Generic placeholder image

Drug Delivery Letters

Editor-in-Chief

ISSN (Print): 2210-3031
ISSN (Online): 2210-304X

Research Article

Formulation and Evaluation of Ion-Triggered In situ gel for Effective Ocular Delivery of Ciprofloxacin HCl and Olopatadine HCl in Combination

Author(s): Darakhshan A. Shaikh* and Munira M. Momin

Volume 14, Issue 1, 2024

Published on: 05 December, 2023

Page: [49 - 66] Pages: 18

DOI: 10.2174/0122103031267809231128111259

Price: $65

Open Access Journals Promotions 2
Abstract

Background: Ocular in situ gels (ISG) are an adequate substitute to overcome the pitfalls of conventional eye drops as they acquaintance the advantages of solutions, including accuracy, dosing frequency, and ease of administration with prolonged contact with the ocular membrane.

Objective: The present investigation aims to develop the ion-triggered in situ gel (ITISG) system for the convenient administration of Ciprofloxacin HCl (CFH) and Olopatadine HCl (OLH) in combination by employing gellan gum to prolong the pre-corneal residence, optic bioavailability and declines dosing frequency.

Methods: The ISG material and critical quality attributes (CQA) were identified. Quality by Design (QbD) was established to optimize the formulation. Nine experimental formulations were designed (F1-F9) and assigned to distinct physicochemical and in vitro examinations.

Results: Optimized batch F2 exhibited all the findings within acceptable limits. The Ion-triggered ISG technique exhibits maximum drug release over a 240-min cycle, much more significant than conventional eyedrops (60 min), suggesting sustained drug distribution and superior corneal penetration and absorption.

Conclusion: Comprehensive findings of the present investigation conclude that the CFH and OLH would be effectively formulated as an ion-triggered ISG system to manage several drawbacks associated with prolonged release, ocular retention, and better corneal penetration compared with conventional eyedrops.

Keywords: Ion-triggered, in-situ gel, ocular, quality by design, ciprofloxacin HCl, olopatadine HCl.

Graphical Abstract
[1]
Nanjawade, B.K.; Manvi, F.V.; Manjappa, A.S. RETRACTED: In situ-forming hydrogels for sustained ophthalmic drug delivery. J. Control. Release, 2007, 122(2), 119-134.
[http://dx.doi.org/10.1016/j.jconrel.2007.07.009] [PMID: 17719120]
[2]
Liu, Z.; Li, J.; Nie, S.; Liu, H.; Ding, P.; Pan, W. Study of an alginate/HPMC-based in situ gelling ophthalmic delivery system for gatifloxacin. Int. J. Pharm., 2006, 315(1-2), 12-17.
[http://dx.doi.org/10.1016/j.ijpharm.2006.01.029] [PMID: 16616442]
[3]
Bhattacharjee, A.; Das, P.J.; Adhikari, P.; Marbaniang, D.; Pal, P.; Ray, S.; Mazumder, B. Novel drug delivery systems for ocular therapy: With special reference to liposomal ocular delivery. Eur. J. Ophthalmol., 2019, 29(1), 113-126.
[http://dx.doi.org/10.1177/1120672118769776] [PMID: 29756507]
[4]
Todros, S.; Todesco, M.; Bagno, A. Biomaterials and their biomedical applications: From replacement to regeneration. Processes, 2021, 9(11), 1949.
[http://dx.doi.org/10.3390/pr9111949]
[5]
Langer, R.; Peppas, N.A. Advances in biomaterials, drug delivery, and bionanotechnology. AIChE J., 2003, 49(12), 2990-3006.
[http://dx.doi.org/10.1002/aic.690491202]
[6]
Chowhan, A.; Giri, T.K. Polysaccharide as renewable responsive biopolymer for in situ gel in the delivery of drug through ocular route. Int. J. Biol. Macromol., 2020, 150, 559-572.
[http://dx.doi.org/10.1016/j.ijbiomac.2020.02.097] [PMID: 32057864]
[7]
Al-Kinani, A.A.; Zidan, G.; Elsaid, N.; Seyfoddin, A.; Alani, A.W.G.; Alany, R.G. Ophthalmic gels: Past, present and future. Adv. Drug Deliv. Rev., 2018, 126, 113-126.
[http://dx.doi.org/10.1016/j.addr.2017.12.017] [PMID: 29288733]
[8]
Katakam, P.; Sireesha, K.R. Simultaneous determination of ciprofloxacin hydrochloride and dexamethasone sodium phosphate in eye drops by HPLC. E-J. Chem., 2012, 9(3), 1077-1084.
[http://dx.doi.org/10.1155/2012/187824]
[9]
Ridolo, E.; Barone, A.; Nicoletta, F.; Paoletti, G.; Heffler, E.; Malvezzi, L.; Canonica, G.W. Intranasal corticosteroid and antihistamine combinations in the treatment of allergic rhinitis: The role of the novel formulation olopatadine/mometasone furoate. Expert Rev. Clin. Immunol., 2023, 19(6), 575-584.
[http://dx.doi.org/10.1080/1744666X.2023.2200165] [PMID: 37038974]
[10]
Dubald, M.; Bourgeois, S.; Andrieu, V.; Fessi, H. Ophthalmic drug delivery systems for antibiotherapy-A review. Pharmaceutics, 2018, 10(1), 10.
[http://dx.doi.org/10.3390/pharmaceutics10010010] [PMID: 29342879]
[11]
Kurniawansyah, I.S.; Rusdiana, T.; Wahab, H.A.; Subarnas, A. In situ opthalmic gel with ion activated system. Int. J. Appl. Pharm., 2019, 15-18.
[12]
Vigani, B.; Rossi, S.; Sandri, G.; Bonferoni, M.C.; Caramella, C.M.; Ferrari, F. Recent advances in the development of in situ gelling drug delivery systems for non-parenteral administration routes. Pharmaceutics, 2020, 12(9), 859.
[http://dx.doi.org/10.3390/pharmaceutics12090859] [PMID: 32927595]
[13]
Wu, Y.; Liu, Y.; Li, X.; Kebebe, D.; Zhang, B.; Ren, J.; Lu, J.; Li, J.; Du, S.; Liu, Z. Research progress of in-situ gelling ophthalmic drug delivery system. Asian J. Pharmaceut. Sci., 2019, 14(1), 1-15.
[http://dx.doi.org/10.1016/j.ajps.2018.04.008] [PMID: 32104434]
[14]
Jumelle, C.; Gholizadeh, S.; Annabi, N.; Dana, R. Advances and limitations of drug delivery systems formulated as eye drops. J. Control. Release, 2020, 321, 1-22.
[http://dx.doi.org/10.1016/j.jconrel.2020.01.057] [PMID: 32027938]
[15]
Majeed, A.; Khan, N.A. Ocular in situ gel: An overview. J. Drug Deliv. Ther., 2019, 9(1), 337-347.
[http://dx.doi.org/10.22270/jddt.v9i1.2231]
[16]
Jain, D. Newer trends in in situ gelling systems for controlled ocular drug delivery. J. Anal. Pharm. Res., 2016, 2(3), 00022.
[http://dx.doi.org/10.15406/japlr.2016.02.00022]
[17]
Makwana, S.B.; Patel, V.A.; Parmar, S.J. Development and characterization of in-situ gel for ophthalmic formulation containing ciprofloxacin hydrochloride. Results Pharma Sci., 2016, 6, 1-6.
[http://dx.doi.org/10.1016/j.rinphs.2015.06.001] [PMID: 26949596]
[18]
Balasubramaniam, J.; Pandit, J.K. Ion-activated in situ gelling systems for sustained ophthalmic delivery of ciprofloxacin hydrochloride. Drug Deliv., 2003, 10(3), 185-191.
[http://dx.doi.org/10.1080/713840402] [PMID: 12944139]
[19]
Youssef, A.; Dudhipala, N.; Majumdar, S. Ciprofloxacin loaded nanostructured lipid carriers incorporated into in-situ gels to improve management of bacterial endophthalmitis. Pharmaceutics, 2020, 12(6), 572.
[http://dx.doi.org/10.3390/pharmaceutics12060572] [PMID: 32575524]
[20]
Ranch, K.M.; Maulvi, F.A.; Naik, M.J.; Koli, A.R.; Parikh, R.K.; Shah, D.O. Optimization of a novel in situ gel for sustained ocular drug delivery using Box-Behnken design: In vitro, ex vivo, in vivo and human studies. Int. J. Pharm., 2019, 554, 264-275.
[http://dx.doi.org/10.1016/j.ijpharm.2018.11.016] [PMID: 30423418]
[21]
Gadziński, P.; Froelich, A.; Jadach, B.; Wojtyłko, M.; Tatarek, A.; Białek, A.; Krysztofiak, J.; Gackowski, M.; Otto, F.; Osmałek, T. Ionotropic gelation and chemical crosslinking as methods for fabrication of modified-release gellan gum-based drug delivery systems. Pharmaceutics, 2022, 15(1), 108.
[http://dx.doi.org/10.3390/pharmaceutics15010108] [PMID: 36678736]
[22]
Fahmy, R.; Danielson, D.; Martinez, M.N. Quality by design and the development of solid oral dosage forms. In: Long Acting Animal Health Drug Products; Springer: New York, NY, 2013.
[http://dx.doi.org/10.1007/978-1-4614-4439-8_7]
[23]
Collins, L.M.; Dziak, J.J.; Li, R. Design of experiments with multiple independent variables: A resource management perspective on complete and reduced factorial designs. Psychol. Methods, 2009, 14(3), 202-224.
[http://dx.doi.org/10.1037/a0015826] [PMID: 19719358]
[24]
Patel, N.; Thakkar, V.; Metalia, V.; Baldaniya, L.; Gandhi, T.; Gohel, M. Formulation and development of ophthalmic in situ gel for the treatment ocular inflammation and infection using application of quality by design concept. Drug Dev. Ind. Pharm., 2016, 42(9), 1406-1423.
[http://dx.doi.org/10.3109/03639045.2015.1137306] [PMID: 26716613]
[25]
Ma, L.; Kohli, M.; Smith, A. Nanoparticles for combination drug therapy. ACS Nano, 2013, 7(11), 9518-9525.
[http://dx.doi.org/10.1021/nn405674m] [PMID: 24274814]
[26]
Osonwa, U.E.; Ugochukwu, J.I.; Ajaegbu, E.E.; Chukwu, K.I.; Azevedo, R.B.; Esimone, C.O. Enhancement of antibacterial activity of ciprofloxacin hydrochloride by complexation with sodium cholate. Bull. Fac. Pharm. Cairo Univ., 2017, 55(2), 233-237.
[http://dx.doi.org/10.1016/j.bfopcu.2017.09.006]
[27]
Bharate, S.S.; Vishwakarma, R.A. Thermodynamic equilibrium solubility measurements in simulated fluids by 96-well plate method in early drug discovery. Bioorg. Med. Chem. Lett., 2015, 25(7), 1561-1567.
[http://dx.doi.org/10.1016/j.bmcl.2015.02.013] [PMID: 25740159]
[28]
Douglas, A.; Skoog, F.; James Holler, S.R.C. Principles of Instrumental analysis, 7th ed; Cengage Learning, 2016.
[29]
Patel, P. Preformulation studies: An integral part of formulation design. In: Pharmaceutical formulation design-recent practices; IntechOpen, 2019.
[30]
Oliveira, M.; Lima, V.M.M.; Yamashita, S.M.A.; Alves, P.S.; Portella, A.C. Experimental planning factorial: A brief review. Int. J. Adv. Eng. Res. Sci., 2018, 5(6), 166-177.
[http://dx.doi.org/10.22161/ijaers.5.6.28]
[31]
Jishnu, V.; Gilhotra, R.M.; Prabhakaran, R. Formulation and evaluation of cephalexin extended release matrix tablets using 3 factorial design. J. Young Pharm., 2011, 3(4), 259-266.
[http://dx.doi.org/10.4103/0975-1483.90233] [PMID: 22224031]
[32]
Samala, M.L.; Janga, R.B. Design, statistical optimization of Nizatidine floating tablets using natural polymer. Future J. Pharmaceut. Sci., 2021, 7(1), 2.
[http://dx.doi.org/10.1186/s43094-020-00140-z]
[33]
Zhang, L.; Mao, S. Application of quality by design in the current drug development. Asian J. Pharmaceut. Sci., 2017, 12(1), 1-8.
[http://dx.doi.org/10.1016/j.ajps.2016.07.006] [PMID: 32104308]
[34]
Namjoshi, S.; Dabbaghi, M.; Roberts, M.S.; Grice, J.E.; Mohammed, Y. Quality by design: Development of the Quality Target Product Profile (QTPP) for semisolid topical products. Pharmaceutics, 2020, 12(3), 287.
[http://dx.doi.org/10.3390/pharmaceutics12030287] [PMID: 32210126]
[35]
Mandal, S.; Prabhushankar, G.L.; Thimmasetty, M.K.M.J.; Geetha, M.S. Formulation and evaluation of an in situ gel-forming ophthalmic formulation of moxifloxacin hydrochloride. Int. J. Pharm. Investig., 2012, 2(2), 78-82.
[http://dx.doi.org/10.4103/2230-973X.100042] [PMID: 23119236]
[36]
Baranowski, P.; Karolewicz, B.; Gajda, M.; Pluta, J. Ophthalmic drug dosage forms: Characterisation and research methods. ScientificWorldJournal, 2014, 2014, 1-14.
[http://dx.doi.org/10.1155/2014/861904] [PMID: 24772038]
[37]
Račić, A.; Čalija, B.; Milić, J.; Jurišić Dukovski, B.; Lovrić, J.; Dobričić, V.; Micov, A.; Vuković, M.; Stepanović-Petrović, R.; Krajišnik, D. Formulation of olopatadine hydrochloride viscous eye drops - physicochemical, biopharmaceutical and efficacy assessment using in vitro and in vivo approaches. Eur. J. Pharm. Sci., 2021, 166, 105906.
[http://dx.doi.org/10.1016/j.ejps.2021.105906] [PMID: 34118409]
[38]
Tampucci, S.; Monti, D.; Burgalassi, S.; Terreni, E.; Paganini, V.; Di Gangi, M.; Chetoni, P. Binary polymeric surfactant mixtures for the development of novel loteprednol etabonate nanomicellar eyedrops. Pharmaceuticals, 2023, 16(6), 864.
[http://dx.doi.org/10.3390/ph16060864] [PMID: 37375811]
[39]
Kesarla, R.; Tank, T.; Vora, P.A.; Shah, T.; Parmar, S.; Omri, A. Preparation and evaluation of nanoparticles loaded ophthalmic in situ gel. Drug Deliv., 2016, 23(7), 2363-2370.
[http://dx.doi.org/10.3109/10717544.2014.987333] [PMID: 25579467]
[40]
Pal, R Determination of Viscosity of Semisolid by using Brookfield Viscometer; Department of Pharmaceutics, NIMS Institute of Pharmacy, NIMS University: Jaipur, Rajasthan, India, 2023.
[41]
Talei Franzesi, G.; Ni, B.; Ling, Y.; Khademhosseini, A. A controlled-release strategy for the generation of cross-linked hydrogel microstructures. J. Am. Chem. Soc., 2006, 128(47), 15064-15065.
[http://dx.doi.org/10.1021/ja065867x] [PMID: 17117838]
[42]
Ahmad, H.; Ali Chohan, T.; Mudassir, J.; Mehta, P.; Yousef, B.; Zaman, A.; Ali, A.; Qutachi, O.; Chang, M.W.; Fatouros, D.; Sohail Arshad, M.; Ahmad, Z. Evaluation of sustained-release in-situ injectable gels, containing naproxen sodium, using in vitro, in silico and in vivo analysis. Int. J. Pharm., 2022, 616, 121512.
[http://dx.doi.org/10.1016/j.ijpharm.2022.121512] [PMID: 35085730]
[43]
Ran, Y.; Zhang, G.; Jiang, P.; Pei, H. Preparation method and performance evaluation of a gel based on AM/AMPS copolymer. Gels, 2022, 8(12), 802.
[http://dx.doi.org/10.3390/gels8120802] [PMID: 36547326]
[44]
Shelley, H.; Rodriguez-Galarza, R.M.; Duran, S.H.; Abarca, E.M.; Babu, R.J. In situ gel formulation for enhanced ocular delivery of nepafenac. J. Pharm. Sci., 2018, 107(12), 3089-3097.
[http://dx.doi.org/10.1016/j.xphs.2018.08.013] [PMID: 30170009]
[45]
Dasankoppa, F.; Solankiy, P.; Sholapur, H.; Jamakandi, V.; Sajjanar, V.; Walveka, P. Design, formulation, and evaluation of in situ gelling ophthalmic drug delivery system comprising anionic and nonionic polymers. Indian J. Health Sci. Biomed. Res., 2017, 10(3), 323.
[http://dx.doi.org/10.4103/kleuhsj.kleuhsj_131_17]
[46]
Pendela, M.; Dragovic, S.; Bockx, L.; Hoogmartens, J.; Van Schepdael, A.; Adams, E. Development of a liquid chromatographic method for the determination of related substances and assay of d-cycloserine. J. Pharm. Biomed. Anal., 2008, 47(4-5), 807-811.
[http://dx.doi.org/10.1016/j.jpba.2008.03.012] [PMID: 18514459]
[47]
Ibrahim, F.A.; Ali, F.A.; Ahmed, S.M.; Tolba, M.M. Kinetic determination of acarbose and miglitol in bulk and pharmaceutical formulations using alkaline potassium permanganate. Int. J. Biomed. Sci., 2007, 3(1), 20-30.
[PMID: 23675017]
[48]
Bennett, J.E.; Dolin, R.; Blaser, M.J., Eds.; Disinfection, Sterilization, and Control of Hospital Waste, 8th ed; Elsevier: Philadelphia, PA, 2015.
[49]
González-González, O.; Ramirez, I.O.; Ramirez, B.I.; O’Connell, P.; Ballesteros, M.P.; Torrado, J.J.; Serrano, D.R. Drug stability: ICH versus accelerated predictive stability studies. Pharmaceutics, 2022, 14(11), 2324.
[http://dx.doi.org/10.3390/pharmaceutics14112324] [PMID: 36365143]
[50]
Bajaj, S.; Singla, D.; Sakhuja, N. Stability testing of pharmaceutical products. J. Appl. Pharm. Sci., 2016, 2(3), 129-138.
[51]
Muthu, M.S.; Feng, S.S. Pharmaceutical stability aspects of nanomedicines. Nanomedicine, 2009, 4(8), 857-860.
[http://dx.doi.org/10.2217/nnm.09.75] [PMID: 19958220]
[52]
Huang, W.; Zhang, N.; Hua, H.; Liu, T.; Tang, Y.; Fu, L.; Yang, Y.; Ma, X.; Zhao, Y. Preparation, pharmacokinetics and pharmacodynamics of ophthalmic thermosensitive in situ hydrogel of betaxolol hydrochloride. Biomed. Pharmacother., 2016, 83, 107-113.
[http://dx.doi.org/10.1016/j.biopha.2016.06.024] [PMID: 27470557]
[53]
Wojcik-Pastuszka, D.; Krzak, J.; Macikowski, B.; Berkowski, R.; Osiński, B.; Musiał, W. Evaluation of the release kinetics of a pharmacologically active substance from model intra-articular implants replacing the cruciate ligaments of the knee. Materials, 2019, 12(8), 1202.
[http://dx.doi.org/10.3390/ma12081202] [PMID: 31013801]
[54]
Heredia, N.S.; Vizuete, K.; Flores-Calero, M.; Pazmiño, V.K.; Pilaquinga, F.; Kumar, B. Comparative statistical analysis of the release kinetics models for nanoprecipitated drug delivery systems based on poly(lactic-co-glycolic acid). PLoS One, 2022, 17(3), e0264825.
[55]
Shen, Y.; Xu, S.; Wang, S.; Tu, J. Determination of benzalkonium chloride in viscous ophthalmic drops of azithromycin by high-performance liquid chromatography. J. Zhejiang Univ. Sci. B, 2009, 10(12), 877-882.
[http://dx.doi.org/10.1631/jzus.B0920229] [PMID: 19946951]
[56]
Hedengran, A; Steensberg, AT; Virgili, G; Azuara-Blanco, A; Kolko, M Efficacy and safety evaluation of benzalkonium chloride preserved eye-drops compared with alternatively preserved and preservative-free eye-drops in the treatment of glaucoma: A systematic review and meta-analysis. Br. J. Ophthalmol., 2020, 104(11), 1512-1518.
[http://dx.doi.org/10.1136/bjophthalmol-2019-315623]
[57]
Jeyaseelan, E.C.; Jashothan, P.T.J. In vitro control of Staphylococcus aureus (NCTC 6571) and Escherichia coli (ATCC 25922) by Ricinus communis L. Asian Pac. J. Trop. Biomed., 2012, 2(9), 717-721.
[http://dx.doi.org/10.1016/S2221-1691(12)60216-0] [PMID: 23570001]
[58]
Brandt, K.K.; Amézquita, A.; Backhaus, T.; Boxall, A.; Coors, A.; Heberer, T.; Lawrence, J.R.; Lazorchak, J.; Schönfeld, J.; Snape, J.R.; Zhu, Y.G.; Topp, E. Ecotoxicological assessment of antibiotics: A call for improved consideration of microorganisms. Environ. Int., 2015, 85, 189-205.
[http://dx.doi.org/10.1016/j.envint.2015.09.013] [PMID: 26411644]
[59]
Kotreka, U.K.; Davis, V.L.; Adeyeye, M.C. Development of topical ophthalmic in situ gel-forming estradiol delivery system intended for the prevention of age-related cataracts. PLoS One, 2017, 12(2), e0172306.
[http://dx.doi.org/10.1371/journal.pone.0172306]
[60]
Tamrat, L.; Gelaw, Y.; Beyene, G.; Gize, A. Microbial contamination and antimicrobial resistance in use of ophthalmic solutions at the department of ophthalmology, jimma university specialized hospital, southwest ethiopia. Can. J. Infect. Dis. Med. Microbiol., 2019, 2019, 1-8.
[http://dx.doi.org/10.1155/2019/5372530] [PMID: 31178944]
[61]
Hombach, M.; Maurer, F.P.; Pfiffner, T.; Böttger, E.C.; Furrer, R. Standardization of operator-dependent variables affecting precision and accuracy of the disk diffusion method for antibiotic susceptibility testing. J. Clin. Microbiol., 2015, 53(12), 3864-3869.
[http://dx.doi.org/10.1128/JCM.02351-15]
[62]
Terrones-Fernandez, I.; Casino, P.; López, A.; Peiró, S.; Ríos, S.; Nardi-Ricart, A. Improvement of the pour plate method by separate sterilization of agar and other medium components and reduction of the agar concentration. Microbiol. Spectr., 2023, 11(1), e0316122.
[http://dx.doi.org/10.1128/spectrum.03161-22]
[63]
Jethava, J.; Jethava, G. Design, formulation, and evaluation of novel sustain release bioadhesive in-situ gelling ocular inserts of ketorolac tromethamine. Int. J. Pharm. Investig., 2014, 4(4), 226-232.
[http://dx.doi.org/10.4103/2230-973X.143131] [PMID: 25426444]
[64]
Amorós-Galicia, L.; Nardi-Ricart, A.; Verdugo-González, C.; Arroyo-García, C.M.; García-Montoya, E.; Pérez-Lozano, P.; Suñé-Negre, J.M.; Suñé-Pou, M. Development of a standardized method for measuring bioadhesion and mucoadhesion that is applicable to various pharmaceutical dosage forms. Pharmaceutics, 2022, 14(10), 1995.
[http://dx.doi.org/10.3390/pharmaceutics14101995] [PMID: 36297431]
[65]
Devendiran, S; Sankar, V. Permeability enhancement approach for dexamethasone using niosomal gel for treating keloids. J. Membrane. Sci. Technol., 2022, >12, 287.
[66]
Suzilla, W.Y.; Izzati, A.; Isha, I.; Zalina, A.; Rajaletchumy, V.K. Formulation and evaluation of antimicrobial herbosomal gel from Quercus infectoria extract. IOP Conf. Ser. Mater. Sci. Eng., 2020, 736(2), 022030.
[http://dx.doi.org/10.1088/1757-899X/736/2/022030]
[67]
Pande, V.; Patel, S.; Patil, V.; Sonawane, R. Design expert assisted formulation of topical bioadhesive gel of sertaconazole nitrate. Adv. Pharm. Bull., 2014, 4(2), 121-130.
[PMID: 24511475]
[68]
Sabale, V.; Sabale, P.; Kunjwani, H. Formulation and in vitro evaluation of the topical antiageing preparation of the fruit of Benincasa hispida. J. Ayurveda Integr. Med., 2011, 2(3), 124-128.
[http://dx.doi.org/10.4103/0975-9476.85550] [PMID: 22022154]
[69]
McKenzie, B.; Kay, G.; Matthews, K.H.; Knott, R.M.; Cairns, D. The hen’s egg chorioallantoic membrane (HET-CAM) test to predict the ophthalmic irritation potential of a cysteamine-containing gel: Quantification using Photoshop® and ImageJ. Int. J. Pharm., 2015, 490(1-2), 1-8.
[http://dx.doi.org/10.1016/j.ijpharm.2015.05.023] [PMID: 25980731]
[70]
Bruzual, J.J.; Peak, S.D.; Brake, J.; Peebles, E.D. Effects of relative humidity during incubation on hatchability and body weight of broiler chicks from young breeder flocks. Poult. Sci., 2000, 79(6), 827-830.
[http://dx.doi.org/10.1093/ps/79.6.827] [PMID: 10875763]
[71]
Batista-Duharte, A.; Jorge Murillo, G.; Pérez, U.M.; Tur, E.N.; Portuondo, D.F.; Martínez, B.T.; Téllez-Martínez, D.; Betancourt, J.E.; Pérez, O. The hen’s egg test on chorioallantoic membrane. Int. J. Toxicol., 2016, 35(6), 627-633.
[http://dx.doi.org/10.1177/1091581816672187] [PMID: 27733445]
[72]
de Araujo Lowndes Viera, L.M.; Silva, R.S.; da Silva, C.C.; Presgrave, O.A.F.; Boas, M.H.S.V. Comparison of the different protocols of the Hen’s Egg Test-Chorioallantoic Membrane (HET-CAM) by evaluating the eye irritation potential of surfactants. Toxicol. In vitro, 2022, 78, 105255.
[http://dx.doi.org/10.1016/j.tiv.2021.105255] [PMID: 34743969]
[73]
Bao, Q.; Newman, B.; Wang, Y.; Choi, S.; Burgess, D.J. In vitro and ex vivo correlation of drug release from ophthalmic ointments. J. Control. Release, 2018, 276, 93-101.
[http://dx.doi.org/10.1016/j.jconrel.2018.03.003] [PMID: 29518465]
[74]
Barse, R.; Kokare, C.; Tagalpallewar, A. Influence of hydroxypropylmethylcellulose and poloxamer composite on developed ophthalmic in situ gel: Ex vivo and in vivo characterization. J. Drug Deliv. Sci. Technol., 2016, 33, 66-74.
[http://dx.doi.org/10.1016/j.jddst.2016.03.011]
[75]
Dave, V.; Paliwal, S.; Yadav, S.; Sharma, S. Effect of in vitro transcorneal approach of aceclofenac eye drops through excised goat, sheep, and buffalo corneas. ScientificWorldJournal, 2015, 2015, 1-7.
[http://dx.doi.org/10.1155/2015/432376] [PMID: 25654129]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy