Generic placeholder image

Current Reviews in Clinical and Experimental Pharmacology

Editor-in-Chief

ISSN (Print): 2772-4328
ISSN (Online): 2772-4336

Review Article

Current Pharmacotherapies for Smoking Cessation and Promising Emerging Drugs

Author(s): Seetal Dodd*, Jodie Harper and Michael Berk

Volume 19, Issue 3, 2024

Published on: 22 December, 2023

Page: [259 - 268] Pages: 10

DOI: 10.2174/0127724328274939231121114142

Price: $65

Abstract

Objective: Pharmacotherapy is commonly used during quit attempts and has shown an increase in the likelihood of achieving abstinence. However, with established pharmacotherapies, abstinence rates following a quit attempt remain low, and relapse is common. This review aims to investigate the efficacy and harm profiles of current and emerging pharmacotherapies.

Methods: Literature review of current and emerging pharmacotherapies for smoking cessation and tobacco use disorder.

Results: Emerging pharmacotherapies include new formulations of existing therapies, drug repurposing and some new treatments. New treatments are welcome and may incorporate different mechanisms of action or different safety and tolerability profiles compared to existing treatments. However, emerging pharmacotherapies have yet to demonstrate greater efficacy compared to existing treatments. The emergence of Electronic Nicotine Delivery Systems (ENDS) or ‘vaping’ is a feature of the current debate around tobacco use disorder. ENDS appear to facilitate switching but not quitting and are controversial as a harm minimisation strategy.

Limitations: Studies included a broad range of therapies and trial designs that should be compared with their differences taken into consideration.

Conclusion: Strategies to successfully quit smoking vary between individuals and may extend beyond pharmacotherapy and involve complex psychosocial factors and pathways.

Keywords: Pharmacotherapy, smoking cessation, tobacco use disorder, addiction, smoking, vaping.

Graphical Abstract
[1]
Shibuya K, Ciecierski C, Guindon E, Bettcher DW, Evans DB, Murray CJ. WHO Framework Convention on Tobacco Control: Development of an evidence based global public health treaty. BMJ 2003; 327(7407): 154-7.
[http://dx.doi.org/10.1136/bmj.327.7407.154] [PMID: 12869461]
[2]
Cummings KM, Proctor RN. The changing public image of smoking in the United States: 1964-2014. Cancer Epidemiol Biomarkers Prev 2014; 23(1): 32-6.
[http://dx.doi.org/10.1158/1055-9965.EPI-13-0798] [PMID: 24420984]
[3]
Greenhalgh EM, et al. 7.2 Quitting activity. In Greenhalgh, EM, Scollo, MM and Winstanley, MH [Eds]: Tobacco in Australia: facts and issues. Melbourne: Cancer council victoria 2020. Available from: http://www.tobaccoinaustralia.org.au/chapter-7-cessation/7-2-quitting-activity
[4]
Zhou X, Nonnemaker J, Sherrill B, Gilsenan AW, Coste F, West R. Attempts to quit smoking and relapse: Factors associated with success or failure from the ATTEMPT cohort study. Addict Behav 2009; 34(4): 365-73.
[http://dx.doi.org/10.1016/j.addbeh.2008.11.013] [PMID: 19097706]
[5]
Caraballo RS, Shafer PR, Patel D, Davis KC, McAfee TA. Quit methods used by US adult cigarette smokers, 2014–2016. Prev Chronic Dis 2017; 14: 160600.
[http://dx.doi.org/10.5888/pcd14.160600] [PMID: 28409740]
[6]
Brown AE, Carpenter MJ, Sutfin EL. Occasional smoking in college: Who, what, when and why? Addict Behav 2011; 36(12): 1199-204.
[http://dx.doi.org/10.1016/j.addbeh.2011.07.024] [PMID: 21849231]
[7]
Wilar G, Shinoda Y, Sasaoka T, Fukunaga K. Crucial Role of Dopamine D2 receptor signaling in nicotine-induced conditioned place preference. Mol Neurobiol 2019; 56(12): 7911-28.
[http://dx.doi.org/10.1007/s12035-019-1635-x] [PMID: 31129809]
[8]
Tiwari RK, Sharma V, Pandey RK, Shukla SS. Nicotine addiction: Neurobiology and mechanism. J Pharmacopuncture 2020; 23(1): 1-7.
[http://dx.doi.org/10.3831/KPI.2020.23.001] [PMID: 32322429]
[9]
Govind AP, Vezina P, Green WN. Nicotine-induced upregulation of nicotinic receptors: Underlying mechanisms and relevance to nicotine addiction. Biochem Pharmacol 2009; 78(7): 756-65.
[http://dx.doi.org/10.1016/j.bcp.2009.06.011] [PMID: 19540212]
[10]
Benowitz NL. Pharmacology of nicotine: Addiction, smoking-induced disease, and therapeutics. Annu Rev Pharmacol Toxicol 2009; 49(1): 57-71.
[http://dx.doi.org/10.1146/annurev.pharmtox.48.113006.094742] [PMID: 18834313]
[11]
Livingstone PD, Wonnacott S. Nicotinic acetylcholine receptors and the ascending dopamine pathways. Biochem Pharmacol 2009; 78(7): 744-55.
[http://dx.doi.org/10.1016/j.bcp.2009.06.004] [PMID: 19523928]
[12]
Hartmann-Boyce J, Chepkin SC, Ye W, Bullen C, Lancaster T. Nicotine replacement therapy versus control for smoking cessation. Cochrane Libr 2018; 2019(1): CD000146.
[http://dx.doi.org/10.1002/14651858.CD000146.pub5] [PMID: 29852054]
[13]
Cooper J, Borland R, Yong HH. Australian smokers increasingly use help to quit, but number of attempts remains stable: Findings from the International Tobacco Control Study 2002–09. Aust N Z J Public Health 2011; 35(4): 368-76.
[http://dx.doi.org/10.1111/j.1753-6405.2011.00733.x] [PMID: 21806733]
[14]
Stead LF, Perera R, Bullen C, et al. Nicotine replacement therapy for smoking cessation. Cochrane Database Syst Rev 2012; 11: CD000146.
[PMID: 23152200]
[15]
Tjoncke J-A, Goncalves R, Castaing N, Molimard M, Tovagliaro F, Titier K. Death related to nicotine replacement therapy: A case report. Forensic Sci Int 2020; 309: 110223.
[http://dx.doi.org/10.1016/j.forsciint.2020.110223] [PMID: 32146302]
[16]
Claire R, Chamberlain C, Davey MA, et al. Pharmacological interventions for promoting smoking cessation during pregnancy. Cochrane Libr 2020; 2020(3): CD010078.
[http://dx.doi.org/10.1002/14651858.CD010078.pub3] [PMID: 32129504]
[17]
Wadgave U, Nagesh L. Nicotine replacement therapy: An overview. Int J Health Sci 2016; 10(3): 407-16.
[http://dx.doi.org/10.12816/0048737] [PMID: 27610066]
[18]
Bullen C, Howe C, Lin RB, et al. Pre-cessation nicotine replacement therapy: Pragmatic randomized trial. Addiction 2010; 105(8): 1474-83.
[http://dx.doi.org/10.1111/j.1360-0443.2010.02989.x] [PMID: 20528810]
[19]
Shiffman S, Ferguson SG. Nicotine patch therapy prior to quitting smoking: A meta-analysis. Addiction 2008; 103(4): 557-63.
[http://dx.doi.org/10.1111/j.1360-0443.2008.02138.x] [PMID: 18339101]
[20]
Lindson N, Chepkin SC, Ye W, Fanshawe TR, Bullen C, Hartmann-Boyce J. Different doses, durations and modes of delivery of nicotine replacement therapy for smoking cessation. Cochrane Libr 2019; 2019(4): CD013308.
[http://dx.doi.org/10.1002/14651858.CD013308] [PMID: 30997928]
[21]
Henningfield JE, Fant RV, Buchhalter AR, Stitzer ML. Pharmacotherapy for nicotine dependence. CA Cancer J Clin 2005; 55(5): 281-99.
[http://dx.doi.org/10.3322/canjclin.55.5.281]
[22]
Shahab L, McEwen A, West R. Acceptability and effectiveness for withdrawal symptom relief of a novel oral nicotine delivery device: A randomised crossover trial. Psychopharmacology 2011; 216(2): 187-96.
[http://dx.doi.org/10.1007/s00213-011-2204-9] [PMID: 21318563]
[23]
Glasser AM, Collins L, Pearson JL, et al. Overview of electronic nicotine delivery systems: A systematic review. Am J Prev Med 2017; 52(2): e33-66.
[http://dx.doi.org/10.1016/j.amepre.2016.10.036] [PMID: 27914771]
[24]
Bullen C, Howe C, Laugesen M, et al. Electronic cigarettes for smoking cessation: A randomised controlled trial. Lancet 2013; 382(9905): 1629-37.
[http://dx.doi.org/10.1016/S0140-6736(13)61842-5] [PMID: 24029165]
[25]
Hajek P, Phillips-Waller A, Przulj D, et al. A randomized trial of e-cigarettes versus nicotine-replacement therapy. N Engl J Med 2019; 380(7): 629-37.
[http://dx.doi.org/10.1056/NEJMoa1808779] [PMID: 30699054]
[26]
McAlinden KD, Eapen MS, Lu W, Sharma P, Sohal SS. The rise of electronic nicotine delivery systems and the emergence of electronic-cigarette-driven disease. Am J Physiol Lung Cell Mol Physiol 2020; 319(4): L585-95.
[http://dx.doi.org/10.1152/ajplung.00160.2020] [PMID: 32726146]
[27]
Krishnasamy VP, Hallowell BD, Ko JY, et al. Update: Characteristics of a nationwide outbreak of E-cigarette, or vaping, product use–associated lung injury — united states, august 2019–january 2020. mmwr morb Mortal Wkly Rep 2020; 69(3): 90-4.
[http://dx.doi.org/10.15585/mmwr.mm6903e2] [PMID: 31971931]
[28]
Soneji S, Barrington-Trimis JL, Wills TA, et al. Association between initial use of e-cigarettes and subsequent cigarette smoking among adolescents and young adults. JAMA Pediatr 2017; 171(8): 788-97.
[http://dx.doi.org/10.1001/jamapediatrics.2017.1488] [PMID: 28654986]
[29]
Polosa R, Farsalinos K, Prisco D. A double-edged sword: E-cigarettes, and other electronic nicotine delivery systems (ENDS). reply Intern Emerg Med 2020; 15(6): 1119-21.
[http://dx.doi.org/10.1007/s11739-019-02228-8] [PMID: 31728758]
[30]
Sahu KK, Mishra AK, Lal A, Abraham G. A double-edged sword: E-cigarettes, and other electronic nicotine delivery systems (ENDS). Intern Emerg Med 2020; 15(6): 1117-8.
[http://dx.doi.org/10.1007/s11739-019-02203-3] [PMID: 31701318]
[31]
Carpenter MJ, Wahlquist AE, Burris JL, et al. Snus undermines quit attempts but not abstinence: A randomised clinical trial among US smokers. Tob Control 2017; 26(2): 202-9.
[http://dx.doi.org/10.1136/tobaccocontrol-2015-052783] [PMID: 27071730]
[32]
Fahim RE, Kessler PD, Fuller SA, Kalnik MW. Nicotine vaccines. CNS Neurol Disord Drug Targets 2011; 10(8): 905-15.
[http://dx.doi.org/10.2174/187152711799219343] [PMID: 22229310]
[33]
Hartmann-Boyce J, Cahill K, Hatsukami D, Cornuz J. Nicotine vaccines for smoking cessation. Cochrane Database Syst Rev 2012; 2012(8): CD007072.
[PMID: 22895958]
[34]
Mukhin A. Improving the efficacy of anti-nicotine immunotherapy (petnic002). clinicaltrials.gov identifier. NCT01280968 2014.
[35]
Raleigh MD, Beltraminelli N, Fallot S, et al. Attenuating nicotine’s effects with high affinity human anti-nicotine monoclonal antibodies. PLoS One 2021; 16(7): e0254247.
[http://dx.doi.org/10.1371/journal.pone.0254247] [PMID: 34329335]
[36]
Pentel PR, Raleigh MD, LeSage MG, et al. The nicotine-degrading enzyme NicA2 reduces nicotine levels in blood, nicotine distribution to brain, and nicotine discrimination and reinforcement in rats. BMC Biotechnol 2018; 18(1): 46.
[http://dx.doi.org/10.1186/s12896-018-0457-7] [PMID: 30041697]
[37]
West R, Evins AE, Benowitz NL, et al. Factors associated with the efficacy of smoking cessation treatments and predictors of smoking abstinence in EAGLES. Addiction 2018; 113(8): 1507-16.
[http://dx.doi.org/10.1111/add.14208] [PMID: 29508470]
[38]
Tulloch HE, Pipe AL, Els C, Clyde MJ, Reid RD. Flexible, dual-form nicotine replacement therapy or varenicline in comparison with nicotine patch for smoking cessation: A randomized controlled trial. BMC Med 2016; 14(1): 80.
[http://dx.doi.org/10.1186/s12916-016-0626-2] [PMID: 27233840]
[39]
Evins AE, Benowitz NL, West R, et al. Neuropsychiatric safety and efficacy of varenicline, bupropion, and nicotine patch in smokers with psychotic, anxiety, and mood disorders in the EAGLES Trial. J Clin Psychopharmacol 2019; 39(2): 108-16.
[http://dx.doi.org/10.1097/JCP.0000000000001015] [PMID: 30811371]
[40]
Turner E, Jones M, Vaz LR, Coleman T. Systematic review and meta-analysis to assess the safety of bupropion and varenicline in pregnancy. Nicotine Tob Res 2019; 21(8): 1001-10.
[http://dx.doi.org/10.1093/ntr/nty055] [PMID: 29579233]
[42]
Costa R, Oliveira NG, Dinis-Oliveira RJ. Pharmacokinetic and pharmacodynamic of bupropion: Integrative overview of relevant clinical and forensic aspects. Drug Metab Rev 2019; 51(3): 293-313.
[http://dx.doi.org/10.1080/03602532.2019.1620763] [PMID: 31124380]
[43]
US Food and Drug Administration. Drug Approval Package. 2003. Available from: https://www.accessdata.fda.gov/drugsatfda_docs/ nda/97/020711_zyban_toc.cfm
[44]
Hurt RD, Sachs DPL, Glover ED, et al. A comparison of sustained-release bupropion and placebo for smoking cessation. N Engl J Med 1997; 337(17): 1195-202.
[http://dx.doi.org/10.1056/NEJM199710233371703] [PMID: 9337378]
[45]
Hughes JR, Stead LF, Hartmann-Boyce J, Cahill K, Lancaster T. Antidepressants for smoking cessation. Cochrane Database Syst Rev 2014; 2014(1): CD000031.
[PMID: 24402784]
[46]
Howes S, Hartmann-Boyce J, Livingstone-Banks J, Hong B, Lindson N. Antidepressants for smoking cessation. Cochrane Database Syst Rev 2020; 4(4): CD000031.
[PMID: 32319681]
[47]
Lam S, Patel PN. Varenicline: A selective alpha4beta2 nicotinic acetylcholine receptor partial agonist approved for smoking cessation. Cardiol Rev 2007; 15(3): 154-61.
[http://dx.doi.org/10.1097/01.crd.0000260270.12829.45] [PMID: 17438382]
[48]
Mihalak KB, Carroll FI, Luetje CW. Varenicline is a partial agonist at alpha4beta2 and a full agonist at alpha7 neuronal nicotinic receptors. Mol Pharmacol 2006; 70(3): 801-5.
[http://dx.doi.org/10.1124/mol.106.025130] [PMID: 16766716]
[49]
Garrison GD, Dugan SE. Varenicline: A first-line treatment option for smoking cessation. Clin Ther 2009; 31(3): 463-91.
[http://dx.doi.org/10.1016/j.clinthera.2009.03.021] [PMID: 19393839]
[50]
Ebbert JO, Hughes JR, West RJ, et al. Effect of varenicline on smoking cessation through smoking reduction: A randomized clinical trial. JAMA 2015; 313(7): 687-94.
[http://dx.doi.org/10.1001/jama.2015.280] [PMID: 25688780]
[51]
Ebbert JO, Croghan IT, Hurt RT, Schroeder DR, Hays JT. Varenicline for smoking cessation in light smokers. Nicotine Tob Res 2016; 18(10): 2031-5.
[http://dx.doi.org/10.1093/ntr/ntw123] [PMID: 27117285]
[52]
Gonzales D, Hajek P, Pliamm L, et al. Retreatment with varenicline for smoking cessation in smokers who have previously taken varenicline: A randomized, placebo-controlled trial. Clin Pharmacol Ther 2014; 96(3): 390-6.
[http://dx.doi.org/10.1038/clpt.2014.124] [PMID: 24911368]
[53]
Rose JE, Behm FM. Combination treatment with varenicline and bupropion in an adaptive smoking cessation paradigm. Am J Psychiatry 2014; 171(11): 1199-205.
[http://dx.doi.org/10.1176/appi.ajp.2014.13050595] [PMID: 24934962]
[54]
Li K, Ricker K, Tsai FC, et al. Estimated cancer risks associated with nitrosamine contamination in commonly used medications. Int J Environ Res Public Health 2021; 18(18): 9465.
[http://dx.doi.org/10.3390/ijerph18189465] [PMID: 34574388]
[55]
Rush AJ, Trivedi MH, Wisniewski SR, et al. Bupropion-SR, sertraline, or venlafaxine-XR after failure of SSRIs for depression. N Engl J Med 2006; 354(12): 1231-42.
[http://dx.doi.org/10.1056/NEJMoa052963] [PMID: 16554525]
[56]
Patterson F, Jepson C, Strasser AA, et al. Varenicline improves mood and cognition during smoking abstinence. Biol Psychiatry 2009; 65(2): 144-9.
[http://dx.doi.org/10.1016/j.biopsych.2008.08.028] [PMID: 18842256]
[57]
Rezvani AH, Levin ED. Cognitive effects of nicotine. Biol Psychiatry 2001; 49(3): 258-67.
[http://dx.doi.org/10.1016/S0006-3223(00)01094-5] [PMID: 11230877]
[58]
Hughes J, Stead L, Lancaster T. Nortriptyline for smoking cessation: A review. Nicotine Tob Res 2005; 7(4): 491-9.
[http://dx.doi.org/10.1080/14622200500185298] [PMID: 16085520]
[59]
John U, Meyer C, Rumpf HJ, Hapke U. Smoking, nicotine dependence and psychiatric comorbidity—a population-based study including smoking cessation after three years. Drug Alcohol Depend 2004; 76(3): 287-95.
[http://dx.doi.org/10.1016/j.drugalcdep.2004.06.004] [PMID: 15561479]
[60]
Schlam TR, Baker TB, Smith SS, Cook JW, Piper ME. Anxiety sensitivity and distress tolerance in smokers: Relations with tobacco dependence, withdrawal, and quitting success. Nicotine Tob Res 2020; 22(1): 58-65.
[http://dx.doi.org/10.1093/ntr/ntz070] [PMID: 31056710]
[61]
Esterlis I, Cosgrove KP, Batis JC, et al. GABA A -benzodiazepine receptor availability in smokers and nonsmokers: Relationship to subsyndromal anxiety and depression. Synapse 2009; 63(12): 1089-99.
[http://dx.doi.org/10.1002/syn.20688] [PMID: 19642218]
[62]
Hughes JR, Stead LF, Lancaster T. Anxiolytics for smoking cessation. Cochrane Database Syst Rev 2000; 2000(4): CD002849.
[PMID: 11034774]
[63]
Loane C, Politis M. Buspirone: What is it all about? Brain Res 2012; 1461: 111-8.
[http://dx.doi.org/10.1016/j.brainres.2012.04.032] [PMID: 22608068]
[64]
Wang N, Lian J, Cao Y, et al. High-Dose Benzodiazepines Positively Modulate GABAA receptors via a flumazenil-insensitive mechanism. Int J Mol Sci 2021; 23(1): 42.
[http://dx.doi.org/10.3390/ijms23010042] [PMID: 35008465]
[65]
Gorre F, Vandekerckhove H. Beta-blockers: Focus on mechanism of action Which beta-blocker, when and why? Acta Cardiol 2010; 65(5): 565-70.
[http://dx.doi.org/10.1080/AC.65.5.2056244] [PMID: 21125979]
[66]
Wilson AT. The association of benzodiazepine use with smoking cessation among hospitalized smokers in a clinical trial. Clinical Res 2016; 18.
[67]
Kroon LA. Drug interactions with smoking. Am J Health Syst Pharm 2007; 64(18): 1917-21.
[http://dx.doi.org/10.2146/ajhp060414] [PMID: 17823102]
[68]
Arancini L, Bortolasci CC, Dodd S, Dean OM, Berk M. N-acetylcysteine for cessation of tobacco smoking: Rationale and study protocol for a randomised controlled trial. Trials 2019; 20(1): 555.
[http://dx.doi.org/10.1186/s13063-019-3628-5] [PMID: 31500670]
[69]
Prado E, Maes M, Piccoli LG, et al. N -acetylcysteine for therapy-resistant tobacco use disorder: A pilot study. Redox Rep 2015; 20(5): 215-22.
[http://dx.doi.org/10.1179/1351000215Y.0000000004] [PMID: 25729878]
[70]
Arancini L, Mohebbi M, Berk M, et al. A placebo-controlled, randomised pilot trial of N-acetylcysteine or placebo for cessation of tobacco smoking. Eur Neuropsychopharmacol 2021; 53: 120-6.
[http://dx.doi.org/10.1016/j.euroneuro.2021.10.002] [PMID: 34757312]
[71]
Machado RCBR, Vargas HO, Baracat MM, et al. N-acetylcysteine as an adjunctive treatment for smoking cessation: A randomized clinical trial. Br J Psychiatry 2020; 42(5): 519-26.
[http://dx.doi.org/10.1590/1516-4446-2019-0753] [PMID: 32725102]
[72]
Dodd S, Dean O, Copolov DL, Malhi GS, Berk M. N -acetylcysteine for antioxidant therapy: Pharmacology and clinical utility. Expert Opin Biol Ther 2008; 8(12): 1955-62.
[http://dx.doi.org/10.1517/14728220802517901] [PMID: 18990082]
[73]
Chang CT, Hsieh PJ, Lee HC, Lo CH, Tam KW, Loh EW. Effectiveness of n-acetylcysteine in treating clinical symptoms of substance abuse and dependence: A meta-analysis of randomized controlled trials. Clin Psychopharmacol Neurosci 2021; 19(2): 282-93.
[http://dx.doi.org/10.9758/cpn.2021.19.2.282] [PMID: 33888657]
[74]
Moerke MJ, McMahon LR. Nicotine-like discriminative stimulus effects of acetylcholinesterase inhibitors and a muscarinic receptor agonist in Rhesus monkeys. Drug Dev Ind Pharm 2019; 45(5): 861-7.
[http://dx.doi.org/10.1080/03639045.2019.1578787] [PMID: 30712397]
[75]
Ashare RL, Kimmey BA, Rupprecht LE, Bowers ME, Hayes MR, Schmidt HD. Repeated administration of an acetylcholinesterase inhibitor attenuates nicotine taking in rats and smoking behavior in human smokers. Transl Psychiatry 2016; 6(1): e713.
[http://dx.doi.org/10.1038/tp.2015.209] [PMID: 26784967]
[76]
Sofuoglu M, Herman AI, Li Y, Waters AJ. Galantamine attenuates some of the subjective effects of intravenous nicotine and improves performance on a Go No-Go task in abstinent cigarette smokers: A preliminary report. Psychopharmacology 2012; 224(3): 413-20.
[http://dx.doi.org/10.1007/s00213-012-2763-4] [PMID: 22700039]
[77]
Diehl A, Nakovics H, Croissant B, Smolka MN, Batra A, Mann K. Galantamine reduces smoking in alcohol-dependent patients: A randomized, placebo-controlled trial. Int J Clin Pharmacol Ther 2006; 44(12): 614-22.
[http://dx.doi.org/10.5414/CPP44614] [PMID: 17190371]
[78]
MacLean RR, Waters AJ, Brede E, Sofuoglu M. Effects of galantamine on smoking behavior and cognitive performance in treatment-seeking smokers prior to a quit attempt. Hum Psychopharmacol 2018; 33(4): e2665.
[http://dx.doi.org/10.1002/hup.2665] [PMID: 29926988]
[79]
Jeong SH, Newcombe D, Sheridan J, Tingle M. Pharmacokinetics of cytisine, an α 4 β 2 nicotinic receptor partial agonist, in healthy smokers following a single dose. Drug Test Anal 2015; 7(6): 475-82.
[http://dx.doi.org/10.1002/dta.1707] [PMID: 25231024]
[80]
Tutka P, Vinnikov D, Courtney RJ, Benowitz NL. Cytisine for nicotine addiction treatment: A review of pharmacology, therapeutics and an update of clinical trial evidence for smoking cessation. Addiction 2019; 114(11): 1951-69.
[http://dx.doi.org/10.1111/add.14721] [PMID: 31240783]
[81]
Etter JF. Cytisine for smoking cessation: a literature review and a meta-analysis. Arch Intern Med 2006; 166(15): 1553-9.
[http://dx.doi.org/10.1001/archinte.166.15.1553] [PMID: 16908787]
[82]
Courtney RJ, McRobbie H, Tutka P, et al. Effect of cytisine vs varenicline on smoking cessation. JAMA 2021; 326(1): 56-64.
[http://dx.doi.org/10.1001/jama.2021.7621] [PMID: 34228066]
[83]
Rigotti NA, Benowitz NL, Prochaska J, et al. Cytisinicline for smoking cessation. JAMA 2023; 330(2): 152-60.
[http://dx.doi.org/10.1001/jama.2023.10042] [PMID: 37432430]
[84]
Rezvani AH, Tizabi Y, Slade S, Getachew B, Levin ED. Sub-anesthetic doses of ketamine attenuate nicotine self-administration in rats. Neurosci Lett 2018; 668: 98-102.
[http://dx.doi.org/10.1016/j.neulet.2018.01.022] [PMID: 29339170]
[85]
Yararbas G, Pogun S. Tamoxifen and mifepriston modulate nicotine induced conditioned place preference in female rats. Brain Res Bull 2011; 84(6): 425-9.
[http://dx.doi.org/10.1016/j.brainresbull.2011.01.013] [PMID: 21272620]
[86]
Levin ED, Wells C, Yao L, et al. Chronic memantine decreases nicotine self-administration in rats. Eur J Pharmacol 2019; 861: 172592.
[http://dx.doi.org/10.1016/j.ejphar.2019.172592] [PMID: 31421087]
[87]
Thuerauf N, Lunkenheimer J, Lunkenheimer B, et al. Memantine fails to facilitate partial cigarette deprivation in smokers – no role of Memantine in the treatment of nicotine dependency? J Neural Transm (Vienna) 2007; 114(3): 351-7.
[http://dx.doi.org/10.1007/s00702-006-0570-y] [PMID: 17043926]
[88]
Maggio SE, Saunders MA, Baxter TA, et al. Effects of the nicotinic agonist varenicline, nicotinic antagonist r-bPiDI, and DAT inhibitor (R)-modafinil on co-use of ethanol and nicotine in female P rats. Psychopharmacology 2018; 235(5): 1439-53.
[http://dx.doi.org/10.1007/s00213-018-4853-4] [PMID: 29455292]
[89]
Schnoll RA, Wileyto EP, Pinto A, et al. A placebo-controlled trial of modafinil for nicotine dependence. Drug Alcohol Depend 2008; 98(1-2): 86-93.
[http://dx.doi.org/10.1016/j.drugalcdep.2008.04.008] [PMID: 18541389]
[90]
Siu ECK, Tyndale RF. Selegiline is a mechanism-based inactivator of CYP2A6 inhibiting nicotine metabolism in humans and mice. J Pharmacol Exp Ther 2008; 324(3): 992-9.
[http://dx.doi.org/10.1124/jpet.107.133900] [PMID: 18065502]
[91]
Kahn R, Gorgon L, Jones K, et al. Selegiline transdermal system (STS) as an aid for smoking cessation. Nicotine Tob Res 2012; 14(3): 377-82.
[http://dx.doi.org/10.1093/ntr/ntr143] [PMID: 21846661]
[92]
Killen JD, Fortmann SP, Murphy GM Jr, et al. Failure to improve cigarette smoking abstinence with transdermal selegiline + cognitive behavior therapy. Addiction 2010; 105(9): 1660-8.
[http://dx.doi.org/10.1111/j.1360-0443.2010.03020.x] [PMID: 20707784]
[93]
Wong GY, Wolter TD, Croghan GA, Croghan IT, Offord KP, Hurt RD. A randomized trial of naltrexone for smoking cessation. Addiction 1999; 94(8): 1227-37.
[http://dx.doi.org/10.1046/j.1360-0443.1999.948122713.x] [PMID: 10615738]
[94]
Toll BA, Leary V, Wu R, Salovey P, Meandzija B, O’Malley SS. A preliminary investigation of naltrexone augmentation of bupropion to stop smoking with less weight gain. Addict Behav 2008; 33(1): 173-9.
[http://dx.doi.org/10.1016/j.addbeh.2007.05.012] [PMID: 17587504]
[95]
Toll BA, White M, Wu R, et al. Low-dose naltrexone augmentation of nicotine replacement for smoking cessation with reduced weight gain: A randomized trial. Drug Alcohol Depend 2010; 111(3): 200-6.
[http://dx.doi.org/10.1016/j.drugalcdep.2010.04.015] [PMID: 20542391]
[96]
Zaparoli JX, Sugawara EK, de Souza AAL, Tufik S, Galduróz JCF. Omega-3 levels and nicotine dependence: A cross-sectional study and clinical trial. Eur Addict Res 2016; 22(3): 153-62.
[http://dx.doi.org/10.1159/000439525] [PMID: 26570994]
[97]
Mohebati A, Milne GL, Zhou XK, et al. Effect of zileuton and celecoxib on urinary LTE4 and PGE-M levels in smokers. Cancer Prev Res 2013; 6(7): 646-55.
[http://dx.doi.org/10.1158/1940-6207.CAPR-13-0083] [PMID: 23682075]
[98]
Laatikainen LM, Sharp T, Bannerman DM, Harrison PJ, Tunbridge EM. Modulation of hippocampal dopamine metabolism and hippocampal-dependent cognitive function by catechol-O-methyltransferase inhibition. J Psychopharmacol 2012; 26(12): 1561-8.
[http://dx.doi.org/10.1177/0269881112454228] [PMID: 22815336]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy