Generic placeholder image

Current Alzheimer Research

Editor-in-Chief

ISSN (Print): 1567-2050
ISSN (Online): 1875-5828

Research Article

Uncovering the Impact of Aggrephagy in the Development of Alzheimer's Disease: Insights Into Diagnostic and Therapeutic Approaches from Machine Learning Analysis

Author(s): Jiayu Xu, Siqi Gou, Xueyuan Huang, Jieying Zhang, Xuancheng Zhou, Xiangjin Gong, Jingwen Xiong, Hao Chi* and Guanhu Yang*

Volume 20, Issue 9, 2023

Published on: 21 December, 2023

Page: [618 - 635] Pages: 18

DOI: 10.2174/0115672050280894231214063023

Price: $65

Abstract

Background: Alzheimer's disease (AD) stands as a widespread neurodegenerative disorder marked by the gradual onset of memory impairment, predominantly impacting the elderly. With projections indicating a substantial surge in AD diagnoses, exceeding 13.8 million individuals by 2050, there arises an urgent imperative to discern novel biomarkers for AD.

Methods: To accomplish these objectives, we explored immune cell infiltration and the expression patterns of immune cells and immune function-related genes of AD patients. Furthermore, we utilized the consensus clustering method combined with aggrephagy-related genes (ARGs) for typing AD patients and categorized AD specimens into distinct clusters (C1, C2). A total of 272 candidate genes were meticulously identified through a combination of differential analysis and Weighted Gene Co-Expression Network Analysis (WGCNA). Subsequently, we applied three machine learning algorithms-namely random forest (RF), support vector machine (SVM), and generalized linear model (GLM)-to pinpoint a pathogenic signature comprising five genes associated with AD. To validate the predictive accuracy of these identified genes in discerning AD progression, we constructed nomograms.

Results: Our analyses uncovered that cluster C2 exhibits a higher immune expression than C1. Based on the ROC(0.956). We identified five characteristic genes (PFKFB4, PDK3, KIAA0319L, CEBPD, and PHC2T) associated with AD immune cells and function. The nomograms constructed on the basis of these five diagnostic genes demonstrated effectiveness. In the validation group, the ROC values were found to be 0.760 and 0.838, respectively. These results validate the robustness and reliability of the diagnostic model, affirming its potential for accurate identification of AD.

Conclusion: Our findings not only contribute to a deeper understanding of the molecular mechanisms underlying AD but also offer valuable insights for drug development and clinical analysis. The limitation of our study is the limited sample size, and although AD-related genes were identified and some of the mechanisms elucidated, further experiments are needed to elucidate the more in-depth mechanisms of these characterized genes in the disease.

Keywords: Alzheimer's disease, machine learning, diagnostic model, aggrephagy, bioinformatics, drug discovery, high- -throughput sequencing data.

[1]
Robinson, M.; Lee, B.Y.; Hane, F.T. Recent progress in Alzheimer’s Disease research, Part 2: Genetics and epidemiology. J. Alzheimers Dis., 2017, 57(2), 317-330.
[http://dx.doi.org/10.3233/JAD-161149] [PMID: 28211812]
[2]
Cummings, J.L.; Tong, G.; Ballard, C. Treatment combinations for Alzheimer’s disease: Current and future pharmacotherapy options. J. Alzheimers Dis., 2019, 67(3), 779-794.
[http://dx.doi.org/10.3233/JAD-180766] [PMID: 30689575]
[3]
Eldufani, J.; Blaise, G. The role of acetylcholinesterase inhibitors such as neostigmine and rivastigmine on chronic pain and cognitive function in aging: A review of recent clinical applications. Alzheimers Dement., 2019, 5(1), 175-183.
[http://dx.doi.org/10.1016/j.trci.2019.03.004] [PMID: 31194017]
[4]
Sharma, K. Cholinesterase inhibitors as Alzheimer’s therapeutics (Review). Mol. Med. Rep., 2019, 20(2), 1479-1487.
[PMID: 31257471]
[5]
Srivastava, P.; Tripathi, P.N.; Sharma, P.; Rai, S.N.; Singh, S.P.; Srivastava, R.K.; Shankar, S.; Shrivastava, S.K. Design and development of some phenyl benzoxazole derivatives as a potent acetylcholinesterase inhibitor with antioxidant property to enhance learning and memory. Eur. J. Med. Chem., 2019, 163, 116-135.
[http://dx.doi.org/10.1016/j.ejmech.2018.11.049] [PMID: 30503937]
[6]
Tripathi, P.N.; Srivastava, P.; Sharma, P.; Tripathi, M.K.; Seth, A.; Tripathi, A.; Rai, S.N.; Singh, S.P.; Shrivastava, S.K. Biphenyl-3-oxo-1,2,4-triazine linked piperazine derivatives as potential cholinesterase inhibitors with anti-oxidant property to improve the learning and memory. Bioorg. Chem., 2019, 85, 82-96.
[http://dx.doi.org/10.1016/j.bioorg.2018.12.017] [PMID: 30605887]
[7]
Weller, J.; Budson, A. Current understanding of Alzheimer’s disease diagnosis and treatment. F1000 Res., 2018, 7, 1161.
[http://dx.doi.org/10.12688/f1000research.14506.1] [PMID: 30135715]
[8]
Beach, T.G.; Monsell, S.E.; Phillips, L.E.; Kukull, W. Accuracy of the clinical diagnosis of Alzheimer Disease at National Institute on aging Alzheimer disease centers, 2005–2010. J. Neuropathol. Exp. Neurol., 2012, 71(4), 266-273.
[http://dx.doi.org/10.1097/NEN.0b013e31824b211b] [PMID: 22437338]
[9]
Sun, B.L.; Li, W.W.; Zhu, C.; Jin, W.S.; Zeng, F.; Liu, Y.H.; Bu, X.L.; Zhu, J.; Yao, X.Q.; Wang, Y.J. Clinical research on Alzheimer’s disease: Progress and perspectives. Neurosci. Bull., 2018, 34(6), 1111-1118.
[http://dx.doi.org/10.1007/s12264-018-0249-z] [PMID: 29956105]
[10]
Tian, Y.; Lu, Y.; Cao, Y.; Dang, C.; Wang, N.; Tian, K.; Luo, Q.; Guo, E.; Luo, S.; Wang, L.; Li, Q. Identification of diagnostic signatures associated with immune infiltration in Alzheimer’s disease by integrating bioinformatic analysis and machine-learning strategies. Front. Aging Neurosci., 2022, 14, 919614.
[http://dx.doi.org/10.3389/fnagi.2022.919614] [PMID: 35966794]
[11]
Masters, C.L.; Bateman, R.; Blennow, K.; Rowe, C.C.; Sperling, R.A.; Cummings, J.L. Alzheimer’s disease. Nat. Rev. Dis. Primers, 2015, 1(1), 15056.
[http://dx.doi.org/10.1038/nrdp.2015.56] [PMID: 27188934]
[12]
Xu, W.; Ocak, U.; Gao, L.; Tu, S.; Lenahan, C.J.; Zhang, J.; Shao, A. Selective autophagy as a therapeutic target for neurological diseases. Cell. Mol. Life Sci., 2021, 78(4), 1369-1392.
[http://dx.doi.org/10.1007/s00018-020-03667-9] [PMID: 33067655]
[13]
Feng, Y.; He, D.; Yao, Z.; Klionsky, D.J. The machinery of macroautophagy. Cell Res., 2014, 24(1), 24-41.
[http://dx.doi.org/10.1038/cr.2013.168] [PMID: 24366339]
[14]
Stavoe, A.K.H.; Holzbaur, E.L.F. Autophagy in neurons. Annu. Rev. Cell Dev. Biol., 2019, 35(1), 477-500.
[http://dx.doi.org/10.1146/annurev-cellbio-100818-125242] [PMID: 31340124]
[15]
Hou, X.; Watzlawik, J.O.; Fiesel, F.C.; Springer, W. Autophagy in Parkinson’s Disease. J. Mol. Biol., 2020, 432(8), 2651-2672.
[http://dx.doi.org/10.1016/j.jmb.2020.01.037] [PMID: 32061929]
[16]
Suresh, S.N.; Verma, V.; Sateesh, S.; Clement, J.P.; Manjithaya, R. Neurodegenerative diseases: Model organisms, pathology and autophagy. J. Genet., 2018, 97(3), 679-701.
[http://dx.doi.org/10.1007/s12041-018-0955-3] [PMID: 30027903]
[17]
Ma, S.; Attarwala, I.Y.; Xie, X.Q. SQSTM1/p62: A potential target for neurodegenerative disease. ACS Chem. Neurosci., 2019, 10(5), 2094-2114.
[http://dx.doi.org/10.1021/acschemneuro.8b00516] [PMID: 30657305]
[18]
Miller, D.R.; Thorburn, A. Autophagy and organelle homeostasis in cancer. Dev. Cell, 2021, 56(7), 906-918.
[http://dx.doi.org/10.1016/j.devcel.2021.02.010] [PMID: 33689692]
[19]
Filali-Mouncef, Y.; Hunter, C.; Roccio, F.; Zagkou, S.; Dupont, N.; Primard, C.; Proikas-Cezanne, T.; Reggiori, F. The ménage à trois of autophagy, lipid droplets and liver disease. Autophagy, 2022, 18(1), 50-72.
[http://dx.doi.org/10.1080/15548627.2021.1895658] [PMID: 33794741]
[20]
Croce, K.R.; Yamamoto, A. A role for autophagy in Huntington’s disease. Neurobiol. Dis., 2019, 122, 16-22.
[http://dx.doi.org/10.1016/j.nbd.2018.08.010] [PMID: 30149183]
[21]
Nakashima, A.; Shima, T.; Tsuda, S.; Aoki, A.; Kawaguchi, M.; Furuta, A.; Yasuda, I.; Yoneda, S.; Yamaki-Ushijima, A.; Cheng, S.B.; Sharma, S.; Saito, S. Aggrephagy deficiency in the placenta: A new pathogenesis of preeclampsia. Int. J. Mol. Sci., 2021, 22(5), 2432.
[http://dx.doi.org/10.3390/ijms22052432] [PMID: 33670947]
[22]
Wani, A.; Gupta, M.; Ahmad, M.; Shah, A.M.; Ahsan, A.U.; Qazi, P.H.; Malik, F.; Singh, G.; Sharma, P.R.; Kaddoumi, A.; Bharate, S.B.; Vishwakarma, R.A.; Kumar, A. Alborixin clears amyloid-β by inducing autophagy through PTEN-mediated inhibition of the AKT pathway. Autophagy, 2019, 15(10), 1810-1828.
[http://dx.doi.org/10.1080/15548627.2019.1596476] [PMID: 30894052]
[23]
Malampati, S.; Song, J.X.; Chun-Kit Tong, B.; Nalluri, A.; Yang, C.B.; Wang, Z.; Gopalkrishnashetty Sreenivasmurthy, S.; Zhu, Z.; Liu, J.; Su, C.; Krishnamoorthi, S.; Iyaswamy, A.; Cheung, K.H.; Lu, J.H.; Li, M. Targeting aggrephagy for the treatment of Alzheimer’s disease. Cells, 2020, 9(2), 311.
[http://dx.doi.org/10.3390/cells9020311] [PMID: 32012902]
[24]
Xu, Y.; Vasiljevic, E.; Deming, Y.K.; Jonaitis, E.M.; Koscik, R.L.; Van Hulle, C.A.; Lu, Q.; Carboni, M.; Kollmorgen, G.; Wild, N.; Carlsson, C.M.; Johnson, S.C.; Zetterberg, H.; Blennow, K.; Engelman, C.D. Effect of pathway-specific polygenic risk scores for Alzheimer’s Disease (AD) on rate of change in cognitive function and AD-related biomarkers among asymptomatic individuals. J. Alzheimers Dis., 2023, 94(4), 1587-1605.
[http://dx.doi.org/10.3233/JAD-230097] [PMID: 37482996]
[25]
Shobeiri, P.; Alilou, S.; Jaberinezhad, M.; Zare, F.; Karimi, N.; Maleki, S.; Teixeira, A.L.; Perry, G.; Rezaei, N. Circulating long non-coding RNAs as novel diagnostic biomarkers for Alzheimer’s disease (AD): A systematic review and meta-analysis. PLoS One, 2023, 18(3), e0281784.
[http://dx.doi.org/10.1371/journal.pone.0281784] [PMID: 36947499]
[26]
Li, M.; Zhang, J.; Shi, Y.; Liu, S.; Liu, X.; Ning, Y.; Cao, Y.; Deng, Y.; Zhao, Y. The radiomics features of the temporal lobe region related to menopause based on MR-T2WI can be used as potential biomarkers for AD. Cereb. Cortex, 2023, 33(14), 9067-9078.
[http://dx.doi.org/10.1093/cercor/bhad183] [PMID: 37218647]
[27]
Lee, B.N.; Wang, J.; Nho, K.; Saykin, A.J.; Shen, L. Discovering precision AD biomarkers with varying prognosis effects in genetics driven subpopulations. AMIA Jt. Summits Transl. Sci. Proc., 2023, 2023, 340-349.
[PMID: 37350892]
[28]
Capogna, E.; Watne, L.O.; Sørensen, Ø.; Guichelaar, C.J.; Idland, A.V.; Halaas, N.B.; Blennow, K.; Zetterberg, H.; Walhovd, K.B.; Fjell, A.M.; Vidal-Piñeiro, D. Associations of neuroinflammatory IL-6 and IL-8 with brain atrophy, memory decline, and core AD biomarkers-in cognitively unimpaired older adults. Brain Behav. Immun., 2023, 113, 56-65.
[http://dx.doi.org/10.1016/j.bbi.2023.06.027] [PMID: 37400002]
[29]
Cai, Y.; Fan, X.; Zhao, L.; Liu, W.; Luo, Y.; Lau, A.Y.L.; Au, L.W.C.; Shi, L.; Lam, B.Y.K.; Ko, H.; Mok, V.C.T. Comparing machine learning-derived MRI-based and blood-based neurodegeneration biomarkers in predicting syndromal conversion in early AD. Alzheimers Dement., 2023, 19(11), 4987-4998.
[http://dx.doi.org/10.1002/alz.13083] [PMID: 37087687]
[30]
Butts, B.; Huang, H.; Hu, W.T.; Kehoe, P.G.; Miners, J.S.; Verble, D.D.; Zetterberg, H.; Zhao, L.; Trotti, L.M.; Benameur, K.; Scorr, L.M.; Wharton, W. sPDGFRβ and neuroinflammation are associated with AD biomarkers and differ by race: The ASCEND Study. Alzheimers Dement., 2023, alz.13457.
[http://dx.doi.org/10.1002/alz.13457] [PMID: 37933404]
[31]
Wilkinson, L. Ggplot2: Elegant graphics for data analysis by WICKHAM, H; Wiley Online Library, 2011.
[32]
Liang, J.; LaFleur, B.; Hussainy, S.; Perry, G. Gene co-expression analysis of multiple brain tissues reveals correlation of FAM222A expression with multiple Alzheimer’s disease-related genes. J. Alzheimers Dis., 2023, 1-15.
[http://dx.doi.org/10.3233/JAD-221241] [PMID: 37092222]
[33]
Liu, D.; Dai, S.X.; He, K.; Li, G.H.; Liu, J.; Liu, L.G.; Huang, J.F.; Xu, L.; Li, W.X. Identification of hub ubiquitin ligase genes affecting Alzheimer’s disease by analyzing transcriptome data from multiple brain regions. Sci. Prog., 2021, 104(1) 368504211001146.10.
[http://dx.doi.org/10.1177/00368504211001146] [PMID: 33754896]
[34]
Lu, Z.; Yue, W. Multiple functional variants and genes at a single locus for Alzheimer’s Disease. Biol. Psychiatry, 2023, 94(9), 692-693.
[http://dx.doi.org/10.1016/j.biopsych.2023.08.009] [PMID: 37778865]
[35]
Semick, S.A.; Bharadwaj, R.A.; Collado-Torres, L.; Tao, R.; Shin, J.H.; Deep-Soboslay, A.; Weiss, J.R.; Weinberger, D.R.; Hyde, T.M.; Kleinman, J.E.; Jaffe, A.E.; Mattay, V.S. Integrated DNA methylation and gene expression profiling across multiple brain regions implicate novel genes in Alzheimer’s disease. Acta Neuropathol., 2019, 137(4), 557-569.
[http://dx.doi.org/10.1007/s00401-019-01966-5] [PMID: 30712078]
[36]
Xu, M.; Liu, Q.; Bi, R.; Li, Y.; Li, H.; Kang, W.B.; Yan, Z.; Zheng, Q.; Sun, C.; Ye, M.; Xiang, B.L.; Luo, X.J.; Li, M.; Zhang, D.F.; Yao, Y.G. Coexistence of multiple functional variants and genes underlies genetic risk locus 11p11.2 of Alzheimer’s disease. Biol. Psychiatry, 2023, 94(9), 743-759.
[http://dx.doi.org/10.1016/j.biopsych.2023.05.020] [PMID: 37290560]
[37]
Chen, J.; Xie, C.; Zhao, Y.; Li, Z.; Xu, P.; Yao, L. Gene expression analysis reveals the dysregulation of immune and metabolic pathways in Alzheimer’s disease. Oncotarget, 2016, 7(45), 72469-72474.
[http://dx.doi.org/10.18632/oncotarget.12505] [PMID: 27732949]
[38]
Guo, Z.; Peng, X.; Li, H.Y.; Wang, Y.; Qian, Y.; Wang, Z.; Ye, D.; Ji, X.; Wang, Z.; Wang, Y.; Chen, D.; Lei, H. Evaluation of peripheral immune dysregulation in Alzheimer’s Disease and vascular dementia. J. Alzheimers Dis., 2019, 71(4), 1175-1186.
[http://dx.doi.org/10.3233/JAD-190666] [PMID: 31498124]
[39]
Zhang, L.; Fang, J.; Tang, Z.; Luo, Y. A bioinformatics perspective on the dysregulation of ferroptosis and ferroptosis-related immune cell infiltration in Alzheimer’s disease. Int. J. Med. Sci., 2022, 19(13), 1888-1902.
[http://dx.doi.org/10.7150/ijms.76660] [PMID: 36438927]
[40]
Chen, G.; Xu, T.; Yan, Y.; Zhou, Y.; Jiang, Y.; Melcher, K.; Xu, H.E. Amyloid beta: Structure, biology and structure-based therapeutic development. Acta Pharmacol. Sin., 2017, 38(9), 1205-1235.
[http://dx.doi.org/10.1038/aps.2017.28] [PMID: 28713158]
[41]
De-Paula, V.J.; Radanovic, M.; Diniz, B.S.; Forlenza, O.V. Alzheimer’s disease. Subcell. Biochem., 2012, 65, 329-352.
[http://dx.doi.org/10.1007/978-94-007-5416-4_14] [PMID: 23225010]
[42]
Cras, P.; Kawai, M.; Lowery, D.; Gonzalez-DeWhitt, P.; Greenberg, B.; Perry, G. Senile plaque neurites in Alzheimer disease accumulate amyloid precursor protein. Proc. Natl. Acad. Sci. USA, 1991, 88(17), 7552-7556.
[http://dx.doi.org/10.1073/pnas.88.17.7552] [PMID: 1652752]
[43]
Perl, D.P. Neuropathology of Alzheimer’s disease. Mt. Sinai J. Med., 2010, 77(1), 32-42.
[http://dx.doi.org/10.1002/msj.20157] [PMID: 20101720]
[44]
Rai, S.N.; Zahra, W.; Birla, H.; Singh, S.S.; Singh, S.P. Commentary: Mild endoplasmic reticulum stress ameliorates lpopolysaccharide-induced neuroinflammation and cognitive impairment via regulation of microglial polarization. Front. Aging Neurosci., 2018, 10, 192.
[http://dx.doi.org/10.3389/fnagi.2018.00192] [PMID: 29988480]
[45]
Hemonnot, A.L.; Hua, J.; Ulmann, L.; Hirbec, H. Microglia in Alzheimer Disease: Well-known targets and new opportunities. Front. Aging Neurosci., 2019, 11, 233.
[http://dx.doi.org/10.3389/fnagi.2019.00233] [PMID: 31543810]
[46]
Hansen, D.V.; Hanson, J.E.; Sheng, M. Microglia in Alzheimer’s disease. J. Cell Biol., 2018, 217(2), 459-472.
[http://dx.doi.org/10.1083/jcb.201709069] [PMID: 29196460]
[47]
McDonough, A.; Lee, R.V.; Weinstein, J.R. Microglial interferon signaling and white matter. Neurochem. Res., 2017, 42(9), 2625-2638.
[http://dx.doi.org/10.1007/s11064-017-2307-8] [PMID: 28540600]
[48]
Hanisch, U.K.; Kettenmann, H. Microglia: Active sensor and versatile effector cells in the normal and pathologic brain. Nat. Neurosci., 2007, 10(11), 1387-1394.
[http://dx.doi.org/10.1038/nn1997] [PMID: 17965659]
[49]
Sarlus, H.; Heneka, M.T. Microglia in Alzheimer’s disease. J. Clin. Invest., 2017, 127(9), 3240-3249.
[http://dx.doi.org/10.1172/JCI90606] [PMID: 28862638]
[50]
Rai, S.N.; Singh, C.; Singh, A.; Singh, M.P.; Singh, B.K. Mitochondrial dysfunction: A potential therapeutic target to treat Alzheimer’s disease. Mol. Neurobiol., 2020, 57(7), 3075-3088.
[http://dx.doi.org/10.1007/s12035-020-01945-y] [PMID: 32462551]
[51]
Kempf, S.J.; Metaxas, A. Neurofibrillary tangles in Alzheimer′s disease: Elucidation of the molecular mechanism by immunohistochemistry and tau protein phospho-proteomics. Neural Regen. Res., 2016, 11(10), 1579-1581.
[http://dx.doi.org/10.4103/1673-5374.193234] [PMID: 27904486]
[52]
Gatica, D.; Lahiri, V.; Klionsky, D.J. Cargo recognition and degradation by selective autophagy. Nat. Cell Biol., 2018, 20(3), 233-242.
[http://dx.doi.org/10.1038/s41556-018-0037-z] [PMID: 29476151]
[53]
Goldberg, A.L. Protein degradation and protection against misfolded or damaged proteins. Nature, 2003, 426(6968), 895-899.
[http://dx.doi.org/10.1038/nature02263] [PMID: 14685250]
[54]
Basso, M.; Samengo, G.; Nardo, G.; Massignan, T.; D’Alessandro, G.; Tartari, S.; Cantoni, L.; Marino, M.; Cheroni, C.; De Biasi, S.; Giordana, M.T.; Strong, M.J.; Estevez, A.G.; Salmona, M.; Bendotti, C.; Bonetto, V. Characterization of detergent-insoluble proteins in ALS indicates a causal link between nitrative stress and aggregation in pathogenesis. PLoS One, 2009, 4(12), e8130.
[http://dx.doi.org/10.1371/journal.pone.0008130] [PMID: 19956584]
[55]
Shankar, G.M.; Li, S.; Mehta, T.H.; Garcia-Munoz, A.; Shepardson, N.E.; Smith, I.; Brett, F.M.; Farrell, M.A.; Rowan, M.J.; Lemere, C.A.; Regan, C.M.; Walsh, D.M.; Sabatini, B.L.; Selkoe, D.J. Amyloid-β protein dimers isolated directly from Alzheimer’s brains impair synaptic plasticity and memory. Nat. Med., 2008, 14(8), 837-842.
[http://dx.doi.org/10.1038/nm1782] [PMID: 18568035]
[56]
De, S.; Wirthensohn, D.C.; Flagmeier, P.; Hughes, C.; Aprile, F.A.; Ruggeri, F.S.; Whiten, D.R.; Emin, D.; Xia, Z.; Varela, J.A.; Sormanni, P.; Kundel, F.; Knowles, T.P.J.; Dobson, C.M.; Bryant, C.; Vendruscolo, M.; Klenerman, D. Different soluble aggregates of Aβ42 can give rise to cellular toxicity through different mechanisms. Nat. Commun., 2019, 10(1), 1541.
[http://dx.doi.org/10.1038/s41467-019-09477-3] [PMID: 30948723]
[57]
Fusco, G.; Chen, S.W.; Williamson, P.T.F.; Cascella, R.; Perni, M.; Jarvis, J.A.; Cecchi, C.; Vendruscolo, M.; Chiti, F.; Cremades, N.; Ying, L.; Dobson, C.M.; De Simone, A. Structural basis of membrane disruption and cellular toxicity by α-synuclein oligomers. Science, 2017, 358(6369), 1440-1443.
[http://dx.doi.org/10.1126/science.aan6160] [PMID: 29242346]
[58]
Salter, M.W.; Beggs, S. Sublime microglia: Expanding roles for the guardians of the CNS. Cell, 2014, 158(1), 15-24.
[http://dx.doi.org/10.1016/j.cell.2014.06.008] [PMID: 24995975]
[59]
Clayton, K.A.; Van Enoo, A.A.; Ikezu, T. Alzheimer’s Disease: The role of microglia in brain homeostasis and proteopathy. Front. Neurosci., 2017, 11, 680.
[http://dx.doi.org/10.3389/fnins.2017.00680] [PMID: 29311768]
[60]
Heneka, M.T.; Kummer, M.P.; Latz, E. Innate immune activation in neurodegenerative disease. Nat. Rev. Immunol., 2014, 14(7), 463-477.
[http://dx.doi.org/10.1038/nri3705] [PMID: 24962261]
[61]
Gate, D.; Saligrama, N.; Leventhal, O.; Yang, A.C.; Unger, M.S.; Middeldorp, J.; Chen, K.; Lehallier, B.; Channappa, D.; De Los Santos, M.B.; McBride, A.; Pluvinage, J.; Elahi, F.; Tam, G.K.Y.; Kim, Y.; Greicius, M.; Wagner, A.D.; Aigner, L.; Galasko, D.R.; Davis, M.M.; Wyss-Coray, T. Clonally expanded CD8 T cells patrol the cerebrospinal fluid in Alzheimer’s disease. Nature, 2020, 577(7790), 399-404.
[http://dx.doi.org/10.1038/s41586-019-1895-7] [PMID: 31915375]
[62]
Heppner, F.L.; Ransohoff, R.M.; Becher, B. Immune attack: The role of inflammation in Alzheimer disease. Nat. Rev. Neurosci., 2015, 16(6), 358-372.
[http://dx.doi.org/10.1038/nrn3880] [PMID: 25991443]
[63]
Heneka, M.T.; Carson, M.J.; Khoury, J.E.; Landreth, G.E.; Brosseron, F.; Feinstein, D.L.; Jacobs, A.H.; Wyss-Coray, T.; Vitorica, J.; Ransohoff, R.M.; Herrup, K.; Frautschy, S.A.; Finsen, B.; Brown, G.C.; Verkhratsky, A.; Yamanaka, K.; Koistinaho, J.; Latz, E.; Halle, A.; Petzold, G.C.; Town, T.; Morgan, D.; Shinohara, M.L.; Perry, V.H.; Holmes, C.; Bazan, N.G.; Brooks, D.J.; Hunot, S.; Joseph, B.; Deigendesch, N.; Garaschuk, O.; Boddeke, E.; Dinarello, C.A.; Breitner, J.C.; Cole, G.M.; Golenbock, D.T.; Kummer, M.P. Neuroinflammation in Alzheimer’s disease. Lancet Neurol., 2015, 14(4), 388-405.
[http://dx.doi.org/10.1016/S1474-4422(15)70016-5] [PMID: 25792098]
[64]
Moujalled, D.; Strasser, A.; Liddell, J.R. Molecular mechanisms of cell death in neurological diseases. Cell Death Differ., 2021, 28(7), 2029-2044.
[http://dx.doi.org/10.1038/s41418-021-00814-y] [PMID: 34099897]
[65]
Wang, R.; Reddy, P.H. Role of glutamate and NMDA receptors in Alzheimer’s disease. J. Alzheimers Dis., 2017, 57(4), 1041-1048.
[http://dx.doi.org/10.3233/JAD-160763] [PMID: 27662322]
[66]
Sperling, R.A.; Aisen, P.S.; Beckett, L.A.; Bennett, D.A.; Craft, S.; Fagan, A.M.; Iwatsubo, T.; Jack, C.R., Jr; Kaye, J.; Montine, T.J.; Park, D.C.; Reiman, E.M.; Rowe, C.C.; Siemers, E.; Stern, Y.; Yaffe, K.; Carrillo, M.C.; Thies, B.; Morrison-Bogorad, M.; Wagster, M.V.; Phelps, C.H. Toward defining the preclinical stages of Alzheimer’s disease: Recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimers Dement., 2011, 7(3), 280-292.
[http://dx.doi.org/10.1016/j.jalz.2011.03.003] [PMID: 21514248]
[67]
Jack, C.R., Jr; Bennett, D.A.; Blennow, K.; Carrillo, M.C.; Dunn, B.; Haeberlein, S.B.; Holtzman, D.M.; Jagust, W.; Jessen, F.; Karlawish, J.; Liu, E.; Molinuevo, J.L.; Montine, T.; Phelps, C.; Rankin, K.P.; Rowe, C.C.; Scheltens, P.; Siemers, E.; Snyder, H.M.; Sperling, R.; Elliott, C.; Masliah, E.; Ryan, L.; Silverberg, N. NIA-AA Research Framework: Toward a biological definition of Alzheimer’s disease. Alzheimers Dement., 2018, 14(4), 535-562.
[http://dx.doi.org/10.1016/j.jalz.2018.02.018] [PMID: 29653606]
[68]
Rabinovici, G.D. Controversy and progress in Alzheimer’s disease - FDA approval of aducanumab. N. Engl. J. Med., 2021, 385(9), 771-774.
[http://dx.doi.org/10.1056/NEJMp2111320] [PMID: 34320284]
[69]
Haeberlein, S.B.; von Hehn, C.; Tian, Y.; Chalkias, S.; Muralidharan, K.K.; Chen, T.; Wu, S.; Skordos, L.; Nisenbaum, L.; Rajagovindan, R.; Dent, G.; Harrison, K.; Nestorov, I.; Zhu, Y.; Mallinckrodt, C.; Sandrock, A. Emerge and Engage topline results: Phase 3 studies of aducanumab in early Alzheimer’s disease. Alzheimer’s &amp. Dementia, 2020, 16(S9) e047259.
[70]
Bittar, A.; Bhatt, N.; Kayed, R. Advances and considerations in AD tau-targeted immunotherapy. Neurobiol. Dis., 2020, 134, 104707.
[http://dx.doi.org/10.1016/j.nbd.2019.104707] [PMID: 31841678]
[71]
Congdon, E.E.; Sigurdsson, E.M. Tau-targeting therapies for Alzheimer disease. Nat. Rev. Neurol., 2018, 14(7), 399-415.
[http://dx.doi.org/10.1038/s41582-018-0013-z] [PMID: 29895964]
[72]
Wang, F.; Wu, X.; Li, Y.; Cao, X.; Zhang, C.; Gao, Y. PFKFB4 as a promising biomarker to predict a poor prognosis in patients with gastric cancer. Oncol. Lett., 2021, 21(4), 296.
[http://dx.doi.org/10.3892/ol.2021.12557] [PMID: 33732372]
[73]
Editorial, O. Erratum to lncRNA POT1-AS1 accelerates the progression of gastric cancer by serving as a competing endogenous RNA of microRNA-497-5p to increase PDK3 expression. J. Gastrointest. Oncol., 2022, 13(2), 898-902.
[http://dx.doi.org/10.21037/jgo-22-381] [PMID: 35557561]
[74]
Charish, J.; Harada, H.; Chen, X.; Wälchli, T.; Barr, C.L.; Monnier, P.P. The Dyslexia-associated gene KIAA0319L is involved in neuronal migration in the developing chick visual system. Int. J. Dev. Biol., 2023, 67(2), 49-56.
[http://dx.doi.org/10.1387/ijdb.230052pm] [PMID: 37410671]
[75]
Mao, X.; Xue, X.; Lv, R.; Ji, A.; Shi, T.; Chen, X.; Jiang, X.; Zhang, X. CEBPD is a master transcriptional factor for hypoxia regulated proteins in glioblastoma and augments hypoxia induced invasion through extracellular matrix-integrin mediated EGFR/PI3K pathway. Cell Death Dis., 2023, 14(4), 269.
[http://dx.doi.org/10.1038/s41419-023-05788-y] [PMID: 37059730]
[76]
Cho, K.W.; Bae, J.; Lee, S.J.; Chun, T. Expression pattern and functional role of Phc2 during activation of helper T cells after antigenic stimulation. In Vitro Cell. Dev. Biol. Anim., 2013, 49(5), 360-370.
[http://dx.doi.org/10.1007/s11626-013-9618-0] [PMID: 23605804]
[77]
Panitch, R.; Hu, J.; Xia, W.; Bennett, D.A.; Stein, T.D.; Farrer, L.A.; Jun, G.R. Blood and brain transcriptome analysis reveals APOE genotype-mediated and immune-related pathways involved in Alzheimer disease. Alzheimers Res. Ther., 2022, 14(1), 30.
[http://dx.doi.org/10.1186/s13195-022-00975-z] [PMID: 35139885]
[78]
Wu, Y.; Zhao, Y.; Xu, T.; You, L.; Zhang, H.; Liu, F. Alzheimer’s disease affects severity of asthma through methylation control of Foxp3 promoter. J. Alzheimers Dis., 2019, 70(1), 121-129.
[http://dx.doi.org/10.3233/JAD-190315] [PMID: 31127789]
[79]
de la Rubia Ortí, J.E.; Prado-Gascó, V.; Sancho Castillo, S.; Julián-Rochina, M.; Romero Gómez, F.J.; García-Pardo, M.P. Cortisol and IgA are involved in the progression of Alzheimer’s disease. A pilot study. Cell. Mol. Neurobiol., 2019, 39(7), 1061-1065.
[http://dx.doi.org/10.1007/s10571-019-00699-z] [PMID: 31203531]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy