Generic placeholder image

Current Pharmaceutical Design

Editor-in-Chief

ISSN (Print): 1381-6128
ISSN (Online): 1873-4286

Review Article

Review on the Artificial Intelligence-based Nanorobotics Targeted Drug Delivery System for Brain-specific Targeting

Author(s): Akriti Rai, Kamal Shah and Hitesh Kumar Dewangan*

Volume 29, Issue 44, 2023

Published on: 18 December, 2023

Page: [3519 - 3531] Pages: 13

DOI: 10.2174/0113816128279248231210172053

Price: $65

Open Access Journals Promotions 2
Abstract

Contemporary medical research increasingly focuses on the blood-brain barrier (BBB) to maintain homeostasis in healthy individuals and provide solutions for neurological disorders, including brain cancer. Specialized in vitro modules replicate the BBB's complex structure and signalling using micro-engineered perfusion devices and advanced 3D cell cultures, thus advancing the understanding of neuropharmacology. This research explores nanoparticle-based biomolecular engineering for precise control, targeting, and transport of theranostic payloads across the BBB using nanorobots. The review summarizes case studies on delivering therapeutics for brain tumors and neurological disorders, such as Alzheimer's, Parkinson's, and multiple sclerosis. It also examines the advantages and disadvantages of nano-robotics. In conclusion, integrating machine learning and AI with robotics aims to develop safe nanorobots capable of interacting with the BBB without adverse effects. This comprehensive review is valuable for extensive analysis and is of great significance to healthcare professionals, engineers specializing in robotics, chemists, and bioengineers involved in pharmaceutical development and neurological research, emphasizing transdisciplinary approaches.

Keywords: Theranostic payloads, neurological disorders, nanoparticle-based engineering, nano-robotics, transdisciplinary research, artificial intelligence.

[1]
Ramesh AN, Kambhampati C, Monson JRT, Drew PJ. Artificial intelligence in medicine. Ann R Coll Surg Engl 2004; 86(5): 334-8.
[http://dx.doi.org/10.1308/147870804290] [PMID: 15333167]
[2]
Miles JC, Walker AJ. The potential application of artificial intelligence in transport. IEE Proc Intell Trans Syst 2016; 153(3): 11-30.
[http://dx.doi.org/10.1049/ip-its:20060014]
[3]
Yang Y, Mwais SK. A qualitative research on marketing and sales in the artificial intelligence age. 2018.
[4]
Singh V, Garg A, Dewangan HK. Recent advances in drug design and delivery across biological barriers using computational models. LDDD 2022; 19(10): 865-76.
[http://dx.doi.org/10.2174/1570180819999220204110306]
[5]
Smith RG, Farquhar A. The road ahead for knowledge management: An AI perspective. AI Magazine 2000; 21(4): 17.
[6]
Lamberti MJ, Wilkinson M, Donzanti BA, et al. A study on the application and use of artificial intelligence to support drug development. Clin Ther 2019; 41(8): 1414-26.
[http://dx.doi.org/10.1016/j.clinthera.2019.05.018] [PMID: 31248680]
[7]
Beneke F, Mackenrodt MO. Artificial intelligence and collusion. IIC Int Rev Ind Prop Copyr Law 2019; 50(1): 109-34.
[http://dx.doi.org/10.1007/s40319-018-00773-x]
[8]
Steels L, Routledge BR. The artificial life route to artificial intelligence: Building embodied, situated agents. London: Taylor & Francis Group 2018.
[http://dx.doi.org/10.4324/9781351001885]
[9]
Bielecki A, Bielecki A. Foundations of artificial neural networks. In: Janusz K, Ed. Models of neurons and perceptrons: Selected problems and challenges. Springer 2019.
[http://dx.doi.org/10.1007/978-3-319-90140-4_3]
[10]
Kalyane D. Artificial intelligence in the pharmaceutical sector: Current scene and future prospect. In: Tekade Rakesh K, Ed. The future of Pharmaceutical Product Development and Research. Academic Press 2020; pp. 73-107.
[http://dx.doi.org/10.1016/B978-0-12-814455-8.00003-7]
[11]
Kuan CM. Artificial neural networks. The New Palgrave Dictionary of Economics. London: Palgrave Macmillan 2017.
[12]
Medsker L, Jain LC. Recurrent neural networks: Design and applications. CRC Press 1999.
[http://dx.doi.org/10.1201/9781420049176]
[13]
Hänggi M, Moschytz GS. Cellular neural networks: Analysis, design, and optimization. Springer 2000.
[14]
Rouse M. IBM Watson supercomputer. Available from: https://searchenterpriseai.techtarget.com/definition/IBM-Watson-supercomputer
[15]
Vyas M. Artificial intelligence: The beginning of a New Era in pharmacy profession. Asian J Pharm 2018; 12: 72-6.
[16]
Duch W, Swaminathan K, Meller J. Artificial intelligence approaches for rational drug design and discovery. Curr Pharm Des 2007; 13(14): 1497-508.
[http://dx.doi.org/10.2174/138161207780765954] [PMID: 17504169]
[17]
Blasiak A, Khong J, Kee T. CURATE.AI: Optimizing personalized medicine with artificial intelligence. SLAS Technol 2020; 25(2): 95-105.
[http://dx.doi.org/10.1177/2472630319890316] [PMID: 31771394]
[18]
Baronzio G, Parmar G, Baronzio M. Overview of methods for overcoming hindrance to drug delivery to tumors, with special attention to tumor interstitial fluid. Front Oncol 2015; 5: 165.
[http://dx.doi.org/10.3389/fonc.2015.00165] [PMID: 26258072]
[19]
Mak KK, Pichika MR. Artificial intelligence in drug development: Present status and future prospects. Drug Discov Today 2019; 24(3): 773-80.
[http://dx.doi.org/10.1016/j.drudis.2018.11.014] [PMID: 30472429]
[20]
Sellwood MA, Ahmed M, Segler MHS, Brown N. Artificial intelligence in drug discovery. Future Med Chem 2018; 10(17): 2025-8.
[http://dx.doi.org/10.4155/fmc-2018-0212] [PMID: 30101607]
[21]
Zhu H. Big data and artificial intelligence modeling for drug discovery. Annu Rev Pharmacol Toxicol 2020; 60(1): 573-89.
[http://dx.doi.org/10.1146/annurev-pharmtox-010919-023324] [PMID: 31518513]
[22]
Ciallella HL, Zhu H. Advancing computational toxicology in the big data era by artificial intelligence: Data-driven and mechanism- driven modeling for chemical toxicity. Chem Res Toxicol 2019; 32(4): 536-47.
[http://dx.doi.org/10.1021/acs.chemrestox.8b00393] [PMID: 30907586]
[23]
Chan HCS, Shan H, Dahoun T, Vogel H, Yuan S. Advancing drug discovery via artificial intelligence. Trends Pharmacol Sci 2019; 40(8): 592-604.
[http://dx.doi.org/10.1016/j.tips.2019.06.004] [PMID: 31320117]
[24]
Brown N. In silico Medicinal Chemistry: Computational Methods to Support Drug Design. AbeBooks 2015.
[25]
Pereira JC, Caffarena ER, dos Santos CN. Boosting docking-based virtual screening with deep learning. J Chem Inf Model 2016; 56(12): 2495-506.
[http://dx.doi.org/10.1021/acs.jcim.6b00355] [PMID: 28024405]
[26]
Firth NC, Atrash B, Brown N, Blagg J. MOARF, an integrated workflow for multiobjective optimization: Implementation, synthesis, and biological evaluation. J Chem Inf Model 2015; 55(6): 1169-80.
[http://dx.doi.org/10.1021/acs.jcim.5b00073] [PMID: 26054755]
[27]
Teleanu DM, Chircov C, Grumezescu AM, Teleanu RI. Neuronanomedicine: An up-to-date overview. Pharmaceutics 2019; 11(3): 101.
[http://dx.doi.org/10.3390/pharmaceutics11030101]
[28]
Yoo J, Tang S, Gao W. Micro- and nanorobots for biomedical applications in the brain. Nat Rev Bioeng 2023; 1(5): 308-10.
[http://dx.doi.org/10.1038/s44222-023-00038-4]
[29]
Zhang L, Tan J, Han D, Zhu H. From machine learning to deep learning: Progress in machine intelligence for rational drug discovery. Drug Discov Today 2017; 22(11): 1680-5.
[http://dx.doi.org/10.1016/j.drudis.2017.08.010] [PMID: 28881183]
[30]
Chauhan S, Jain NG, Nagaich U. Nanodiamonds with powerful ability for drug delivery and biomedical applications: Recent updates on in vivo study and patents. J Pharmaceut Analy 2019; 10(1): 1-12.
[http://dx.doi.org/10.1016/j.jpha.2019.09.003]
[31]
King RD, Hirst JD, Sternberg MJ. Comparison of artificial intelligence methods for modeling pharmaceutical QSARS. Appl Artif Intell 1995; 9(2): 213-33.
[http://dx.doi.org/10.1080/08839519508945474]
[32]
Álvarez-Machancoses Ó, Fernández-Martínez JL. Using artificial intelligence methods to speed up drug discovery. Expert Opin Drug Discov 2019; 14(8): 769-77.
[http://dx.doi.org/10.1080/17460441.2019.1621284] [PMID: 31140873]
[33]
Fleming N. How artificial intelligence is changing drug discovery. Nature 2018; 557(7707): S55-7.
[http://dx.doi.org/10.1038/d41586-018-05267-x] [PMID: 29849160]
[34]
Lakshmi, Singh S, Vijayakumar MR, Dewangan HK. Lipid based aqueous core nanocapsules (ACNs) for encapsulating hydrophilic vinorelbine bitartrate: Preparation, optimization, characterization and in vitro safety assessment for intravenous administration. Curr Drug Deliv 2018; 15(9): 1284-93.
[http://dx.doi.org/10.2174/1567201815666180716112457] [PMID: 30009708]
[35]
Jiang Y, Zhang J, Meng F, Zhong Z, Apolipoprotein E. Apolipoprotein E peptide-directed chimeric polymersomes mediate an ultrahigh-efficiency targeted protein therapy for glioblastoma. ACS Nano 2018; 12(11): 11070-9.
[http://dx.doi.org/10.1021/acsnano.8b05265] [PMID: 30395440]
[36]
Dewangan HK, Singh N, Megh SK, Singh S, Maurya L. Optimization and evaluation of Gymnema sylvestre (GYM) extract loaded polymeric nanoparticles for enhancement of in-vivo efficacy and reduction of toxicity. J Microencapsul 2022; 1-22.
[http://dx.doi.org/10.1080/02652048.2022.2051625] [PMID: 35282781]
[37]
Yadav D, Semwal BC, Dewangan HK. Grafting, characterization and enhancement of therapeutic activity of berberine loaded PEGylated PAMAM dendrimer for cancerous cell. J Biomater Sci Polym Ed 2022; 14: 1-14.
[PMID: 36469754]
[38]
Yadav D, Dewangan HK. Pegylation: An important approach for novel drug delivery system. J Biomater Sci Poly Edi 2020, 3: 1-15.
[39]
Gorshkov K, Aguisanda F, Thorne N, Zheng W. Astrocytes as targets for drug discovery. Drug Discov Today 2018; 23(3): 673-80.
[http://dx.doi.org/10.1016/j.drudis.2018.01.011] [PMID: 29317338]
[40]
Nimmerjahn A. Astrocytes going live: Advances and challenges. J Physiol 2009; 587(8): 1639-47.
[http://dx.doi.org/10.1113/jphysiol.2008.167171] [PMID: 19204050]
[41]
Deepika D, Dewangan HK, Maurya L, Singh S. Intranasal drug delivery of frovatriptan succinate loaded polymeric nanoparticles for brain targeting. J Pharm Sci 2019 108(2): 851-9.
[42]
Sharma AN, Upadhyay PK, Dewangan HK. Development, evaluation, pharmacokinetic and biodistribution estimation of resveratrol-loaded solid lipid nanoparticles for prostate cancer targeting. J Microencapsul 2022; 39(6): 563-74.
[http://dx.doi.org/10.1080/02652048.2022.2135785] [PMID: 36222429]
[43]
Paul D, Sanap G, Shenoy S, Kalyane D, Kalia K, Tekade RK. Artificial intelligence in drug discovery and development. Drug Discov Today 2021; 26(1): 80-93.
[http://dx.doi.org/10.1016/j.drudis.2020.10.010] [PMID: 33099022]
[44]
Lakshmi SK, Singh S, Shah K, Dewangan HK. Dual Vinorelbine bitartrate and Resveratrol loaded polymeric aqueous core nanocapsules for synergistic efficacy in breast cancer. J Microencapsul 2022; 39(4): 299-313.
[http://dx.doi.org/10.1080/02652048.2022.2070679] [PMID: 35470755]
[45]
Vora LK, Gholap AD, Jetha K, Thakur RRS, Solanki HK, Chavda VP. Artificial intelligence in pharmaceutical technology and drug delivery design. Pharmaceutics 2023; 15(7): 1916.
[http://dx.doi.org/10.3390/pharmaceutics15071916] [PMID: 37514102]
[46]
Keyvanpour MR, Shirzad MB. An analysis of QSAR research based on machine learning concepts. Curr Drug Discov Technol 2021; 18(1): 17-30.
[http://dx.doi.org/10.2174/1570163817666200316104404] [PMID: 32178612]
[47]
Chai S, Liu Q, Liang X, et al. A grand product design model for crystallization solvent design. Comput Chem Eng 2020; 135: 106764.
[http://dx.doi.org/10.1016/j.compchemeng.2020.106764]
[48]
Thafar M, Raies AB, Albaradei S, Essack M, Bajic VB. Comparison study of computational prediction tools for drug-target binding affinities. Front Chem 2019; 7: 782.
[http://dx.doi.org/10.3389/fchem.2019.00782] [PMID: 31824921]
[49]
Öztürk H, Özgür A, Ozkirimli E. DeepDTA: Deep drug-target binding affinity prediction. Bioinformatics 2018; 34(17): i821-9.
[http://dx.doi.org/10.1093/bioinformatics/bty593] [PMID: 30423097]
[50]
Lounkine E, Keiser MJ, Whitebread S, et al. Large-scale prediction and testing of drug activity on side-effect targets. Nature 2012; 486(7403): 361-7.
[http://dx.doi.org/10.1038/nature11159] [PMID: 22722194]
[51]
Mahmud SMH, Chen W, Jahan H, Liu Y, Sujan NI, Ahmed S. iDTi-CSsmoteB: Identification of drug-target interaction based on drug chemical structure and protein sequence using XGBoost with over-sampling technique SMOTE. IEEE Access 2019; 7: 48699-714.
[http://dx.doi.org/10.1109/ACCESS.2019.2910277]
[52]
Pu L, Naderi M, Liu T, Wu HC, Mukhopadhyay S, Brylinski M. eToxPred: A machine learning-based approach to estimate the toxicity of drug candidates. BMC Pharmacol Toxicol 2019; 20(1): 2.
[http://dx.doi.org/10.1186/s40360-018-0282-6] [PMID: 30621790]
[53]
Neha SL, Mishra AK, Rani L, Paroha S, Dewangan HK, Sahoo PK. Design and evaluations of a nanostructured lipid carrier loaded with dopamine hydrochloride for intranasal bypass drug delivery in Parkinson’s disease. J Microencapsul 2023; 40(8): 599-612.
[http://dx.doi.org/10.1080/02652048.2023.2264386] [PMID: 37787159]
[54]
Tomar S, Yadav RK, Shah K, Dewangan HK. A comprehensive review on carrier mediated nose to brain targeting: Emphasis on molecular targets, current trends, future prospects, and challenges. Int J Polym Mater 2022; 2: 1-13.
[http://dx.doi.org/10.1080/00914037.2022.2124255]
[55]
Vanshita Garg A. Review: Recent advances of nanotechnology in brain targeting. Curr Nanosci 2022; 19: 350-61.
[56]
Yadav RK, Shah K, Dewangan HK. Intranasal drug delivery of sumatriptan succinate-loaded polymeric solid lipid nanoparticles for brain targeting. Drug Dev Ind Pharm 2022; 48(1): 21-8.
[http://dx.doi.org/10.1080/03639045.2022.2090575] [PMID: 35703403]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy