Generic placeholder image

Current Nanomedicine

Editor-in-Chief

ISSN (Print): 2468-1873
ISSN (Online): 2468-1881

Research Article

Composite and Nanocomposite Thin-film Structures Based on Chitosan Succinamide

Author(s): Renat Salikhov*, Rufina Zilberg, Ilnur Mullagaliev, Timur Salikhov, Yuliya Teres, Elena Bulysheva and Anastasia Ostaltsova

Volume 15, Issue 1, 2025

Published on: 04 December, 2023

Page: [70 - 79] Pages: 10

DOI: 10.2174/0124681873279865231126034248

Price: $65

Open Access Journals Promotions 2
Abstract

Aim: Currently, developing composite and nanocomposite materials based on natural polymers is attracting the growing attention of scientists. In particular, chitosan succinamide, a modified biopolymer, has good biocompatibility, biodegradability, and electrical conductivity, allowing it to be used as a functional material for creating various electronic devices, including sensors for use in medicine and pharmaceuticals. Composite sensors based on chitosan derivatives have found application for the recognition and determination of enantiomers of tryptophan, tyrosine, naproxen, and propranolol in human urine and blood plasma in tablet forms of drugs without a preliminary active substance.

Methods: This article discusses the studies on composite and nanocomposite thin-film structures based on chitosan succinamide obtained using various fillers, such as graphene oxide, single-walled carbon nanotubes, and carbon adsorbents.

Result: The studies used cyclic voltammetry, electrochemical impedance spectroscopy, and atomic force microscopy. The results created field-effect transistors based on the films in question as the transport layer.

Conclusion: The mobility of charge carriers was estimated, and the following values were obtained: μ(SCTS) = 0.173cm2/V·s; μ(SCTS-GO) = 0.509 cm2/V·s; μ(SCTS-CP) = 0.269 cm2/V·s; μ(SCTS-CB) = 0.351cm2/V·s; μ(SCTS-SWCNT) = 0.713 cm2/V·s.

Keywords: Thin films, chitosan succinamide, voltammetry, impedance, field-effect transistor, mobility of charge carriers.

Graphical Abstract
[1]
Li P, Zhang Y, Zheng Z. Polymer assisted metal deposition (PAMD) for flexible and wearable electronics: principle, materials, printing, and devices. Adv Mater 2019; 31(37): 1902987.
[http://dx.doi.org/10.1002/adma.201902987] [PMID: 31304644]
[2]
Andriianova AN, Salikhov RB, Latypova LR, Mullagaliev IN, Salikhov TR, Mustafin AG. The structural factors affecting the sensory properties of polyaniline derivatives. Sustain Energy Fuels 2022; 6(14): 3435-45.
[http://dx.doi.org/10.1039/D2SE00405D]
[3]
Tuktarov AR, Salikhov RB, Khuzin AA, et al. Optically controlled field effect transistors based on photochromic spiropyran and fullerene C60 films. Mendeleev Commun 2019; 29(2): 160-2.
[http://dx.doi.org/10.1016/j.mencom.2019.03.014]
[4]
Bunakov A, Lachinov A, Salikhov R. Current‐voltage characteristics of thin poly(biphenyl‐4‐ylphthalide) films. Macromol Symp 2004; 212(1): 387-92.
[http://dx.doi.org/10.1002/masy.200450847]
[5]
Collins PG, Avouris P. Nanotubes for electronics. Sci Am 2000; 283(6): 62-9.
[http://dx.doi.org/10.1038/scientificamerican1200-62] [PMID: 11103460]
[6]
Zhang X, Lu W, Zhou G, Li Q. Understanding the mechanical and conductive properties of carbon nanotube fibers for smart electronics. Adv Mater 2020; 32(5): 1902028.
[http://dx.doi.org/10.1002/adma.201902028] [PMID: 31250496]
[7]
Kavitha M, Kalpana AM. Carbon Nanotubes: Properties and applications-a brief review, i-manager’s. J Electron Eng 2017; 7(3): 1.
[http://dx.doi.org/10.26634/jele.7.3.13558]
[8]
Abdel-Karim R, Reda Y, Abdel-Fattah A. Review-nanostructured materials-based nanosensors. J Electrochem Soc 2020; 167(3): 037554.
[http://dx.doi.org/10.1149/1945-7111/ab67aa]
[9]
Norizan MN, Moklis MH, Ngah Demon SZ, et al. Carbon nanotubes: Functionalisation and their application in chemical sensors. RSC Advances 2020; 10(71): 43704-32.
[http://dx.doi.org/10.1039/D0RA09438B] [PMID: 35519676]
[10]
Zilberg RA, Maistrenko VN, Zagitova LR, Guskov VY, Dubrovsky DI. Chiral voltammetric sensor for warfarin enantiomers based on carbon black paste electrode modified by 3,4,9,10-perylenetetracarboxylic acid. J Electroanal Chem 2020; 861: 113986.
[http://dx.doi.org/10.1016/j.jelechem.2020.113986]
[11]
Yarkaeva YA, Dubrovskii DI, Zil’berg RA, Maistrenko VN, Kornilov VM. A voltammetric sensor based on a 3,4,9,10-Perylenetetracarboxylic Acid Composite for the Recognition and Determination of Tyrosine Enantiomers. J Anal Chem 2020; 75(12): 1537-45.
[http://dx.doi.org/10.1134/S1061934820110143]
[12]
Yarkaeva Y, Nazyrov M, Abdullin Y, Kovyazin P, Maistrenko V. Enantioselective voltammetric sensor based on mesoporous graphitized carbon black Carbopack X and fulvene derivative. Chirality 2023; 35(9): 625-35.
[http://dx.doi.org/10.1002/chir.23563] [PMID: 36951070]
[13]
Silva TA, Moraes FC, Janegitz BC, Fatibello-Filho O. Electrochemical biosensors based on nanostructured carbon black: A review. J Nanomater 2017; 2017(2): 1-14.
[http://dx.doi.org/10.1155/2017/4571614]
[14]
Korri-Youssoufi H, Zribi B, Miodek A, Haghiri-Gosnet AM. Carbon-based nanomaterials for electrochemical DNA sensing. Nanotechnology and Biosensors, Elsevier 2018; 113: 113-50.
[http://dx.doi.org/10.1016/B978-0-12-813855-7.00004-0]
[15]
Kennel EB. Electrical properties of nanoparticle-filled polymers Polymer nanocomposites handbook. CRC Press 2009; p. 16.
[16]
Wernik JM, Meguid SA. Recent developments in multifunctional nanocomposites using carbon nanotubes. Appl Mech Rev 2010; 63(5): 050801.
[http://dx.doi.org/10.1115/1.4003503]
[17]
Winey KI, Kashiwagi T, Mu M. Improving electrical conductivity and thermal properties of polymers by the addition of carbon nanotubes as fillers. MRS Bull 2007; 32(4): 348-53.
[http://dx.doi.org/10.1557/mrs2007.234]
[18]
Li C, Thostenson ET, Chou TW. Dominant role of tunneling resistance in the electrical conductivity of carbon nanotube-based composites. Appl Phys Lett 2007; 91(22): 223114.
[http://dx.doi.org/10.1063/1.2819690]
[19]
Deng F, Zheng QS. An analytical model of effective electrical conductivity of carbon nanotube composites. Appl Phys Lett 2008; 92(7): 071902.
[http://dx.doi.org/10.1063/1.2857468]
[20]
Mora A, Han F, Lubineau G. Estimating and understanding the efficiency of nanoparticles in enhancing the conductivity of carbon nanotube/polymer composites. Results Phys 2018; 10: 81-90.
[http://dx.doi.org/10.1016/j.rinp.2018.05.019]
[21]
Singh DP, Herrera CE, Singh B, Singh S, Singh RK, Kumar R. Graphene oxide: An efficient material and recent approach for biotechnological and biomedical applications. Mater Sci Eng C 2018; 86: 173-97.
[http://dx.doi.org/10.1016/j.msec.2018.01.004] [PMID: 29525091]
[22]
Ichkitidze LP, Gerasimenko AYu, Podgaetsky VM, Selishchev SV, Dudin AA, Pavlov AA. Electrical conductivity of the nanocomposite layers for use in biomedical systems. Mater Phys Mech 2018.
[http://dx.doi.org/10.18720/MPM.3722018_5]
[23]
Silva SR, Beliatis MJ, Jayawardena KD, Mills CA, Rhodes R, Rozanski LJ. Handbook of flexible organic electronics: Materials, manufacturing and applications. 2014.
[24]
Bello SA, Durowaye S, Kolawole MY. Electronics, optical, and thermal management applications of nanocomposites in aeronautics. Polymeric Nanocomposites with Carbonaceous Nanofillers for Aerospace Applications 2023; 187: 187-209.
[http://dx.doi.org/10.1016/B978-0-323-99657-0.00015-6]
[25]
Domard A, Domard M. Chitosan: structure-properties relationship and biomedical applications Polymeric biomaterials 2001; 2: 187-212.
[26]
Abd Elsalam EA, Shabaiek HF, Abdelaziz MM, Khalil IA, El-Sherbiny IM. Fortified hyperbranched PEGylated chitosan-based nano-in-micro composites for treatment of multiple bacterial infections. Int J Biol Macromol 2020; 148: 1201-10.
[http://dx.doi.org/10.1016/j.ijbiomac.2019.10.164] [PMID: 31751691]
[27]
Kolesov SV, Gurina MS, Mudarisova RK. Specific features of the formation of aqueous nanodispersions of interpolyelectrolyte complexes based of chitosan and chitosan succinimide. Russ J Gen Chem 2018; 88(8): 1694-8.
[http://dx.doi.org/10.1134/S1070363218080224]
[28]
Kolesov SV, Gurina MS, Mudarisova RK. On the stability of aqueous nanodispersions of polyelectrolyte complexes based on chitosan and N-succinyl-chitosan. Polym Sci Ser A 2019; 61(3): 253-9.
[http://dx.doi.org/10.1134/S0965545X19030076]
[29]
Jones WE Jr, Chiguma J, Johnson E, Pachamuthu A, Santos D. Electrically and thermally conducting nanocomposites for electronic applications. Materials 2010; 3(2): 1478-96.
[http://dx.doi.org/10.3390/ma3021478]
[30]
Kausar A. Potential of polymer/graphene nanocomposite in electronics. J Nanosci Nanotechnol 2018; 6: 55.
[31]
Harutyunyan LR, Harutyunyan RS, Gabrielyan GA, Lasareva EV. Modification of chitosan and chitosan succinate by surfactants and investigation of their properties. Colloids Surf A Physicochem Eng Asp 2019; 578: 123622.
[http://dx.doi.org/10.1016/j.colsurfa.2019.123622]
[32]
Shurshina A, Bazunova M, Chernova V, Galina A, Titlova A, Kulish E. The impact of polymers’ supramolecular structure on water vapour sorption and drug release from films on the basis of some polysaccharide. J Drug Deliv Sci Technol 2021; 63: 102560.
[http://dx.doi.org/10.1016/j.jddst.2021.102560]
[33]
Lazdin RY, Chernova VV, Bazunova MV, Zakharov VP, Kulish EI. Possibility of producing semisolid dosage forms based on aqueous solutions of chitosan succinamide in the presence of modification additives. Russ J Appl Chem 2020; 93(1): 65-71.
[http://dx.doi.org/10.1134/S1070427220010073]
[34]
Shurshina AS, Bazunova MV, Chernova VV, Galina AR, Lazdin RY, Kulish EI. Influence of supramolecular organization on some characteristics of chitosan succinamide films produced from aqueous solutions. Polym Sci Ser A 2020; 62(4): 422-9.
[http://dx.doi.org/10.1134/S0965545X20040100]
[35]
Burts K, Plisko T, Dmitrenko M, et al. Novel thin film nanocomposite membranes based on chitosan succinate modified with fe-btc for enhanced pervaporation dehydration of isopropanol. Membranes 2022; 12(7): 653.
[http://dx.doi.org/10.3390/membranes12070653] [PMID: 35877856]
[36]
Zilberg RA, Berestova TV, Gizatov RR, Teres YB, Galimov MN, Bulysheva EO. Chiral selectors in voltammetric sensors based on mixed phenylalanine/alanine Cu (II) and Zn (II) complexes. Inorganics 2022; 10(8): 117.
[http://dx.doi.org/10.3390/inorganics10080117]
[37]
Zil’berg RA, Zagitova LR, Vakulin IV, Yarkaeva YA, Teres YB, Berestova TV. Enantioselective voltammetric sensors based on amino acid complexes of Cu (II), Co (III), and Zn (II). J Anal Chem 2021; 76(12): 1438-48.
[http://dx.doi.org/10.1134/S1061934821120145]
[38]
Yarkaeva YA, Dubrovskii DI, Zil’berg RA, Maistrenko VN. Voltammetric sensors and sensor system based on gold electrodes modified with polyarylenephthalides for cysteine recognition. Russ J Electrochem 2020; 56(7): 544-55.
[http://dx.doi.org/10.1134/S102319352007006X]
[39]
Zil’berg RA, Maistrenko VN, Yarkaeva YA, Dubrovskii DI. An enantioselective voltammetric sensor system based on glassy carbon electrodes modified by polyarylenephthalide composites with α-, β-, and γ-cyclodextrins for recognizing D-and L-tryptophans. J Anal Chem 2019; 74(12): 1245-55.
[http://dx.doi.org/10.1134/S1061934819110133]
[40]
Bard AJ, Faulkner LR, White HS. Electrochemical Methods. Fundamentals and Application 2022.
[41]
Zil’berg RA, Yarkaeva YA, Sidel’nikov AV, Maistrenko VN, Kraikin VA, Gileva NG. Voltammetric determination of bisoprolol on a glassy carbon electrode modified by poly(arylene phthalide). J Anal Chem 2016; 71(9): 926-31.
[http://dx.doi.org/10.1134/S1061934816090173]
[42]
Salikhov RB, Zilberg RA, Mullagaliev IN, Salikhov TR, Teres YB. Nanocomposite thin film structures based on polyarylenephthalide with SWCNT and graphene oxide fillers. Mendeleev Commun 2022; 32(4): 520-2.
[http://dx.doi.org/10.1016/j.mencom.2022.07.029]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy