Generic placeholder image

Current Indian Science

Editor-in-Chief

ISSN (Print): 2210-299X
ISSN (Online): 2210-3007

Research Article

“2D, 3D QSAR and Pharmacophore Identification of Thieno[3,2-d]pyrimidines as Cholesterol inhibitors”

Author(s): Rakesh D. Amrutkar* and Kishor S Jain

Volume 2, 2024

Published on: 13 December, 2023

Article ID: e2210299X244559 Pages: 13

DOI: 10.2174/012210299X244559231116105210

open_access

Open Access Journals Promotions 2
Abstract

Introduction: The present study reveals the 2D, 3D-QSAR analysis of Thieno[3,2-d]pyrimidine to expressed the biological activity against Cholesterol, structurally different ligands can fit to common receptor site and safety consideration of the said chemical entities are good describe by Pharmacophore models.

Methods: The organic exercises of the atoms were changed over into log IC50. The measurably significant of 2D-QSAR and 3D QSAR models are r2 = 0 .9762, q2 = 0.9379 and internal (q2 = 0.8837) and external (predictive r2 = 0.9162) respectively.

Results: 2D QSAR studies revealed that Positive coefficient value of Quadrupole2 and Negative coefficient value of T_2_Cl_7 descriptors were major contributing descriptor. The 3D QSAR models indicates that steric and electrostatic effects primarily find out the binding affinities.

Conclusion: The best model obtained from the QSAR analysis, some newer compounds of same series were developed having the good activity than the earlier compounds have been reported.

Keywords: Thieno[3, 2-d]pyrimidine, Pharmacokinetics, Toxicity, QSAR, Pharmacophore identification, Cholesterol inhibitors.

[1]
Yu, W.; MacKerell, A.D., Jr; Computer-Aided, D.D.M. Computer-aided drug design methods. Methods Mol. Biol., 2017, 1520, 85-106.
[http://dx.doi.org/10.1007/978-1-4939-6634-9_5] [PMID: 27873247]
[2]
Sliwoski, G.; Kothiwale, S.; Meiler, J.; Lowe, E.W., Jr Computational methods in drug discovery. Pharmacol. Rev., 2014, 66(1), 334-395.
[http://dx.doi.org/10.1124/pr.112.007336] [PMID: 24381236]
[3]
Surabhi, S.; Singh, B.K. Computer aided drug design: An overview. J. Drug Deliv. Ther., 2018, 8(5), 504-509.
[http://dx.doi.org/10.22270/jddt.v8i5.1894]
[4]
Jie, J.L. Heterocyclic Chemistry in Drug Discovery; John Wiley and Sons: Hoboken, New York, United States, 2013.
[5]
Wagner, E.; Becan, L.; Nowakowska, E. Synthesis and pharmacological assessment of derivatives of isoxazolo[4,5-d]pyrimidine. Bioorg. Med. Chem., 2004, 12(1), 265-272.
[http://dx.doi.org/10.1016/j.bmc.2003.10.004] [PMID: 14697792]
[6]
Ravendra Babu, K.; Koteswara Rao, V.; Nanda Kumar, Y.; Polireddy, K.; Venkata Subbaiah, K.; Bhaskar, M.; Lokanatha, V.; Naga Raju, C. Identification of substituted [3, 2-a] pyrimidines as selective antiviral agents: Molecular modeling study. Antiviral Res., 2012, 95(2), 118-127.
[http://dx.doi.org/10.1016/j.antiviral.2012.05.010] [PMID: 22659095]
[7]
Hassan Hilmy, K.M.; Khalifa, M.M.A.; Allah Hawata, M.A.; AboAlzeen Keshk, R.M.; El-Torgman, A.A. Synthesis of new pyrrolo[2,3-d]pyrimidine derivatives as antibacterial and antifungal agents. Eur. J. Med. Chem., 2010, 45(11), 5243-5250.
[http://dx.doi.org/10.1016/j.ejmech.2010.08.043] [PMID: 20828885]
[8]
Meng, X.Y.; Zhang, H.X.; Mezei, M.; Cui, M. Molecular docking: a powerful approach for structure-based drug discovery. Curr. Computeraided Drug Des., 2011, 7(2), 146-157.
[http://dx.doi.org/10.2174/157340911795677602] [PMID: 21534921]
[9]
Amrutkar, R.D.; Amrute, B.B.; Ahire, A.H. In silico admet profiling and molecular docking of novel substituted thieno[3,2-d] pyrimidines against ligand binding domain of the human peroxisome proliferator activated receptor gamma in complex with synthetic agonist. Int. Res. J. Pharm., 2020, 11(11), 36-40.
[http://dx.doi.org/10.7897/2230-8407.111195]
[10]
Tamboli, R.; Amrutkar, R.; Jain, K.; Kathiravan, M. Synthesis and in vivo antihyperlipidemic potential of novel substituted thieno [3,2-d] pyrimidines. Lett. Drug Des. Discov., 2013, 10(9), 906-915.
[http://dx.doi.org/10.2174/15701808113109990019]
[11]
ChemDoodle Web Componenets. Available from:https://web.chemdoodle.com/
[12]
Prediction of ADME of compounds. Available from:http://www.swissadme.ch/index.php
[13]
Prediction of toxicity of chemicals. Available from:http://tox.charite.de/protox_II (Accessed on3 Nov 2020)
[14]
P, J.; G, G.; S, R.; S, P. Spectroscopic and QSAR analysis on Antibiotic drug; 2-amino-4,6- dimethylpyrimidine using quantum computational tools. J. Mol. Pharm. Org. Process Res., 2018, 6(1), 2.
[http://dx.doi.org/10.4172/2329-9053.1000142]
[15]
Lapić, J.; Havaić, V.; Šakić, D.; Sanković, K.; Djaković, S.; Vrček, V. Ferrocenoyl substituted pyrimidine nucleobases: An experimental and computational study of regioselective acylation of uracil, thymine, and 5-Fluorouracil. Eur. J. Org. Chem., 2015, 2015(24), 5424-5431.
[http://dx.doi.org/10.1002/ejoc.201500647]
[16]
Taslimi, P.; Sujayev, A.; Turkan, F.; Garibov, E.; Huyut, Z.; Farzaliyev, V.; Mamedova, S.; Gulçin, İ. Synthesis and investigation of the conversion reactions of pyrimidine‐thiones with nucleophilic reagent and evaluation of their acetylcholinesterase, carbonic anhydrase inhibition, and antioxidant activities. J. Biochem. Mol. Toxicol., 2018, 32(2), e22019.
[http://dx.doi.org/10.1002/jbt.22019] [PMID: 29283199]
[17]
Rakesh D, A.; Bhavesh B, A.; Santosh R, T. In silico adme-tox profiling of 4-(3H)-quinazolinone analogue. Acta Sci. Pharmaceut. Sci., 2019, 3(7), 52-55.
[http://dx.doi.org/10.31080/ASPS.2019.03.0311]
[18]
Bedadurge, A.B.; Shaikh, A.R. Designing hypothesis of 2-substituted-N-[4-(1-methyl-4,5-diphenyl-1H-imidazole-2-yl)phenyl] acetamide analogs as anticancer agents: QSAR approach. J. Korean Chem. Soci., 2013, 57(6), 744-754.
[http://dx.doi.org/10.5012/jkcs.2013.57.6.744]
[19]
Rahman, Mahfoozur; Haque, Ziyaul Predicting the anti-inflammatory and analgesic activity of some benzothiazole derivatives using 2D and 3D QSAR analysis. Eur. J. Biomed. Pharmaceut. Sci., 2022, 9(9), 259-68.
[20]
VLifeDock: Multiple approaches for QSAR. Available from:https://www.vlifesciences.com/products/ VLifeMDS/VLifeQSAR.php (Accessed on3 Nov 2020)
[21]
VLifeDock: approaches for Pharmacophore modelling. Available from:https://www.vlifesciences.com/products/ VLifeMDS/VLifeMolsign.php (Accessed on 3 Nov 2020)

© 2024 Bentham Science Publishers | Privacy Policy