Generic placeholder image

当代阿耳茨海默病研究

Editor-in-Chief

ISSN (Print): 1567-2050
ISSN (Online): 1875-5828

Research Article

揭示聚合在阿尔茨海默病发展中的影响:机器学习分析对诊断和治疗方法的见解

卷 20, 期 9, 2023

发表于: 21 December, 2023

页: [618 - 635] 页: 18

弟呕挨: 10.2174/0115672050280894231214063023

价格: $65

摘要

背景:阿尔茨海默病(AD)是一种广泛存在的神经退行性疾病,其特征是逐渐出现记忆障碍,主要影响老年人。预测表明,到2050年,阿尔茨海默病的诊断人数将大幅增加,超过1380万人,因此迫切需要发现新的阿尔茨海默病生物标志物。 方法:为了实现这些目标,我们探索了AD患者的免疫细胞浸润以及免疫细胞和免疫功能相关基因的表达模式。此外,我们利用共识聚类法结合聚集相关基因(aggrephagy-related genes, ARGs)对AD患者进行分型,并将AD标本分为不同的聚类(C1, C2)。通过差异分析和加权基因共表达网络分析(WGCNA),共鉴定出272个候选基因。随后,我们应用了三种机器学习算法,即随机森林(RF)、支持向量机(SVM)和广义线性模型(GLM),以确定由五个与AD相关的基因组成的致病特征。为了验证这些已识别基因在识别AD进展方面的预测准确性,我们构建了nomogram。 结果:我们的分析发现簇C2比簇C1表现出更高的免疫表达。基于ROC(0.956)。我们确定了与AD免疫细胞和功能相关的5个特征基因(PFKFB4、PDK3、KIAA0319L、CEBPD和PHC2T)。在这五个诊断基因的基础上构建的形态图显示出有效性。验证组的ROC值分别为0.760和0.838。这些结果验证了诊断模型的稳健性和可靠性,肯定了其准确识别AD的潜力。 结论:我们的发现不仅有助于更深入地了解AD的分子机制,而且为药物开发和临床分析提供了有价值的见解。本研究的局限性在于样本量有限,虽然已经鉴定出ad相关基因,并阐明了部分机制,但还需要进一步的实验来阐明这些特征基因在疾病中的更深入的机制。

关键词: 阿尔茨海默病、机器学习、诊断模型、聚合、生物信息学、药物发现、高通量测序数据。

[1]
Robinson, M.; Lee, B.Y.; Hane, F.T. Recent progress in Alzheimer’s Disease research, Part 2: Genetics and epidemiology. J. Alzheimers Dis., 2017, 57(2), 317-330.
[http://dx.doi.org/10.3233/JAD-161149] [PMID: 28211812]
[2]
Cummings, J.L.; Tong, G.; Ballard, C. Treatment combinations for Alzheimer’s disease: Current and future pharmacotherapy options. J. Alzheimers Dis., 2019, 67(3), 779-794.
[http://dx.doi.org/10.3233/JAD-180766] [PMID: 30689575]
[3]
Eldufani, J.; Blaise, G. The role of acetylcholinesterase inhibitors such as neostigmine and rivastigmine on chronic pain and cognitive function in aging: A review of recent clinical applications. Alzheimers Dement., 2019, 5(1), 175-183.
[http://dx.doi.org/10.1016/j.trci.2019.03.004] [PMID: 31194017]
[4]
Sharma, K. Cholinesterase inhibitors as Alzheimer’s therapeutics (Review). Mol. Med. Rep., 2019, 20(2), 1479-1487.
[PMID: 31257471]
[5]
Srivastava, P.; Tripathi, P.N.; Sharma, P.; Rai, S.N.; Singh, S.P.; Srivastava, R.K.; Shankar, S.; Shrivastava, S.K. Design and development of some phenyl benzoxazole derivatives as a potent acetylcholinesterase inhibitor with antioxidant property to enhance learning and memory. Eur. J. Med. Chem., 2019, 163, 116-135.
[http://dx.doi.org/10.1016/j.ejmech.2018.11.049] [PMID: 30503937]
[6]
Tripathi, P.N.; Srivastava, P.; Sharma, P.; Tripathi, M.K.; Seth, A.; Tripathi, A.; Rai, S.N.; Singh, S.P.; Shrivastava, S.K. Biphenyl-3-oxo-1,2,4-triazine linked piperazine derivatives as potential cholinesterase inhibitors with anti-oxidant property to improve the learning and memory. Bioorg. Chem., 2019, 85, 82-96.
[http://dx.doi.org/10.1016/j.bioorg.2018.12.017] [PMID: 30605887]
[7]
Weller, J.; Budson, A. Current understanding of Alzheimer’s disease diagnosis and treatment. F1000 Res., 2018, 7, 1161.
[http://dx.doi.org/10.12688/f1000research.14506.1] [PMID: 30135715]
[8]
Beach, T.G.; Monsell, S.E.; Phillips, L.E.; Kukull, W. Accuracy of the clinical diagnosis of Alzheimer Disease at National Institute on aging Alzheimer disease centers, 2005–2010. J. Neuropathol. Exp. Neurol., 2012, 71(4), 266-273.
[http://dx.doi.org/10.1097/NEN.0b013e31824b211b] [PMID: 22437338]
[9]
Sun, B.L.; Li, W.W.; Zhu, C.; Jin, W.S.; Zeng, F.; Liu, Y.H.; Bu, X.L.; Zhu, J.; Yao, X.Q.; Wang, Y.J. Clinical research on Alzheimer’s disease: Progress and perspectives. Neurosci. Bull., 2018, 34(6), 1111-1118.
[http://dx.doi.org/10.1007/s12264-018-0249-z] [PMID: 29956105]
[10]
Tian, Y.; Lu, Y.; Cao, Y.; Dang, C.; Wang, N.; Tian, K.; Luo, Q.; Guo, E.; Luo, S.; Wang, L.; Li, Q. Identification of diagnostic signatures associated with immune infiltration in Alzheimer’s disease by integrating bioinformatic analysis and machine-learning strategies. Front. Aging Neurosci., 2022, 14, 919614.
[http://dx.doi.org/10.3389/fnagi.2022.919614] [PMID: 35966794]
[11]
Masters, C.L.; Bateman, R.; Blennow, K.; Rowe, C.C.; Sperling, R.A.; Cummings, J.L. Alzheimer’s disease. Nat. Rev. Dis. Primers, 2015, 1(1), 15056.
[http://dx.doi.org/10.1038/nrdp.2015.56] [PMID: 27188934]
[12]
Xu, W.; Ocak, U.; Gao, L.; Tu, S.; Lenahan, C.J.; Zhang, J.; Shao, A. Selective autophagy as a therapeutic target for neurological diseases. Cell. Mol. Life Sci., 2021, 78(4), 1369-1392.
[http://dx.doi.org/10.1007/s00018-020-03667-9] [PMID: 33067655]
[13]
Feng, Y.; He, D.; Yao, Z.; Klionsky, D.J. The machinery of macroautophagy. Cell Res., 2014, 24(1), 24-41.
[http://dx.doi.org/10.1038/cr.2013.168] [PMID: 24366339]
[14]
Stavoe, A.K.H.; Holzbaur, E.L.F. Autophagy in neurons. Annu. Rev. Cell Dev. Biol., 2019, 35(1), 477-500.
[http://dx.doi.org/10.1146/annurev-cellbio-100818-125242] [PMID: 31340124]
[15]
Hou, X.; Watzlawik, J.O.; Fiesel, F.C.; Springer, W. Autophagy in Parkinson’s Disease. J. Mol. Biol., 2020, 432(8), 2651-2672.
[http://dx.doi.org/10.1016/j.jmb.2020.01.037] [PMID: 32061929]
[16]
Suresh, S.N.; Verma, V.; Sateesh, S.; Clement, J.P.; Manjithaya, R. Neurodegenerative diseases: Model organisms, pathology and autophagy. J. Genet., 2018, 97(3), 679-701.
[http://dx.doi.org/10.1007/s12041-018-0955-3] [PMID: 30027903]
[17]
Ma, S.; Attarwala, I.Y.; Xie, X.Q. SQSTM1/p62: A potential target for neurodegenerative disease. ACS Chem. Neurosci., 2019, 10(5), 2094-2114.
[http://dx.doi.org/10.1021/acschemneuro.8b00516] [PMID: 30657305]
[18]
Miller, D.R.; Thorburn, A. Autophagy and organelle homeostasis in cancer. Dev. Cell, 2021, 56(7), 906-918.
[http://dx.doi.org/10.1016/j.devcel.2021.02.010] [PMID: 33689692]
[19]
Filali-Mouncef, Y.; Hunter, C.; Roccio, F.; Zagkou, S.; Dupont, N.; Primard, C.; Proikas-Cezanne, T.; Reggiori, F. The ménage à trois of autophagy, lipid droplets and liver disease. Autophagy, 2022, 18(1), 50-72.
[http://dx.doi.org/10.1080/15548627.2021.1895658] [PMID: 33794741]
[20]
Croce, K.R.; Yamamoto, A. A role for autophagy in Huntington’s disease. Neurobiol. Dis., 2019, 122, 16-22.
[http://dx.doi.org/10.1016/j.nbd.2018.08.010] [PMID: 30149183]
[21]
Nakashima, A.; Shima, T.; Tsuda, S.; Aoki, A.; Kawaguchi, M.; Furuta, A.; Yasuda, I.; Yoneda, S.; Yamaki-Ushijima, A.; Cheng, S.B.; Sharma, S.; Saito, S. Aggrephagy deficiency in the placenta: A new pathogenesis of preeclampsia. Int. J. Mol. Sci., 2021, 22(5), 2432.
[http://dx.doi.org/10.3390/ijms22052432] [PMID: 33670947]
[22]
Wani, A.; Gupta, M.; Ahmad, M.; Shah, A.M.; Ahsan, A.U.; Qazi, P.H.; Malik, F.; Singh, G.; Sharma, P.R.; Kaddoumi, A.; Bharate, S.B.; Vishwakarma, R.A.; Kumar, A. Alborixin clears amyloid-β by inducing autophagy through PTEN-mediated inhibition of the AKT pathway. Autophagy, 2019, 15(10), 1810-1828.
[http://dx.doi.org/10.1080/15548627.2019.1596476] [PMID: 30894052]
[23]
Malampati, S.; Song, J.X.; Chun-Kit Tong, B.; Nalluri, A.; Yang, C.B.; Wang, Z.; Gopalkrishnashetty Sreenivasmurthy, S.; Zhu, Z.; Liu, J.; Su, C.; Krishnamoorthi, S.; Iyaswamy, A.; Cheung, K.H.; Lu, J.H.; Li, M. Targeting aggrephagy for the treatment of Alzheimer’s disease. Cells, 2020, 9(2), 311.
[http://dx.doi.org/10.3390/cells9020311] [PMID: 32012902]
[24]
Xu, Y.; Vasiljevic, E.; Deming, Y.K.; Jonaitis, E.M.; Koscik, R.L.; Van Hulle, C.A.; Lu, Q.; Carboni, M.; Kollmorgen, G.; Wild, N.; Carlsson, C.M.; Johnson, S.C.; Zetterberg, H.; Blennow, K.; Engelman, C.D. Effect of pathway-specific polygenic risk scores for Alzheimer’s Disease (AD) on rate of change in cognitive function and AD-related biomarkers among asymptomatic individuals. J. Alzheimers Dis., 2023, 94(4), 1587-1605.
[http://dx.doi.org/10.3233/JAD-230097] [PMID: 37482996]
[25]
Shobeiri, P.; Alilou, S.; Jaberinezhad, M.; Zare, F.; Karimi, N.; Maleki, S.; Teixeira, A.L.; Perry, G.; Rezaei, N. Circulating long non-coding RNAs as novel diagnostic biomarkers for Alzheimer’s disease (AD): A systematic review and meta-analysis. PLoS One, 2023, 18(3), e0281784.
[http://dx.doi.org/10.1371/journal.pone.0281784] [PMID: 36947499]
[26]
Li, M.; Zhang, J.; Shi, Y.; Liu, S.; Liu, X.; Ning, Y.; Cao, Y.; Deng, Y.; Zhao, Y. The radiomics features of the temporal lobe region related to menopause based on MR-T2WI can be used as potential biomarkers for AD. Cereb. Cortex, 2023, 33(14), 9067-9078.
[http://dx.doi.org/10.1093/cercor/bhad183] [PMID: 37218647]
[27]
Lee, B.N.; Wang, J.; Nho, K.; Saykin, A.J.; Shen, L. Discovering precision AD biomarkers with varying prognosis effects in genetics driven subpopulations. AMIA Jt. Summits Transl. Sci. Proc., 2023, 2023, 340-349.
[PMID: 37350892]
[28]
Capogna, E.; Watne, L.O.; Sørensen, Ø.; Guichelaar, C.J.; Idland, A.V.; Halaas, N.B.; Blennow, K.; Zetterberg, H.; Walhovd, K.B.; Fjell, A.M.; Vidal-Piñeiro, D. Associations of neuroinflammatory IL-6 and IL-8 with brain atrophy, memory decline, and core AD biomarkers-in cognitively unimpaired older adults. Brain Behav. Immun., 2023, 113, 56-65.
[http://dx.doi.org/10.1016/j.bbi.2023.06.027] [PMID: 37400002]
[29]
Cai, Y.; Fan, X.; Zhao, L.; Liu, W.; Luo, Y.; Lau, A.Y.L.; Au, L.W.C.; Shi, L.; Lam, B.Y.K.; Ko, H.; Mok, V.C.T. Comparing machine learning-derived MRI-based and blood-based neurodegeneration biomarkers in predicting syndromal conversion in early AD. Alzheimers Dement., 2023, 19(11), 4987-4998.
[http://dx.doi.org/10.1002/alz.13083] [PMID: 37087687]
[30]
Butts, B.; Huang, H.; Hu, W.T.; Kehoe, P.G.; Miners, J.S.; Verble, D.D.; Zetterberg, H.; Zhao, L.; Trotti, L.M.; Benameur, K.; Scorr, L.M.; Wharton, W. sPDGFRβ and neuroinflammation are associated with AD biomarkers and differ by race: The ASCEND Study. Alzheimers Dement., 2023, alz.13457.
[http://dx.doi.org/10.1002/alz.13457] [PMID: 37933404]
[31]
Wilkinson, L. Ggplot2: Elegant graphics for data analysis by WICKHAM, H; Wiley Online Library, 2011.
[32]
Liang, J.; LaFleur, B.; Hussainy, S.; Perry, G. Gene co-expression analysis of multiple brain tissues reveals correlation of FAM222A expression with multiple Alzheimer’s disease-related genes. J. Alzheimers Dis., 2023, 1-15.
[http://dx.doi.org/10.3233/JAD-221241] [PMID: 37092222]
[33]
Liu, D.; Dai, S.X.; He, K.; Li, G.H.; Liu, J.; Liu, L.G.; Huang, J.F.; Xu, L.; Li, W.X. Identification of hub ubiquitin ligase genes affecting Alzheimer’s disease by analyzing transcriptome data from multiple brain regions. Sci. Prog., 2021, 104(1) 368504211001146.10.
[http://dx.doi.org/10.1177/00368504211001146] [PMID: 33754896]
[34]
Lu, Z.; Yue, W. Multiple functional variants and genes at a single locus for Alzheimer’s Disease. Biol. Psychiatry, 2023, 94(9), 692-693.
[http://dx.doi.org/10.1016/j.biopsych.2023.08.009] [PMID: 37778865]
[35]
Semick, S.A.; Bharadwaj, R.A.; Collado-Torres, L.; Tao, R.; Shin, J.H.; Deep-Soboslay, A.; Weiss, J.R.; Weinberger, D.R.; Hyde, T.M.; Kleinman, J.E.; Jaffe, A.E.; Mattay, V.S. Integrated DNA methylation and gene expression profiling across multiple brain regions implicate novel genes in Alzheimer’s disease. Acta Neuropathol., 2019, 137(4), 557-569.
[http://dx.doi.org/10.1007/s00401-019-01966-5] [PMID: 30712078]
[36]
Xu, M.; Liu, Q.; Bi, R.; Li, Y.; Li, H.; Kang, W.B.; Yan, Z.; Zheng, Q.; Sun, C.; Ye, M.; Xiang, B.L.; Luo, X.J.; Li, M.; Zhang, D.F.; Yao, Y.G. Coexistence of multiple functional variants and genes underlies genetic risk locus 11p11.2 of Alzheimer’s disease. Biol. Psychiatry, 2023, 94(9), 743-759.
[http://dx.doi.org/10.1016/j.biopsych.2023.05.020] [PMID: 37290560]
[37]
Chen, J.; Xie, C.; Zhao, Y.; Li, Z.; Xu, P.; Yao, L. Gene expression analysis reveals the dysregulation of immune and metabolic pathways in Alzheimer’s disease. Oncotarget, 2016, 7(45), 72469-72474.
[http://dx.doi.org/10.18632/oncotarget.12505] [PMID: 27732949]
[38]
Guo, Z.; Peng, X.; Li, H.Y.; Wang, Y.; Qian, Y.; Wang, Z.; Ye, D.; Ji, X.; Wang, Z.; Wang, Y.; Chen, D.; Lei, H. Evaluation of peripheral immune dysregulation in Alzheimer’s Disease and vascular dementia. J. Alzheimers Dis., 2019, 71(4), 1175-1186.
[http://dx.doi.org/10.3233/JAD-190666] [PMID: 31498124]
[39]
Zhang, L.; Fang, J.; Tang, Z.; Luo, Y. A bioinformatics perspective on the dysregulation of ferroptosis and ferroptosis-related immune cell infiltration in Alzheimer’s disease. Int. J. Med. Sci., 2022, 19(13), 1888-1902.
[http://dx.doi.org/10.7150/ijms.76660] [PMID: 36438927]
[40]
Chen, G.; Xu, T.; Yan, Y.; Zhou, Y.; Jiang, Y.; Melcher, K.; Xu, H.E. Amyloid beta: Structure, biology and structure-based therapeutic development. Acta Pharmacol. Sin., 2017, 38(9), 1205-1235.
[http://dx.doi.org/10.1038/aps.2017.28] [PMID: 28713158]
[41]
De-Paula, V.J.; Radanovic, M.; Diniz, B.S.; Forlenza, O.V. Alzheimer’s disease. Subcell. Biochem., 2012, 65, 329-352.
[http://dx.doi.org/10.1007/978-94-007-5416-4_14] [PMID: 23225010]
[42]
Cras, P.; Kawai, M.; Lowery, D.; Gonzalez-DeWhitt, P.; Greenberg, B.; Perry, G. Senile plaque neurites in Alzheimer disease accumulate amyloid precursor protein. Proc. Natl. Acad. Sci. USA, 1991, 88(17), 7552-7556.
[http://dx.doi.org/10.1073/pnas.88.17.7552] [PMID: 1652752]
[43]
Perl, D.P. Neuropathology of Alzheimer’s disease. Mt. Sinai J. Med., 2010, 77(1), 32-42.
[http://dx.doi.org/10.1002/msj.20157] [PMID: 20101720]
[44]
Rai, S.N.; Zahra, W.; Birla, H.; Singh, S.S.; Singh, S.P. Commentary: Mild endoplasmic reticulum stress ameliorates lpopolysaccharide-induced neuroinflammation and cognitive impairment via regulation of microglial polarization. Front. Aging Neurosci., 2018, 10, 192.
[http://dx.doi.org/10.3389/fnagi.2018.00192] [PMID: 29988480]
[45]
Hemonnot, A.L.; Hua, J.; Ulmann, L.; Hirbec, H. Microglia in Alzheimer Disease: Well-known targets and new opportunities. Front. Aging Neurosci., 2019, 11, 233.
[http://dx.doi.org/10.3389/fnagi.2019.00233] [PMID: 31543810]
[46]
Hansen, D.V.; Hanson, J.E.; Sheng, M. Microglia in Alzheimer’s disease. J. Cell Biol., 2018, 217(2), 459-472.
[http://dx.doi.org/10.1083/jcb.201709069] [PMID: 29196460]
[47]
McDonough, A.; Lee, R.V.; Weinstein, J.R. Microglial interferon signaling and white matter. Neurochem. Res., 2017, 42(9), 2625-2638.
[http://dx.doi.org/10.1007/s11064-017-2307-8] [PMID: 28540600]
[48]
Hanisch, U.K.; Kettenmann, H. Microglia: Active sensor and versatile effector cells in the normal and pathologic brain. Nat. Neurosci., 2007, 10(11), 1387-1394.
[http://dx.doi.org/10.1038/nn1997] [PMID: 17965659]
[49]
Sarlus, H.; Heneka, M.T. Microglia in Alzheimer’s disease. J. Clin. Invest., 2017, 127(9), 3240-3249.
[http://dx.doi.org/10.1172/JCI90606] [PMID: 28862638]
[50]
Rai, S.N.; Singh, C.; Singh, A.; Singh, M.P.; Singh, B.K. Mitochondrial dysfunction: A potential therapeutic target to treat Alzheimer’s disease. Mol. Neurobiol., 2020, 57(7), 3075-3088.
[http://dx.doi.org/10.1007/s12035-020-01945-y] [PMID: 32462551]
[51]
Kempf, S.J.; Metaxas, A. Neurofibrillary tangles in Alzheimer′s disease: Elucidation of the molecular mechanism by immunohistochemistry and tau protein phospho-proteomics. Neural Regen. Res., 2016, 11(10), 1579-1581.
[http://dx.doi.org/10.4103/1673-5374.193234] [PMID: 27904486]
[52]
Gatica, D.; Lahiri, V.; Klionsky, D.J. Cargo recognition and degradation by selective autophagy. Nat. Cell Biol., 2018, 20(3), 233-242.
[http://dx.doi.org/10.1038/s41556-018-0037-z] [PMID: 29476151]
[53]
Goldberg, A.L. Protein degradation and protection against misfolded or damaged proteins. Nature, 2003, 426(6968), 895-899.
[http://dx.doi.org/10.1038/nature02263] [PMID: 14685250]
[54]
Basso, M.; Samengo, G.; Nardo, G.; Massignan, T.; D’Alessandro, G.; Tartari, S.; Cantoni, L.; Marino, M.; Cheroni, C.; De Biasi, S.; Giordana, M.T.; Strong, M.J.; Estevez, A.G.; Salmona, M.; Bendotti, C.; Bonetto, V. Characterization of detergent-insoluble proteins in ALS indicates a causal link between nitrative stress and aggregation in pathogenesis. PLoS One, 2009, 4(12), e8130.
[http://dx.doi.org/10.1371/journal.pone.0008130] [PMID: 19956584]
[55]
Shankar, G.M.; Li, S.; Mehta, T.H.; Garcia-Munoz, A.; Shepardson, N.E.; Smith, I.; Brett, F.M.; Farrell, M.A.; Rowan, M.J.; Lemere, C.A.; Regan, C.M.; Walsh, D.M.; Sabatini, B.L.; Selkoe, D.J. Amyloid-β protein dimers isolated directly from Alzheimer’s brains impair synaptic plasticity and memory. Nat. Med., 2008, 14(8), 837-842.
[http://dx.doi.org/10.1038/nm1782] [PMID: 18568035]
[56]
De, S.; Wirthensohn, D.C.; Flagmeier, P.; Hughes, C.; Aprile, F.A.; Ruggeri, F.S.; Whiten, D.R.; Emin, D.; Xia, Z.; Varela, J.A.; Sormanni, P.; Kundel, F.; Knowles, T.P.J.; Dobson, C.M.; Bryant, C.; Vendruscolo, M.; Klenerman, D. Different soluble aggregates of Aβ42 can give rise to cellular toxicity through different mechanisms. Nat. Commun., 2019, 10(1), 1541.
[http://dx.doi.org/10.1038/s41467-019-09477-3] [PMID: 30948723]
[57]
Fusco, G.; Chen, S.W.; Williamson, P.T.F.; Cascella, R.; Perni, M.; Jarvis, J.A.; Cecchi, C.; Vendruscolo, M.; Chiti, F.; Cremades, N.; Ying, L.; Dobson, C.M.; De Simone, A. Structural basis of membrane disruption and cellular toxicity by α-synuclein oligomers. Science, 2017, 358(6369), 1440-1443.
[http://dx.doi.org/10.1126/science.aan6160] [PMID: 29242346]
[58]
Salter, M.W.; Beggs, S. Sublime microglia: Expanding roles for the guardians of the CNS. Cell, 2014, 158(1), 15-24.
[http://dx.doi.org/10.1016/j.cell.2014.06.008] [PMID: 24995975]
[59]
Clayton, K.A.; Van Enoo, A.A.; Ikezu, T. Alzheimer’s Disease: The role of microglia in brain homeostasis and proteopathy. Front. Neurosci., 2017, 11, 680.
[http://dx.doi.org/10.3389/fnins.2017.00680] [PMID: 29311768]
[60]
Heneka, M.T.; Kummer, M.P.; Latz, E. Innate immune activation in neurodegenerative disease. Nat. Rev. Immunol., 2014, 14(7), 463-477.
[http://dx.doi.org/10.1038/nri3705] [PMID: 24962261]
[61]
Gate, D.; Saligrama, N.; Leventhal, O.; Yang, A.C.; Unger, M.S.; Middeldorp, J.; Chen, K.; Lehallier, B.; Channappa, D.; De Los Santos, M.B.; McBride, A.; Pluvinage, J.; Elahi, F.; Tam, G.K.Y.; Kim, Y.; Greicius, M.; Wagner, A.D.; Aigner, L.; Galasko, D.R.; Davis, M.M.; Wyss-Coray, T. Clonally expanded CD8 T cells patrol the cerebrospinal fluid in Alzheimer’s disease. Nature, 2020, 577(7790), 399-404.
[http://dx.doi.org/10.1038/s41586-019-1895-7] [PMID: 31915375]
[62]
Heppner, F.L.; Ransohoff, R.M.; Becher, B. Immune attack: The role of inflammation in Alzheimer disease. Nat. Rev. Neurosci., 2015, 16(6), 358-372.
[http://dx.doi.org/10.1038/nrn3880] [PMID: 25991443]
[63]
Heneka, M.T.; Carson, M.J.; Khoury, J.E.; Landreth, G.E.; Brosseron, F.; Feinstein, D.L.; Jacobs, A.H.; Wyss-Coray, T.; Vitorica, J.; Ransohoff, R.M.; Herrup, K.; Frautschy, S.A.; Finsen, B.; Brown, G.C.; Verkhratsky, A.; Yamanaka, K.; Koistinaho, J.; Latz, E.; Halle, A.; Petzold, G.C.; Town, T.; Morgan, D.; Shinohara, M.L.; Perry, V.H.; Holmes, C.; Bazan, N.G.; Brooks, D.J.; Hunot, S.; Joseph, B.; Deigendesch, N.; Garaschuk, O.; Boddeke, E.; Dinarello, C.A.; Breitner, J.C.; Cole, G.M.; Golenbock, D.T.; Kummer, M.P. Neuroinflammation in Alzheimer’s disease. Lancet Neurol., 2015, 14(4), 388-405.
[http://dx.doi.org/10.1016/S1474-4422(15)70016-5] [PMID: 25792098]
[64]
Moujalled, D.; Strasser, A.; Liddell, J.R. Molecular mechanisms of cell death in neurological diseases. Cell Death Differ., 2021, 28(7), 2029-2044.
[http://dx.doi.org/10.1038/s41418-021-00814-y] [PMID: 34099897]
[65]
Wang, R.; Reddy, P.H. Role of glutamate and NMDA receptors in Alzheimer’s disease. J. Alzheimers Dis., 2017, 57(4), 1041-1048.
[http://dx.doi.org/10.3233/JAD-160763] [PMID: 27662322]
[66]
Sperling, R.A.; Aisen, P.S.; Beckett, L.A.; Bennett, D.A.; Craft, S.; Fagan, A.M.; Iwatsubo, T.; Jack, C.R., Jr; Kaye, J.; Montine, T.J.; Park, D.C.; Reiman, E.M.; Rowe, C.C.; Siemers, E.; Stern, Y.; Yaffe, K.; Carrillo, M.C.; Thies, B.; Morrison-Bogorad, M.; Wagster, M.V.; Phelps, C.H. Toward defining the preclinical stages of Alzheimer’s disease: Recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimers Dement., 2011, 7(3), 280-292.
[http://dx.doi.org/10.1016/j.jalz.2011.03.003] [PMID: 21514248]
[67]
Jack, C.R., Jr; Bennett, D.A.; Blennow, K.; Carrillo, M.C.; Dunn, B.; Haeberlein, S.B.; Holtzman, D.M.; Jagust, W.; Jessen, F.; Karlawish, J.; Liu, E.; Molinuevo, J.L.; Montine, T.; Phelps, C.; Rankin, K.P.; Rowe, C.C.; Scheltens, P.; Siemers, E.; Snyder, H.M.; Sperling, R.; Elliott, C.; Masliah, E.; Ryan, L.; Silverberg, N. NIA-AA Research Framework: Toward a biological definition of Alzheimer’s disease. Alzheimers Dement., 2018, 14(4), 535-562.
[http://dx.doi.org/10.1016/j.jalz.2018.02.018] [PMID: 29653606]
[68]
Rabinovici, G.D. Controversy and progress in Alzheimer’s disease - FDA approval of aducanumab. N. Engl. J. Med., 2021, 385(9), 771-774.
[http://dx.doi.org/10.1056/NEJMp2111320] [PMID: 34320284]
[69]
Haeberlein, S.B.; von Hehn, C.; Tian, Y.; Chalkias, S.; Muralidharan, K.K.; Chen, T.; Wu, S.; Skordos, L.; Nisenbaum, L.; Rajagovindan, R.; Dent, G.; Harrison, K.; Nestorov, I.; Zhu, Y.; Mallinckrodt, C.; Sandrock, A. Emerge and Engage topline results: Phase 3 studies of aducanumab in early Alzheimer’s disease. Alzheimer’s &amp. Dementia, 2020, 16(S9) e047259.
[70]
Bittar, A.; Bhatt, N.; Kayed, R. Advances and considerations in AD tau-targeted immunotherapy. Neurobiol. Dis., 2020, 134, 104707.
[http://dx.doi.org/10.1016/j.nbd.2019.104707] [PMID: 31841678]
[71]
Congdon, E.E.; Sigurdsson, E.M. Tau-targeting therapies for Alzheimer disease. Nat. Rev. Neurol., 2018, 14(7), 399-415.
[http://dx.doi.org/10.1038/s41582-018-0013-z] [PMID: 29895964]
[72]
Wang, F.; Wu, X.; Li, Y.; Cao, X.; Zhang, C.; Gao, Y. PFKFB4 as a promising biomarker to predict a poor prognosis in patients with gastric cancer. Oncol. Lett., 2021, 21(4), 296.
[http://dx.doi.org/10.3892/ol.2021.12557] [PMID: 33732372]
[73]
Editorial, O. Erratum to lncRNA POT1-AS1 accelerates the progression of gastric cancer by serving as a competing endogenous RNA of microRNA-497-5p to increase PDK3 expression. J. Gastrointest. Oncol., 2022, 13(2), 898-902.
[http://dx.doi.org/10.21037/jgo-22-381] [PMID: 35557561]
[74]
Charish, J.; Harada, H.; Chen, X.; Wälchli, T.; Barr, C.L.; Monnier, P.P. The Dyslexia-associated gene KIAA0319L is involved in neuronal migration in the developing chick visual system. Int. J. Dev. Biol., 2023, 67(2), 49-56.
[http://dx.doi.org/10.1387/ijdb.230052pm] [PMID: 37410671]
[75]
Mao, X.; Xue, X.; Lv, R.; Ji, A.; Shi, T.; Chen, X.; Jiang, X.; Zhang, X. CEBPD is a master transcriptional factor for hypoxia regulated proteins in glioblastoma and augments hypoxia induced invasion through extracellular matrix-integrin mediated EGFR/PI3K pathway. Cell Death Dis., 2023, 14(4), 269.
[http://dx.doi.org/10.1038/s41419-023-05788-y] [PMID: 37059730]
[76]
Cho, K.W.; Bae, J.; Lee, S.J.; Chun, T. Expression pattern and functional role of Phc2 during activation of helper T cells after antigenic stimulation. In Vitro Cell. Dev. Biol. Anim., 2013, 49(5), 360-370.
[http://dx.doi.org/10.1007/s11626-013-9618-0] [PMID: 23605804]
[77]
Panitch, R.; Hu, J.; Xia, W.; Bennett, D.A.; Stein, T.D.; Farrer, L.A.; Jun, G.R. Blood and brain transcriptome analysis reveals APOE genotype-mediated and immune-related pathways involved in Alzheimer disease. Alzheimers Res. Ther., 2022, 14(1), 30.
[http://dx.doi.org/10.1186/s13195-022-00975-z] [PMID: 35139885]
[78]
Wu, Y.; Zhao, Y.; Xu, T.; You, L.; Zhang, H.; Liu, F. Alzheimer’s disease affects severity of asthma through methylation control of Foxp3 promoter. J. Alzheimers Dis., 2019, 70(1), 121-129.
[http://dx.doi.org/10.3233/JAD-190315] [PMID: 31127789]
[79]
de la Rubia Ortí, J.E.; Prado-Gascó, V.; Sancho Castillo, S.; Julián-Rochina, M.; Romero Gómez, F.J.; García-Pardo, M.P. Cortisol and IgA are involved in the progression of Alzheimer’s disease. A pilot study. Cell. Mol. Neurobiol., 2019, 39(7), 1061-1065.
[http://dx.doi.org/10.1007/s10571-019-00699-z] [PMID: 31203531]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy