Impact of therapeutic hypothermia onset and duration on survival, neurologic function, and neurodegeneration after cardiac arrest. Crit Care Med 2011; 39(6): 1423-30.
[http://dx.doi.org/10.1097/CCM.0b013e318212020a] [PMID: 21610611]
[31]
Bernard SA, Gray TW, Buist MD, et al. Treatment of comatose survivors of out-of-hospital cardiac arrest with induced hypothermia. N Engl J Med 2002; 346(8): 557-63.
[http://dx.doi.org/10.1056/NEJMoa003289] [PMID: 11856794]
[32]
Huang CH, Tsai MS, Ong HN, et al. Association of hemodynamic variables with in-hospital mortality and favorable neurological outcomes in post-cardiac arrest care with targeted temperature management. Resuscitation 2017; 120: 146-52.
[http://dx.doi.org/10.1016/j.resuscitation.2017.07.009] [PMID: 28709953]
[33]
Huang M, Shoskes A, Migdady I, et al. Does targeted temperature management improve neurological outcome in extracorporeal cardiopulmonary resuscitation (ECPR)? J Intensive Care Med 2022; 37(2): 157-67.
[http://dx.doi.org/10.1177/08850666211018982] [PMID: 34114481]
[34]
Lyden PD, Lamb J, Kothari S, Toossi S, Boitano P, Rajput PS. Differential effects of hypothermia on neurovascular unit determine protective or toxic results: Toward optimized therapeutic hypothermia. J Cereb Blood Flow Metab 2019; 39(9): 1693-709.
[http://dx.doi.org/10.1177/0271678X18814614] [PMID: 30461327]
[35]
Dietrich WD, Bramlett H. Therapeutic hypothermia and targeted temperature management for traumatic brain injury: Experimental and clinical experience. Brain Circ 2017; 3(4): 186-98.
[http://dx.doi.org/10.4103/bc.bc_28_17] [PMID: 30276324]
[36]
Ma H, Sinha B, Pandya RS, et al. Therapeutic hypothermia as a neuroprotective strategy in neonatal hypoxic-ischemic brain injury and traumatic brain injury. Curr Mol Med 2012; 12(10): 1282-96.
[http://dx.doi.org/10.2174/156652412803833517] [PMID: 22834830]
[37]
Hemmen TM, Raman R, Guluma KZ, et al. Intravenous thrombolysis plus hypothermia for acute treatment of ischemic stroke (ICTuS-L): Final results. Stroke 2010; 41(10): 2265-70.
[http://dx.doi.org/10.1161/STROKEAHA.110.592295] [PMID: 20724711]
[38]
Janata A, Holzer M. Hypothermia after cardiac arrest. Prog Cardiovasc Dis 2009; 52(2): 168-79.
[http://dx.doi.org/10.1016/j.pcad.2009.07.001] [PMID: 19732608]
[39]
van der Worp HB, van Gijn J. Clinical practice. Acute ischemic stroke. N Engl J Med 2007; 357(6): 572-9.
[http://dx.doi.org/10.1056/NEJMcp072057] [PMID: 17687132]
[40]
Franchini M, Mannucci PM. Venous and arterial thrombosis: Different sides of the same coin? Eur J Intern Med 2008; 19(7): 476-81.
[http://dx.doi.org/10.1016/j.ejim.2007.10.019] [PMID: 19013373]
[41]
Zhu R, Xu K, Shi J, Yan Q. Time interval between first ever and recurrent stroke in a population hospitalized for second stroke: A retrospective study. Neurol Asia 2016; 21(3).
[42]
Krieger DW, Yenari MA. Therapeutic hypothermia for acute ischemic stroke: What do laboratory studies teach us? Stroke 2004; 35(6): 1482-9.
[http://dx.doi.org/10.1161/01.STR.0000126118.44249.5c] [PMID: 15073396]
[43]
Andrews PJD, Verma V, Healy M, et al. Targeted temperature management in patients with intracerebral haemorrhage, subarachnoid haemorrhage, or acute ischaemic stroke: Consensus recommendations. Br J Anaesth 2018; 121(4): 768-75.
[http://dx.doi.org/10.1016/j.bja.2018.06.018] [PMID: 30236239]
[44]
Gomaa AA, Makboul RM, Al-Mokhtar MA, Nicola MA. Polyphenol-rich Boswellia serrata gum prevents cognitive impairment and insulin resistance of diabetic rats through inhibition of GSK3β activity, oxidative stress and pro-inflammatory cytokines. Biomed Pharmacother 2019; 109: 281-92.
[http://dx.doi.org/10.1016/j.biopha.2018.10.056] [PMID: 30396086]
[45]
Yu LY, Pei Y. Insulin neuroprotection and the mechanisms. Chin Med J (Engl) 2015; 128(7): 976-81.
[http://dx.doi.org/10.4103/0366-6999.154323] [PMID: 25836621]
[46]
Yang W, Li G, Cao K, et al. Exogenous insulin-like growth factor 1 attenuates acute ischemic stroke-induced spatial memory impairment via modulating inflammatory response and tau phosphorylation. Neuropeptides 2020; 83: 102082.
[http://dx.doi.org/10.1016/j.npep.2020.102082] [PMID: 32863068]
[47]
Shoaib M, Choudhary RC, Chillale RK, et al. others. Metformin-mediated mitochondrial protection post-cardiac arrest improves EEG activity and confers neuroprotection and survival benefit. bioRxiv 2021.
[48]
Dennis M, Lal S, Forrest P, et al. In-depth extracorporeal cardiopulmonary resuscitation in adult out-of-hospital cardiac arrest. J Am Heart Assoc 2020; 9(10): e016521.
[http://dx.doi.org/10.1161/JAHA.120.016521] [PMID: 32375010]
[49]
Choudhary RC, Becker LB. Phospholipid screening postcardiac arrest detects decreased plasma lysophosphatidylcholine: Supplementation as a new therapeutic approach. Crit Care Med 2021; 50(2): e199-208.
[PMID: 33438981]
[50]
Sharma L, Kumar D, Bisht GS. In-silico and in-vitro evaluation of imidazolone fused quinazolinone derivatives as anti-amyloidal agents in Alzheimer’s. Alzheimers Dement 2020; 16(S9): e038321.
[http://dx.doi.org/10.1002/alz.038321]
[51]
Kumar D, Sharma A, Sharma L. Comprehensive review of Alzheimer’s association with related proteins: Pathological role and therapeutic significance. Curr Neuropharmacol 2020; 18(8): 674-95.
[http://dx.doi.org/10.2174/1570159X18666200203101828] [PMID: 32172687]
[52]
Xie W, Zhou P, Sun Y, et al. Protective effects and target network analysis of ginsenoside Rg1 in cerebral ischemia and reperfusion injury: A comprehensive overview of experimental studies. Cells 2018; 7(12): 270.
[http://dx.doi.org/10.3390/cells7120270] [PMID: 30545139]
[53]
Farrell D, Bendo AA. Perioperative management of severe traumatic brain injury: What is new? Curr Anesthesiol Rep 2018; 8(3): 279-89.
[http://dx.doi.org/10.1007/s40140-018-0286-1] [PMID: 30147453]
[54]
Gray R, Patel S, Ives N, et al. Long-term effectiveness of adjuvant treatment with catechol-O-methyltransferase or monoamine oxidase B inhibitors compared with dopamine agonists among patients with Parkinson disease uncontrolled by levodopa therapy: The PD MED randomized clinical trial. JAMA Neurol 2022; 79(2): 131-40.
[http://dx.doi.org/10.1001/jamaneurol.2021.4736] [PMID: 34962574]
[55]
Mader TJ, Coute RA, Kellogg AR, Nathanson BH. Blinded evaluation of combination drug therapy for prolonged ventricular fibrillation using a swine model of sudden cardiac arrest. Prehosp Emerg Care 2016; 20(3): 390-8.
[http://dx.doi.org/10.3109/10903127.2015.1086848] [PMID: 26529432]
[56]
Delaby C, Lehmann S. Proteinopathies: Molecular mechanisms and diagnostic perspectives. J Neural Transm 2022; 129(2): 1-2.
[57]
Bayer TA. Proteinopathies, a core concept for understanding and ultimately treating degenerative disorders? Eur Neuropsychopharmacol 2015; 25(5): 713-24.
[http://dx.doi.org/10.1016/j.euroneuro.2013.03.007] [PMID: 23642796]
[58]
Fleming SM, Davis A, Simons E. Targeting alpha-synuclein via the immune system in Parkinson’s disease: Current vaccine therapies. Neuropharmacology 2022; 202: 108870.
[http://dx.doi.org/10.1016/j.neuropharm.2021.108870] [PMID: 34742741]
[59]
Woodruff TM, Nandakumar KS, Tedesco F. Inhibiting the C5–C5a receptor axis. Mol Immunol 2011; 48(14): 1631-42.
[http://dx.doi.org/10.1016/j.molimm.2011.04.014] [PMID: 21549429]
[60]
Zhang Z, Ma Z, Yan C, et al. Muscle-derived autologous mitochondrial transplantation: A novel strategy for treating cerebral ischemic injury. Behav Brain Res 2019; 356: 322-31.
[http://dx.doi.org/10.1016/j.bbr.2018.09.005] [PMID: 30213662]
[61]
Mortada I, Farah R, Nabha S, et al. Immunotherapies for neurodegenerative diseases. Front Neurol 2021; 12: 654739.
[http://dx.doi.org/10.3389/fneur.2021.654739] [PMID: 34163421]
[62]
Yang W-C, Wang Y-Z, Li T-T, Cao H-L. Recent advances in the neuroprotective effects of medical gases. Med Gas Res 2019; 9(2): 80-7.
[http://dx.doi.org/10.4103/2045-9912.260649] [PMID: 31249256]
[63]
Moon RE. Hyperbaric oxygen treatment for decompression sickness. Undersea Hyperb Med 2014; 41(2): 151-7.
[PMID: 24851553]
[64]
Zhang Y, Yang Y, Tang H, et al. Hyperbaric oxygen therapy ameliorates local brain metabolism, brain edema and inflammatory response in a blast-induced traumatic brain injury model in rabbits. Neurochem Res 2014; 39(5): 950-60.
[http://dx.doi.org/10.1007/s11064-014-1292-4] [PMID: 24682753]
[65]
Tal S, Hadanny A, Sasson E, Suzin G, Efrati S. Hyperbaric oxygen therapy can induce angiogenesis and regeneration of nerve fibers in traumatic brain injury patients. Front Hum Neurosci 2017; 11: 508.
[http://dx.doi.org/10.3389/fnhum.2017.00508] [PMID: 29097988]
[66]
Baratz-Goldstein R, Toussia-Cohen S, Elpaz A, Rubovitch V, Pick CG. Immediate and delayed hyperbaric oxygen therapy as a neuroprotective treatment for traumatic brain injury in mice. Mol Cell Neurosci 2017; 83: 74-82.
[http://dx.doi.org/10.1016/j.mcn.2017.06.004] [PMID: 28690173]
[67]
Ebrahimi MJ, Aliaghaei A, Boroujeni ME, et al. Human umbilical cord matrix stem cells reverse oxidative stress-induced cell death and ameliorate motor function and striatal atrophy in rat model of Huntington disease. Neurotox Res 2018; 34(2): 273-84.
[http://dx.doi.org/10.1007/s12640-018-9884-4] [PMID: 29520722]
[68]
Chonghaile MN, Higgins BD, Costello J, Laffey JG. Hypercapnic acidosis attenuates lung injury induced by established bacterial pneumonia. Anesthesiology 2008; 109(5): 837-48.
[http://dx.doi.org/10.1097/ALN.0b013e3181895fb7] [PMID: 18946296]
[69]
Nadeev AD, Kritskaya KA, Fedotova EI, Berezhnov AV. One small step for mouse: High CO2 inhalation as a new therapeutic strategy for Parkinson’s disease. Biomedicines 2022; 10(11): 2832.
[http://dx.doi.org/10.3390/biomedicines10112832] [PMID: 36359351]
[70]
Tao T, Zhao M, Yang W, Bo Y, Li W. Neuroprotective effects of therapeutic hypercapnia on spatial memory and sensorimotor impairment via anti-apoptotic mechanisms after focal cerebral ischemia/reperfusion. Neurosci Lett 2014; 573: 1-6.
[http://dx.doi.org/10.1016/j.neulet.2014.04.051] [PMID: 24813106]
[71]
Wei X, Zhang B, Cheng L, et al. Hydrogen sulfide induces neuroprotection against experimental stroke in rats by down-regulation of AQP4 via activating PKC. Brain Res 2015; 1622: 292-9.
[http://dx.doi.org/10.1016/j.brainres.2015.07.001] [PMID: 26168888]
[72]
Lin Y, Yang X, Lu Y, Liang D, Huang D. Isothiocyanates as H2S donors triggered by cysteine: Reaction mechanism and structure and activity relationship. Org Lett 2019; 21(15): 5977-80.
[http://dx.doi.org/10.1021/acs.orglett.9b02117] [PMID: 31318571]
[73]
Zhang Y, Sun Q, He B, Xiao J, Wang Z, Sun X. Anti-inflammatory effect of hydrogen-rich saline in a rat model of regional myocardial ischemia and reperfusion. Int J Cardiol 2011; 148(1): 91-5.
[http://dx.doi.org/10.1016/j.ijcard.2010.08.058] [PMID: 20851484]
[74]
Zhao H, Pan P, Yang Y, et al. Endogenous hydrogen sulphide attenuates NLRP3 inflammasome-mediated neuroinflammation by suppressing the P2X7 receptor after intracerebral haemorrhage in rats. J Neuroinflammation 2017; 14(1): 163.
[http://dx.doi.org/10.1186/s12974-017-0940-4] [PMID: 28086917]
[75]
Cao S, Zhu P, Yu X, et al. Hydrogen sulfide attenuates brain edema in early brain injury after subarachnoid hemorrhage in rats: Possible involvement of MMP-9 induced blood-brain barrier disruption and AQP4 expression. Neurosci Lett 2016; 621: 88-97.
[http://dx.doi.org/10.1016/j.neulet.2016.04.018] [PMID: 27080433]
[76]
Yin T, Becker LB, Choudhary RC, et al. Hydrogen gas with extracorporeal cardiopulmonary resuscitation improves survival after prolonged cardiac arrest in rats. J Transl Med 2021; 19(1): 462.
[http://dx.doi.org/10.1186/s12967-021-03129-1] [PMID: 33397399]
[77]
Nagatani K, Wada K, Takeuchi S, et al. Effect of hydrogen gas on the survival rate of mice following global cerebral ischemia. Shock 2012; 37(6): 645-52.
[http://dx.doi.org/10.1097/SHK.0b013e31824ed57c] [PMID: 22392146]
[78]
Chen K, Wang N, Diao Y, et al. Hydrogen-rich saline attenuates brain injury induced by cardiopulmonary bypass and inhibits microvascular endothelial cell apoptosis via the PI3K/Akt/GSK3β signaling pathway in rats. Cell Physiol Biochem 2017; 43(4): 1634-47.
[http://dx.doi.org/10.1159/000484024] [PMID: 29040978]
[79]
Wang R. Toxic gas, lifesaver. Sci Am 2010; 302(3): 66-71.
[http://dx.doi.org/10.1038/scientificamerican0310-66] [PMID: 20184185]
[80]
Calabrese V, Mancuso C, Calvani M, Rizzarelli E, Butterfield DA, Giuffrida Stella AM. Nitric oxide in the central nervous system: Neuroprotection versus neurotoxicity. Nat Rev Neurosci 2007; 8(10): 766-75.
[http://dx.doi.org/10.1038/nrn2214] [PMID: 17882254]
[81]
Garthwaite J, Charles SL, Chess-Williams R. Endothelium-derived relaxing factor release on activation of NMDA receptors suggests role as intercellular messenger in the brain. Nature 1988; 336(6197): 385-8.
[http://dx.doi.org/10.1038/336385a0] [PMID: 2904125]
[82]
Turkoz Y, Ozerol E. Nitric oxide: Actions and pathological roles. Ann Med Res 1997; 4(4): 0453-61.
[83]
Sanders KM, Ward SM. Nitric oxide as a mediator of nonadrenergic noncholinergic neurotransmission. Am J Physiol 1992; 262(3 Pt 1): G379-92.
[PMID: 1347974]
[84]
Minamishima S, Kida K, Tokuda K, et al. Inhaled nitric oxide improves outcomes after successful cardiopulmonary resuscitation in mice. Circulation 2011; 124(15): 1645-53.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.111.025395] [PMID: 21931083]
[85]
Scott T, van Waart H, Vrijdag XCE, Mullins D, Mesley P, Mitchell SJ. Arterial blood gas measurements during deep open-water breath-hold dives. J Appl Physiol 2021; 130(5): 1490-5.
[http://dx.doi.org/10.1152/japplphysiol.00111.2021] [PMID: 33830815]
[86]
Aehling C, Weber NC, Zuurbier CJ, et al. Effects of combined helium pre/post-conditioning on the brain and heart in a rat resuscitation model. Acta Anaesthesiol Scand 2018; 62(1): 63-74.
[http://dx.doi.org/10.1111/aas.13041] [PMID: 29159800]
[87]
Lavaur J, Le Nogue D, Lemaire M, et al. The noble gas xenon provides protection and trophic stimulation to midbrain dopamine neurons. J Neurochem 2017; 142(1): 14-28.
[http://dx.doi.org/10.1111/jnc.14041] [PMID: 28398653]
[88]
Lavaur J, Lemaire M, Pype J, Nogue DL, Hirsch EC, Michel PP. Xenon-mediated neuroprotection in response to sustained, low-level excitotoxic stress. Cell Death Discov 2016; 2(1): 16018.
[http://dx.doi.org/10.1038/cddiscovery.2016.18] [PMID: 27551511]
[89]
Gardner AJ, Menon DK. Moving to human trials for argon neuroprotection in neurological injury: A narrative review. Br J Anaesth 2018; 120(3): 453-68.
[http://dx.doi.org/10.1016/j.bja.2017.10.017] [PMID: 29452802]
[90]
Yuan M, Ge M, Yin J, et al. Isoflurane post-conditioning down-regulates expression of aquaporin 4 in rats with cerebral ischemia/reperfusion injury and is possibly related to bone morphogenetic protein 4/Smad1/5/8 signaling pathway. Biomed Pharmacother 2018; 97: 429-38.
[http://dx.doi.org/10.1016/j.biopha.2017.10.082] [PMID: 29091893]
[91]
Wang S, Yin J, Ge M, et al. Transforming growth-beta 1 contributes to isoflurane postconditioning against cerebral ischemia–reperfusion injury by regulating the c-Jun N-terminal kinase signaling pathway. Biomed Pharmacother 2016; 78: 280-90.
[http://dx.doi.org/10.1016/j.biopha.2016.01.030] [PMID: 26898453]
[92]
Wang J, Feng Y, Fu Y, Liu G. Effect of sevoflurane anesthesia on brain is mediated by lncRNA HOTAIR. J Mol Neurosci 2018; 64(3): 346-51.
[http://dx.doi.org/10.1007/s12031-018-1029-y] [PMID: 29352445]
[93]
Xia Y, Xu H, Jia C, et al. Tanshinone IIA attenuates sevoflurane neurotoxicity in neonatal mice. Anesth Analg 2017; 124(4): 1244-52.
[http://dx.doi.org/10.1213/ANE.0000000000001942] [PMID: 28319548]
[94]
Zhou X, Li W, Chen X, et al. Dose-dependent effects of sevoflurane exposure during early lifetime on apoptosis in hippocampus and neurocognitive outcomes in Sprague-Dawley rats. Int J Physiol Pathophysiol Pharmacol 2016; 8(3): 111-9.
[PMID: 27785338]
[95]
Chernyak BV. Mitochondrial transplantation: A critical analysis. Biochemistry 2020; 85(5): 636-41.
[http://dx.doi.org/10.1134/S0006297920050132] [PMID: 32571194]
[96]
Moon HE, Paek SH. Mitochondrial dysfunction in Parkinson’s disease. Exp Neurobiol 2015; 24(2): 103-16.
[http://dx.doi.org/10.5607/en.2015.24.2.103] [PMID: 26113789]
[97]
Doulamis IP, McCully JD. Mitochondrial transplantation for ischemia reperfusion injury. Methods Mol Biol 2021; 3: 15-37.
[http://dx.doi.org/10.1007/978-1-0716-1270-5_2]
[98]
Espino De la Fuente-Muñoz C, Arias C. The therapeutic potential of mitochondrial transplantation for the treatment of neurodegenerative disorders. Rev Neurosci 2021; 32(2): 203-17.
[http://dx.doi.org/10.1515/revneuro-2020-0068] [PMID: 33550783]
[99]
Kuschner CE, Kim N, Shoaib M, et al. Understanding physiologic phospholipid maintenance in the context of brain mitochondrial phospholipid alterations after cardiac arrest. Mitochondrion 2021; 60: 112-20.
[http://dx.doi.org/10.1016/j.mito.2021.08.009] [PMID: 34384933]
[100]
Huang PJ, Kuo CC, Lee HC, et al. others. Transferring xenogenic mitochondria provides neural protection against ischemic stress in ischemic rat brains. Cell Transplant 2016; 25(5): 913-27.
[http://dx.doi.org/10.3727/096368915X689785] [PMID: 26555763]
[101]
Pourmohammadi-Bejarpasi Z, Roushandeh AM, Saberi A, et al. Mesenchymal stem cells-derived mitochondria transplantation mitigates I/R-induced injury, abolishes I/R-induced apoptosis, and restores motor function in acute ischemia stroke rat model. Brain Res Bull 2020; 165: 70-80.
[http://dx.doi.org/10.1016/j.brainresbull.2020.09.018] [PMID: 33010349]
[102]
Hayakawa K, Esposito E, Wang X, et al. Transfer of mitochondria from astrocytes to neurons after stroke. Nature 2016; 535(7613): 551-5.
[http://dx.doi.org/10.1038/nature18928] [PMID: 27466127]
[103]
Niu F, Dong J, Xu X, Zhang B, Liu B. Mitochondrial division inhibitor 1 prevents early-stage induction of mitophagy and accelerated cell death in a rat model of moderate controlled cortical impact brain injury. World Neurosurg 2019; 122: e1090-101.
[http://dx.doi.org/10.1016/j.wneu.2018.10.236] [PMID: 30439527]
[104]
Fischer TD, Hylin MJ, Zhao J, Moore AN, Waxham MN, Dash PK. Altered mitochondrial dynamics and TBI pathophysiology. Front Syst Neurosci 2016; 10: 29.
[http://dx.doi.org/10.3389/fnsys.2016.00029] [PMID: 27065821]
[105]
Di Pietro V, Lazzarino G, Amorini AM, et al. Fusion or fission: The destiny of mitochondria in traumatic brain injury of different severities. Sci Rep 2017; 7(1): 9189.
[http://dx.doi.org/10.1038/s41598-017-09587-2] [PMID: 28835707]
[106]
Borlongan CV, Russo E, Nguyen H, Lippert T, Tuazon J, Napoli E. Mitochondrial targeting as a novel therapy for stroke. Brain Circ 2018; 4(3): 84-94.
[http://dx.doi.org/10.4103/bc.bc_14_18] [PMID: 30450413]
[107]
Sims NR, Muyderman H. Mitochondria, oxidative metabolism and cell death in stroke. Biochim Biophys Acta Mol Basis Dis 2010; 1802(1): 80-91.
[http://dx.doi.org/10.1016/j.bbadis.2009.09.003] [PMID: 19751827]
[108]
Liu K, Guo L, Zhou Z, Pan M, Yan C. Mesenchymal stem cells transfer mitochondria into cerebral microvasculature and promote recovery from ischemic stroke. Microvasc Res 2019; 123: 74-80.
[http://dx.doi.org/10.1016/j.mvr.2019.01.001] [PMID: 30611747]
[109]
Li H, Wang C, He T, et al. Mitochondrial transfer from bone marrow mesenchymal stem cells to motor neurons in spinal cord injury rats via gap junction. Theranostics 2019; 9(7): 2017-35.
[http://dx.doi.org/10.7150/thno.29400] [PMID: 31037154]
[110]
Shi X, Zhao M, Fu C, Fu A. Intravenous administration of mitochondria for treating experimental Parkinson’s disease. Mitochondrion 2017; 34: 91-100.
[http://dx.doi.org/10.1016/j.mito.2017.02.005] [PMID: 28242362]
[111]
Quintanilla RA, Johnson GVW. Role of mitochondrial dysfunction in the pathogenesis of Huntington’s disease. Brain Res Bull 2009; 80(4-5): 242-7.
[http://dx.doi.org/10.1016/j.brainresbull.2009.07.010] [PMID: 19622387]
[112]
Sharma A, Behl T, Sharma L, Aelya L, Bungau S. Mitochondrial dysfunction in Huntington’s disease: Pathogenesis and therapeutic opportunities. Curr Drug Targets 2021; 22(14): 1637-67.
[http://dx.doi.org/10.2174/1389450122666210224105945] [PMID: 33655829]
[113]
Patergnani S, Fossati V, Bonora M, et al. Mitochondria in multiple sclerosis: Molecular mechanisms of pathogenesis. Int Rev Cell Mol Biol 2017; 328: 49-103.
[http://dx.doi.org/10.1016/bs.ircmb.2016.08.003] [PMID: 28069137]
[114]
Stern JH, Temple S. Stem cells for retinal replacement therapy. Neurotherapeutics 2011; 8(4): 736-43.
[http://dx.doi.org/10.1007/s13311-011-0077-6] [PMID: 21948217]
[115]
Savitz SI, Cramer SC, Wechsler L, et al. Stem cells as an emerging paradigm in stroke 3: Enhancing the development of clinical trials. Stroke 2014; 45(2): 634-9.
[http://dx.doi.org/10.1161/STROKEAHA.113.003379] [PMID: 24368562]
[116]
Padma AM. Tissue engineering for novel female infertillity treatments: studies on small and large animal models. Department of Obstetrics and Gynecology Institute of Clinical Sciences Sahlgrenska Academy, University of Gothenburg 2021.
[117]
Mizuno H, Tobita M, Uysal AC. Concise review: Adipose-derived stem cells as a novel tool for future regenerative medicine. Stem Cells 2012; 30(5): 804-10.
[http://dx.doi.org/10.1002/stem.1076] [PMID: 22415904]
[118]
des Rieux A. Stem cells and their extracellular vesicles as natural and bioinspired carriers for the treatment of neurological disorders. Curr Opin Colloid Interface Sci 2021; 54: 101460.
[http://dx.doi.org/10.1016/j.cocis.2021.101460]
[119]
Lai BQ, Zeng X, Han WT, et al. Stem cell-derived neuronal relay strategies and functional electrical stimulation for treatment of spinal cord injury. Biomaterials 2021; 279: 121211.
[http://dx.doi.org/10.1016/j.biomaterials.2021.121211] [PMID: 34710795]
[120]
Loebel DAF, Watson CM, De Young RA, Tam PPL. Lineage choice and differentiation in mouse embryos and embryonic stem cells. Dev Biol 2003; 264(1): 1-14.
[http://dx.doi.org/10.1016/S0012-1606(03)00390-7] [PMID: 14623228]
[121]
Sutus E, Henry S, Adorján L, Kovács G, Pirity MK. RYBP regulates Pax6 during in vitro neural differentiation of mouse embryonic stem cells. Sci Rep 2022; 12(1): 2364.
[http://dx.doi.org/10.1038/s41598-022-06228-1] [PMID: 35149723]
[122]
Sharma RK, Choudhary RC, Reddy MK, Ray A, Ravi K. Role of posterior hypothalamus in hypobaric hypoxia induced pulmonary edema. Respir Physiol Neurobiol 2015; 205: 66-76.
[http://dx.doi.org/10.1016/j.resp.2014.10.010] [PMID: 25448396]
[123]
Sivakumar S, Qi S, Cheng N, et al. TP53 promotes lineage commitment of human embryonic stem cells through ciliogenesis and sonic hedgehog signaling. Cell Rep 2022; 38(7): 110395.
[http://dx.doi.org/10.1016/j.celrep.2022.110395] [PMID: 35172133]
[124]
Liu Y, Ma Y, Du B, Wang Y, Yang GY, Bi X. Mesenchymal stem cells attenuated blood-brain barrier disruption via downregulation of aquaporin-4 expression in EAE mice. Mol Neurobiol 2020; 57(9): 3891-901.
[http://dx.doi.org/10.1007/s12035-020-01998-z] [PMID: 32613467]
[125]
Deans RJ, Moseley AB. Mesenchymal stem cells. Exp Hematol 2000; 28(8): 875-84.
[http://dx.doi.org/10.1016/S0301-472X(00)00482-3] [PMID: 10989188]
[126]
Andrzejewska A, Lukomska B, Janowski M. Concise review: Mesenchymal stem cells: From roots to boost. Stem Cells 2019; 37(7): 855-64.
[http://dx.doi.org/10.1002/stem.3016] [PMID: 30977255]
[127]
Yim EKF, Pang SW, Leong KW. Synthetic nanostructures inducing differentiation of human mesenchymal stem cells into neuronal lineage. Exp Cell Res 2007; 313(9): 1820-9.
[http://dx.doi.org/10.1016/j.yexcr.2007.02.031] [PMID: 17428465]
[128]
Soleimani Asl S, Amiri I, Samzadeh- kermani A, Abbasalipourkabir R, Gholamigeravand B, Shahidi S. Chitosan-coated Selenium nanoparticles enhance the efficiency of stem cells in the neuroprotection of streptozotocin-induced neurotoxicity in male rats. Int J Biochem Cell Biol 2021; 141: 106089.
[http://dx.doi.org/10.1016/j.biocel.2021.106089] [PMID: 34601090]
[129]
Yao P, Zhou L, Zhu L, Zhou B, Yu Q. Mesenchymal stem cells: A potential therapeutic strategy for neurodegenerative diseases. Eur Neurol 2020; 83(3): 235-41.
[http://dx.doi.org/10.1159/000509268] [PMID: 32690856]
[130]
Hasan A, Deeb G, Rahal R, et al. Mesenchymal stem cells in the treatment of traumatic brain injury. Front Neurol 2017; 8: 28.
[http://dx.doi.org/10.3389/fneur.2017.00028] [PMID: 28265255]
[131]
Fischer I, Dulin JN, Lane MA. Transplanting neural progenitor cells to restore connectivity after spinal cord injury. Nat Rev Neurosci 2020; 21(7): 366-83.
[http://dx.doi.org/10.1038/s41583-020-0314-2] [PMID: 32518349]
[132]
Farokhi M, Mottaghitalab F, Saeb MR, et al. Conductive biomaterials as substrates for neural stem cells differentiation towards neuronal lineage cells. Macromol Biosci 2021; 21(1): 2000123.
[http://dx.doi.org/10.1002/mabi.202000123] [PMID: 33015992]
[133]
Tian L, Zhu W, Liu Y, et al. Neural stem cells transfected with leukemia inhibitory factor promote neuroprotection in a rat model of cerebral ischemia. Neurosci Bull 2019; 35(5): 901-8.
[http://dx.doi.org/10.1007/s12264-019-00405-5] [PMID: 31218515]
[134]
Hill JD, Zuluaga-Ramirez V, Gajghate S, et al. Activation of GPR55 induces neuroprotection of hippocampal neurogenesis and immune responses of neural stem cells following chronic, systemic inflammation. Brain Behav Immun 2019; 76: 165-81.
[http://dx.doi.org/10.1016/j.bbi.2018.11.017] [PMID: 30465881]
[135]
Schouten M, Buijink MR, Lucassen PJ, Fitzsimons CP. New neurons in aging brains: Molecular control by small non-coding RNAs. Front Neurosci 2012; 6: 25.
[http://dx.doi.org/10.3389/fnins.2012.00025] [PMID: 22363255]
[136]
Jin K, Xie L, Mao X, et al. Effect of human neural precursor cell transplantation on endogenous neurogenesis after focal cerebral ischemia in the rat. Brain Res 2011; 1374: 56-62.
[http://dx.doi.org/10.1016/j.brainres.2010.12.037] [PMID: 21167824]
[137]
Khoo TS, Jamal R, Abdul Ghani NA, Alauddin H, Hussin NH, Abdul Murad NA. Retention of somatic memory associated with cell identity, age and metabolism in induced pluripotent stem (iPS) cells reprogramming. Stem Cell Rev Rep 2020; 16(2): 251-61.
[http://dx.doi.org/10.1007/s12015-020-09956-x] [PMID: 32016780]
[138]
Al Abbar A, Ngai SC, Nograles N, Alhaji SY, Abdullah S. Induced pluripotent stem cells: Reprogramming platforms and applications in cell replacement therapy. Biores Open Access 2020; 9(1): 121-36.
[http://dx.doi.org/10.1089/biores.2019.0046] [PMID: 32368414]
[139]
Chan HH, Wathen CA, Ni M, Zhuo S. Stem cell therapies for ischemic stroke: Current animal models, clinical trials and biomaterials. RSC Advances 2017; 7(30): 18668-80.
[http://dx.doi.org/10.1039/C7RA00336F]
[140]
Jiang M, Lv L, Ji H, et al. Induction of pluripotent stem cells transplantation therapy for ischemic stroke. Mol Cell Biochem 2011; 354(1-2): 67-75.
[http://dx.doi.org/10.1007/s11010-011-0806-5] [PMID: 21465238]
[141]
Gunsilius E, Gastl G, Petzer AL. Hematopoietic stem cells. Biomed Pharmacother 2001; 55(4): 186-94.
[http://dx.doi.org/10.1016/S0753-3322(01)00051-8] [PMID: 11393804]
[142]
Cabanes C, Bonilla S, Tabares L, Martínez S. Neuroprotective effect of adult hematopoietic stem cells in a mouse model of motoneuron degeneration. Neurobiol Dis 2007; 26(2): 408-18.
[http://dx.doi.org/10.1016/j.nbd.2007.01.008] [PMID: 17337196]
[143]
Akyuz E, Paudel YN, Polat AK, Dundar HE, Angelopoulou E. Enlightening the neuroprotective effect of quercetin in epilepsy: From mechanism to therapeutic opportunities. Epilepsy Behav 2021; 115: 107701.
[http://dx.doi.org/10.1016/j.yebeh.2020.107701] [PMID: 33412369]
[144]
Ghanta MK, Merchant N, Bhaskar LVKS. A review on hematopoietic stem cell treatment for epilepsy. CNS Neurol Disord Drug Targets 2021; 20(7): 644-56.
[http://dx.doi.org/10.2174/1871527320666210218085816] [PMID: 33602111]
[145]
Maridas DE, Rendina-Ruedy E, Le PT, Rosen CJ. Isolation, culture, and differentiation of bone marrow stromal cells and osteoclast progenitors from mice. J Vis Exp 2018; 131(131): e56750.
[PMID: 29364278]
[146]
Novikova LN, Brohlin M, Kingham PJ, Novikov LN, Wiberg M. Neuroprotective and growth-promoting effects of bone marrow stromal cells after cervical spinal cord injury in adult rats. Cytotherapy 2011; 13(7): 873-87.
[http://dx.doi.org/10.3109/14653249.2011.574116] [PMID: 21521004]
[147]
Isele NB, Lee HS, Landshamer S, et al. Bone marrow stromal cells mediate protection through stimulation of PI3-K/Akt and MAPK signaling in neurons. Neurochem Int 2007; 50(1): 243-50.
[http://dx.doi.org/10.1016/j.neuint.2006.08.007] [PMID: 17050038]
[148]
Thomi G, Joerger-Messerli M, Haesler V, Muri L, Surbek D, Schoeberlein A. Intranasally administered exosomes from umbilical cord stem cells have preventive neuroprotective effects and contribute to functional recovery after perinatal brain injury. Cells 2019; 8(8): 855.
[http://dx.doi.org/10.3390/cells8080855] [PMID: 31398924]
[149]
Gardaneh M, Boroujeni ME. Umbilical cord: An unlimited source of cells differentiable towards dopaminergic neurons. Neural Regen Res 2017; 12(7): 1186-92.
[http://dx.doi.org/10.4103/1673-5374.211201] [PMID: 28852404]
[150]
Laskowitz DT, Bennett ER, Durham RJ, et al. Allogeneic umbilical cord blood infusion for adults with ischemic stroke: Clinical outcomes from a phase I safety study. Stem Cells Transl Med 2018; 7(7): 521-9.
[http://dx.doi.org/10.1002/sctm.18-0008] [PMID: 29752869]
[151]
Cui Y, Ma S, Zhang C, et al. Human umbilical cord mesenchymal stem cells transplantation improves cognitive function in Alzheimer’s disease mice by decreasing oxidative stress and promoting hippocampal neurogenesis. Behav Brain Res 2017; 320: 291-301.
[http://dx.doi.org/10.1016/j.bbr.2016.12.021] [PMID: 28007537]
[152]
Chen C, Lin X, Wang J, et al. Effect of HMGB1 on the paracrine action of EPC promotes post-ischemic neovascularization in mice. Stem Cells 2014; 32(10): 2679-89.
[http://dx.doi.org/10.1002/stem.1754] [PMID: 24888319]
[153]
Kong XD, Zhang Y, Liu L, Sun N, Zhang MY, Zhang JN. Endothelial progenitor cells with Alzheimer’s disease. Chin Med J 2011; 124(6): 901-6.
[PMID: 21518600]
[154]
Liu X, Ye R, Yan T, et al. Cell based therapies for ischemic stroke: From basic science to bedside. Prog Neurobiol 2014; 115: 92-115.
[http://dx.doi.org/10.1016/j.pneurobio.2013.11.007] [PMID: 24333397]
[155]
Parente DJ, Morris SM, McKinstry RC, et al. Sorting nexin 27 (SNX27) variants associated with seizures, developmental delay, behavioral disturbance, and subcortical brain abnormalities. Clin Genet 2020; 97(3): 437-46.
[http://dx.doi.org/10.1111/cge.13675] [PMID: 31721175]
[156]
DeBusk A, Moster ML. Gene therapy in optic nerve disease. Curr Opin Ophthalmol 2018; 29(3): 234-8.
[http://dx.doi.org/10.1097/ICU.0000000000000473] [PMID: 29538182]
[157]
Guymer C, Wood JPM, Chidlow G, Casson RJ. Neuroprotection in glaucoma: Recent advances and clinical translation. Clin Exp Ophthalmol 2019; 47(1): 88-105.
[http://dx.doi.org/10.1111/ceo.13336] [PMID: 29900639]
[158]
Rhee J, Shih KC. Use of gene therapy in retinal ganglion cell neuroprotection: Current concepts and future directions. Biomolecules 2021; 11(4): 581.
[http://dx.doi.org/10.3390/biom11040581] [PMID: 33920974]
[159]
Ratican SE, Osborne A, Martin KR. Progress in gene therapy to prevent retinal ganglion cell loss in glaucoma and Leber’s hereditary optic neuropathy. Neural Plast 2018; 2018
[http://dx.doi.org/10.1155/2018/7108948]
[160]
Ashok A, Andrabi SS, Mansoor S, Kuang Y, Kwon BK, Labhasetwar V. Antioxidant therapy in oxidative stress-induced neurodegenerative diseases: Role of nanoparticle-based drug delivery systems in clinical translation. Antioxidants 2022; 11(2): 408.
[http://dx.doi.org/10.3390/antiox11020408] [PMID: 35204290]
[161]
Cunha A, Gaubert A, Latxague L, Dehay B. PLGA-Based nanoparticles for neuroprotective drug delivery in neurodegenerative diseases. Pharmaceutics 2021; 13(7): 1042.
[http://dx.doi.org/10.3390/pharmaceutics13071042] [PMID: 34371733]
[162]
Xue Y, Wang N, Zeng Z, Huang J, Xiang Z, Guan YQ. Neuroprotective effect of chitosan nanoparticle gene delivery system grafted with acteoside (ACT) in Parkinson’s disease models. J Mater Sci 2020; 43: 197-207.
[163]
Darby JRT, Varcoe TJ, Orgeig S, Morrison JL. Cardiorespiratory consequences of intrauterine growth restriction: Influence of timing, severity and duration of hypoxaemia. Theriogenology 2020; 150: 84-95.
[http://dx.doi.org/10.1016/j.theriogenology.2020.01.080] [PMID: 32088029]
[164]
Nishikimi M, Shoaib M, Aoki T, et al. Abstract 9180: Importance of preventing decreased levels of lysophosphatidylcholine-DHA in brain and plasma for attenuating brain injury after cardiac arrest. Circulation 2021; 144: A9180-0.
[http://dx.doi.org/10.1161/circ.144.suppl_2.9180]
[165]
Aminoff MJ, Wilcox CS. Cardiovascular dysautonomia in Parkinson disease: From pathophysiology to pathogenesis. Neurobiol Dis 1972; 46(3): 572-80.
[166]
Semba RD. Perspective: The potential role of circulating lysophosphatidylcholine in neuroprotection against Alzheimer disease. Adv Nutr 2020; 11(4): 760-72.
[http://dx.doi.org/10.1093/advances/nmaa024] [PMID: 32190891]
[167]
Choudhary RC, Shoaib M, Sohnen S, et al. Pharmacological approach for neuroprotection after cardiac arrest—a narrative review of current therapies and future neuroprotective cocktail. Front Med 2021; 8: 636651.
[http://dx.doi.org/10.3389/fmed.2021.636651] [PMID: 34084772]
[168]
Faryadi Q. The magnificent effect of magnesium to human health: A critical review. Int J Appl 2012; 2(3): 118-26.
[169]
Mohammadi H, Shamshirian A, Eslami S, Shamshirian D, Ebrahimzadeh MA. Magnesium sulfate attenuates lethality and oxidative damage induced by different models of hypoxia in mice. BioMed Res Int 2020; 2020.
[http://dx.doi.org/10.1155/2020/2624734]
[170]
Shoaib M, Nishikimi M, Choudhary R, et al. Abstract 14456: Rethinking the treatment of cardiac arrest to include non-oxygen metabolite supplementation: Plasma lysophosphatidylcholine level maintenance after cardiac arrest is critical for survival. Circulation 2021; 144(S2): A14456-6.
[http://dx.doi.org/10.1161/circ.144.suppl_2.14456]
[171]
Nishikimi M, Shoaib M, Choudhary RC, et al. Preserving brain LPC-DHA by plasma supplementation attenuates brain injury after cardiac arrest. Ann Neurol 2022; 91(3): 389-403.
[http://dx.doi.org/10.1002/ana.26296] [PMID: 34979595]
[172]
Sugasini D, Thomas R, Yalagala PCR, Tai LM, Subbaiah PV. Dietary docosahexaenoic acid (DHA) as lysophosphatidylcholine, but not as free acid, enriches brain DHA and improves memory in adult mice. Sci Rep 2017; 7(1): 11263.
[http://dx.doi.org/10.1038/s41598-017-11766-0] [PMID: 28900242]
[173]
Kim EK, Choi EJ. Pathological roles of MAPK signaling pathways in human diseases. Biochim Biophys Acta Mol Basis Dis 2010; 1802(4): 396-405.
[http://dx.doi.org/10.1016/j.bbadis.2009.12.009] [PMID: 20079433]
[174]
Peixoto CA, Oliveira WH, Araújo SMR, Nunes AKS. AMPK activation: Role in the signaling pathways of neuroinflammation and neurodegeneration. Exp Neurol 2017; 298(Pt A): 31-41.
[http://dx.doi.org/10.1016/j.expneurol.2017.08.013] [PMID: 28844606]
[175]
Bastioli G, Arnold JC, Mancini M, et al. Voluntary exercise boosts striatal dopamine release: Evidence for the necessary and sufficient role of BDNF. J Neurosci 2022; 42(23): 4725-36.
[http://dx.doi.org/10.1523/JNEUROSCI.2273-21.2022] [PMID: 35577554]
[176]
Lan AP, Chen J, Zhao Y, Chai Z, Hu Y. mTOR signaling in Parkinson’s disease. Neuromol med 2017; 19: 1-10.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy