Generic placeholder image

Current Pharmaceutical Design

Editor-in-Chief

ISSN (Print): 1381-6128
ISSN (Online): 1873-4286

Review Article

Tumor Suppressive Role of MicroRNAs in Triple Negative Breast Cancer

Author(s): Acharya Balkrishna, Rashmi Mittal and Vedpriya Arya*

Volume 29, Issue 42, 2023

Published on: 30 November, 2023

Page: [3357 - 3367] Pages: 11

DOI: 10.2174/0113816128272489231124095922

Price: $65

Open Access Journals Promotions 2
Abstract

Triple-negative breast cancers are highly aggressive, a heterogeneous form of breast cancer with a high re-occurrence rate that further lacks an efficient treatment strategy and prognostic marker. The tumor microenvironment of the disease comprises cancer-associated fibroblasts, cancer stem cells, immunological molecules, epithelial-mesenchymal transition, and a metastatic microenvironment that contributes to disease progression and metastasis to distant sites. Emerging evidence indicated that miRNA clusters would be of clinical utility as they exert an oncogenic or tumor suppressor role in TNBC. The present review article aims to highlight the therapeutic significance of miRNA in targeting the above-mentioned signaling cascades and modulating the intracellular crosstalk in the tumor microenvironment of TNBC. Prognostic implications of miRNAs to depict disease-free survival, distant metastasis-free survival, relapse-free survival, and overall survival outcome were also unveiled.

Keywords: CAFs, CSCs, EMT, miRNAs, prognosis, TME, TNBC, therapeutic.

[1]
Koleckova M, Janikova M, Kolar Z. MicroRNAs in triple-negative breast cancer. Neoplasma 2018; 65(1): 1-13.
[http://dx.doi.org/10.4149/neo_2018_170115N36] [PMID: 29322783]
[2]
Anto NP, Muraleedharan A, Mittal R. Molecular sub-typing and exploration of key signalling pathways involved in complicating the disease. Ther Drug Targets Phytomed Triple Negat Breast Cancer. 2023; pp. 47.
[http://dx.doi.org/10.2174/9789815079784123010006]
[3]
Treeck O, Schüler-Toprak S, Ortmann O. Estrogen actions in triple-negative breast cancer. Cells 2020; 9(11): 2358.
[http://dx.doi.org/10.3390/cells9112358] [PMID: 33114740]
[4]
Mittal R, Chaudhry N, Pathania S, Mukherjee T. Mechanistic insight of drug resistance with special focus on iron in estrogen receptor positive breast cancer. Curr Pharm Biotechnol 2014; 15(12): 1141-57.
[http://dx.doi.org/10.2174/1389201015666141126121240] [PMID: 25429654]
[5]
Gerratana L, Basile D, Buono G, et al. Androgen receptor in triple negative breast cancer: A potential target for the targetless subtype. Cancer Treat Rev 2018; 68: 102-10.
[http://dx.doi.org/10.1016/j.ctrv.2018.06.005] [PMID: 29940524]
[6]
García-Teijido P, Cabal ML, Fernández IP, Pérez YF. Tumor-infiltrating lymphocytes in triple negative breast cancer: The future of immune targeting. Clin Med Insights Oncol 2016; 10(S1): 31-9.
[http://dx.doi.org/10.4137/CMO.S34540]
[7]
Yuan ZY, Luo RZ, Peng RJ, Wang SS, Xue C. High infiltration of tumor-associated macrophages in triple-negative breast cancer is associated with a higher risk of distant metastasis. OncoTargets Ther 2014; 7: 1475-80.
[http://dx.doi.org/10.2147/OTT.S61838] [PMID: 25187727]
[8]
Khan MA, Jain VK, Rizwanullah M, Ahmad J, Jain K. PI3K/AKT/mTOR pathway inhibitors in triple-negative breast cancer: A review on drug discovery and future challenges. Drug Discov Today 2019; 24(11): 2181-91.
[http://dx.doi.org/10.1016/j.drudis.2019.09.001] [PMID: 31520748]
[9]
Zhang K, Chen L, Zheng H, Zeng Y. Cytokines secreted from adipose tissues mediate tumor proliferation and metastasis in triple negative breast cancer. BMC Cancer 2022; 22(1): 886.
[http://dx.doi.org/10.1186/s12885-022-09959-6] [PMID: 35964108]
[10]
Oshi M, Newman S, Tokumaru Y, et al. Inflammation is associated with worse outcome in the whole cohort but with better outcome in triple-negative subtype of breast cancer patients. J Immunol Res 2020; 2020: 1-17.
[http://dx.doi.org/10.1155/2020/5618786] [PMID: 33457427]
[11]
Lv Y, Ma X, Du Y, Feng J. Understanding patterns of brain metastasis in triple-negative breast cancer and exploring potential therapeutic targets. OncoTargets Ther 2021; 14: 589-607.
[http://dx.doi.org/10.2147/OTT.S293685] [PMID: 33519208]
[12]
Jin L, Han B, Siegel E, Cui Y, Giuliano A, Cui X. Breast cancer lung metastasis: Molecular biology and therapeutic implications. Cancer Biol Ther 2018; 19(10): 858-68.
[http://dx.doi.org/10.1080/15384047.2018.1456599] [PMID: 29580128]
[13]
Vishnoi M, Liu NH, Yin W, et al. The identification of a TNBC liver metastasis gene signature by sequential CTC-xenograft modeling. Mol Oncol 2019; 13(9): 1913-26.
[http://dx.doi.org/10.1002/1878-0261.12533] [PMID: 31216110]
[14]
Li SY, Li YW, Ma D, Shao ZM. Prediction of axillary lymph node metastasis in triple-negative breast cancer by multi-omics analysis and an integrated model. Ann Transl Med 2022; 10(11): 623.
[http://dx.doi.org/10.21037/atm-22-277] [PMID: 35813335]
[15]
Chue BMF, La Course BD. Case report of long-term survival with metastatic triple-negative breast carcinoma. Medicine (Baltimore) 2019; 98(16): e15302.
[http://dx.doi.org/10.1097/MD.0000000000015302] [PMID: 31008982]
[16]
Riggio AI, Varley KE, Welm AL. The lingering mysteries of metastatic recurrence in breast cancer. Br J Cancer 2021; 124(1): 13-26.
[http://dx.doi.org/10.1038/s41416-020-01161-4] [PMID: 33239679]
[17]
Harati R, Hafezi S, Mabondzo A, Tlili A. Silencing miR-202-3p increases MMP-1 and promotes a brain invasive phenotype in metastatic breast cancer cells. PLoS One 2020; 15(10): e0239292.
[http://dx.doi.org/10.1371/journal.pone.0239292] [PMID: 33002044]
[18]
Arya V, Balkrishna A, Mittal R. Unveiling role of MicroRNAs in metastasizing triple negative breast cancer: From therapeutics to delivery. Curr Drug Targets 2023; 24(6): 509-20.
[http://dx.doi.org/10.2174/1389450124666230308154551] [PMID: 36892021]
[19]
Lee KL, Chen G, Chen TY, Kuo YC, Su YK. Effects of cancer stem cells in triple-negative breast cancer and brain metastasis: Challenges and solutions. Cancers 2020; 12(8): 2122.
[http://dx.doi.org/10.3390/cancers12082122] [PMID: 32751846]
[20]
Ivanova E, Ward A, Wiegmans AP, Richard DJ. Circulating tumor cells in metastatic breast cancer: From genome instability to metastasis. Front Mol Biosci 2020; 7: 134.
[http://dx.doi.org/10.3389/fmolb.2020.00134] [PMID: 32766277]
[21]
Lehmann BD, Jovanović B, Chen X, et al. Refinement of triple-negative breast cancer molecular subtypes: Implications for neoadjuvant chemotherapy selection. PLoS One 2016; 11(6): e0157368.
[http://dx.doi.org/10.1371/journal.pone.0157368] [PMID: 27310713]
[22]
Yin L, Duan JJ, Bian XW, Yu S. Triple-negative breast cancer molecular subtyping and treatment progress. Breast Cancer Res 2020; 22(1): 61.
[http://dx.doi.org/10.1186/s13058-020-01296-5] [PMID: 32517735]
[23]
Qiu X, Zhao T, Luo R, Qiu R, Li Z. Tumor-associated macrophages: Key players in triple-negative breast cancer. Front Oncol 2022; 12: 772615.
[http://dx.doi.org/10.3389/fonc.2022.772615] [PMID: 35237507]
[24]
Wang M, Feng R, Chen Z, et al. Identification of cancer-associated fibroblast subtype of triple-negative breast cancer. J Oncol 2022; 2022: 1-14.
[http://dx.doi.org/10.1155/2022/6452636] [PMID: 35505821]
[25]
Oshi M, Tokumaru Y, Angarita FA, et al. Adipogenesis in triple-negative breast cancer is associated with unfavorable tumor immune microenvironment and with worse survival. Sci Rep 2021; 11(1): 12541.
[http://dx.doi.org/10.1038/s41598-021-91897-7] [PMID: 34131208]
[26]
Jena MK, Janjanam J. Role of extracellular matrix in breast cancer development: A brief update. F1000 Res 2018; 7: 274.
[http://dx.doi.org/10.12688/f1000research.14133.2] [PMID: 29983921]
[27]
SenGupta S, Hein LE, Xu Y, et al. Triple-negative breast cancer cells recruit neutrophils by secreting TGF-β and CXCR2 ligands. Front Immunol 2021; 12: 659996.
[http://dx.doi.org/10.3389/fimmu.2021.659996] [PMID: 33912188]
[28]
O’Conor CJ, Chen T, González I, Cao D, Peng Y. Cancer stem cells in triple-negative breast cancer: A potential target and prognostic marker. Biomarkers Med 2018; 12(7): 813-20.
[http://dx.doi.org/10.2217/bmm-2017-0398] [PMID: 29902924]
[29]
Font-Clos F, Zapperi S, La Porta CAM. Classification of triple negative breast cancer by epithelial mesenchymal transition and the tumor immune microenvironment. Sci Rep 2022; 12(1): 9651.
[http://dx.doi.org/10.1038/s41598-022-13428-2] [PMID: 35688895]
[30]
Wu SZ, Roden DL, Wang C, et al. Stromal cell diversity associated with immune evasion in human triple-negative breast cancer. EMBO J 2020; 39(19): e104063.
[http://dx.doi.org/10.15252/embj.2019104063] [PMID: 32790115]
[31]
Liubomirski Y, Lerrer S, Meshel T, et al. Tumor-stroma-inflammation networks promote pro-metastatic chemokines and aggressiveness characteristics in triple-negative breast cancer. Front Immunol 2019; 10: 757.
[http://dx.doi.org/10.3389/fimmu.2019.00757] [PMID: 31031757]
[32]
Jacot W, Lopez-Crapez E, Mollevi C, et al. BRCA1 promoter hypermethylation is associated with good prognosis and chemosensitivity in triple-negative breast cancer. Cancers 2020; 12(4): 828.
[http://dx.doi.org/10.3390/cancers12040828] [PMID: 32235500]
[33]
Li J, Zhang X, Zhang Z, Zheng L, Jindal S, Liu Y. Association of p53 expression with poor prognosis in patients with triple-negative breast invasive ductal carcinoma. Medicine 2019; 98(18): e15449.
[http://dx.doi.org/10.1097/MD.0000000000015449] [PMID: 31045815]
[34]
Arafah MA, Ouban A, Ameer OZ, Quek KJ. Ki-67 LI expression in triple-negative breast cancer patients and its significance. Breast Cancer: Basic Clin Res 2021; 15: 11782234211016977.
[http://dx.doi.org/10.1177/11782234211016977] [PMID: 34158798]
[35]
Gomez-Μacias G, Molinar-Flores G, Lopez-Garcia C, et al. Immunotyping of tumor-infiltrating lymphocytes in triple-negative breast cancer and genetic characterization. Oncol Lett 2020; 20(5): 1.
[http://dx.doi.org/10.3892/ol.2020.12000] [PMID: 32934708]
[36]
Ketterer S, Mitschke J, Ketscher A, et al. Cathepsin D deficiency in mammary epithelium transiently stalls breast cancer by interference with mTORC1 signaling. Nat Commun 2020; 11(1): 5133.
[http://dx.doi.org/10.1038/s41467-020-18935-2] [PMID: 33046706]
[37]
Yin L, Shuang H, Sheng C, et al. The prognostic value of nodal staging in triple-negative breast cancer - A cohort from China. Sci Rep 2018; 8(1): 9007.
[http://dx.doi.org/10.1038/s41598-018-23999-8] [PMID: 29899402]
[38]
Uva P, Cossu-Rocca P, Loi F, et al. De Miglio. miRNA-135b contributes to triple negative breast cancer molecular heterogeneity: Different expression profile in Basal-like versus non-Basal-like phenotypes. Int J Med Sci 2018; 15(6): 536-48.
[http://dx.doi.org/10.7150/ijms.23402] [PMID: 29725243]
[39]
Rayner L. Kaiso regulates tumor-suppressing microRNA-31 and microRNA-200c in triple negative breast cancer (TNBC) cells. Open Access Dissertations and Theses: McMaster University 2018.
[40]
Kuninty PR, Schnittert J, Storm G, Prakash J. MicroRNA targeting to modulate tumor microenvironment. Front Oncol 2016; 6: 3.
[http://dx.doi.org/10.3389/fonc.2016.00003] [PMID: 26835418]
[41]
Koleckova M, Ehrmann J, Bouchal J, et al. Epithelial to mesenchymal transition and microRNA expression are associated with spindle and apocrine cell morphology in triple-negative breast cancer. Sci Rep 2021; 11(1): 5145.
[http://dx.doi.org/10.1038/s41598-021-84350-2] [PMID: 33664322]
[42]
Balkrishna A, Mittal R, Arya V. Unveiling role of microRNAs as treatment strategy and prognostic markers in triple negative breast cancer. Curr Pharm Biotechnol 2020; 21(15): 1569-75.
[http://dx.doi.org/10.2174/1389201021666200627201535] [PMID: 32593278]
[43]
Kahraman M, Röske A, Laufer T, et al. MicroRNA in diagnosis and therapy monitoring of early-stage triple-negative breast cancer. Sci Rep 2018; 8(1): 11584.
[http://dx.doi.org/10.1038/s41598-018-29917-2] [PMID: 30072748]
[44]
Wong CK, Gromisch C, Ozturk S, et al. MicroRNA-4417 is a tumor suppressor and prognostic biomarker for triple-negative breast cancer. Cancer Biol Ther 2019; 20(8): 1113-20.
[http://dx.doi.org/10.1080/15384047.2019.1595285] [PMID: 30922194]
[45]
Binderup HG, Madsen JS, Heegaard NHH, Houlind K, Andersen RF, Brasen CL. Quantification of microRNA levels in plasma – Impact of preanalytical and analytical conditions. PLoS One 2018; 13(7): e0201069.
[http://dx.doi.org/10.1371/journal.pone.0201069] [PMID: 30024941]
[46]
Volovat SR, Volovat C, Hordila I, et al. MiRNA and LncRNA as potential biomarkers in triple-negative breast cancer: A review. Front Oncol 2020; 10: 526850.
[http://dx.doi.org/10.3389/fonc.2020.526850] [PMID: 33330019]
[47]
Shimomura A, Shiino S, Kawauchi J, et al. Novel combination of serum microRNA for detecting breast cancer in the early stage. Cancer Sci 2016; 107(3): 326-34.
[http://dx.doi.org/10.1111/cas.12880] [PMID: 26749252]
[48]
Cuk K, Zucknick M, Madhavan D, et al. Plasma microRNA panel for minimally invasive detection of breast cancer. PLoS One 2013; 8(10): e76729.
[http://dx.doi.org/10.1371/journal.pone.0076729] [PMID: 24194846]
[49]
Song N, Liang B, Wang D. The function of MiR-21 expression differences and pathogenesis on familial and triple negative breast cancer serum. Pak J Pharm Sci 2016; 29(S2): 679-84.
[PMID: 27113307]
[50]
Zhu W, Liu M, Fan Y, Ma F, Xu N, Xu B. Dynamics of circulating micro RNA s as a novel indicator of clinical response to neoadjuvant chemotherapy in breast cancer. Cancer Med 2018; 7(9): 4420-33.
[http://dx.doi.org/10.1002/cam4.1723] [PMID: 30099860]
[51]
Lü L, Mao X, Shi P, He B, Xu K, Zhang P. MicroRNAs in the prognosis of triple-negative breast cancer: A systematic review and meta-analysis. Medicine 2017; 96(22): e7085.
[52]
Nama S, Muhuri M, Di Pascale F, et al. MicroRNA-138 is a prognostic biomarker for triple-negative breast cancer and promotes tumorigenesis via TUSC2 repression. Sci Rep 2019; 9(1): 12718.
[http://dx.doi.org/10.1038/s41598-019-49155-4] [PMID: 31481748]
[53]
Li J, Zhang Z, Chen F, et al. The diverse oncogenic and tumor suppressor roles of microRNA-105 in cancer. Front Oncol 2019; 9: 518.
[http://dx.doi.org/10.3389/fonc.2019.00518] [PMID: 31281797]
[54]
Kabil N. miR-484 Functions as an Onco-miR in Triple Negative Breast Cancer. Dissertations and Theses: The University of Texas M D Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences 2018.
[55]
Maryam M, Naemi M, Hasani SS. A comprehensive review on oncogenic miRNAs in breast cancer. J Genet 2021; 100(1): 1-21.
[PMID: 33764337]
[56]
Grammatikakis I, Gorospe M, Abdelmohsen K. Modulation of cancer traits by tumor suppressor microRNAs. Int J Mol Sci 2013; 14(1): 1822-42.
[http://dx.doi.org/10.3390/ijms14011822] [PMID: 23325049]
[57]
Shimono Y, Zabala M, Cho RW, et al. Downregulation of miRNA-200c links breast cancer stem cells with normal stem cells. Cell 2009; 138(3): 592-603.
[http://dx.doi.org/10.1016/j.cell.2009.07.011] [PMID: 19665978]
[58]
Shi Y, Zhang Y, Ran F, et al. Let-7a-5p inhibits triple-negative breast tumor growth and metastasis through GLUT12-mediated warburg effect. Cancer Lett 2020; 495: 53-65.
[http://dx.doi.org/10.1016/j.canlet.2020.09.012] [PMID: 32946964]
[59]
Martini S, Zuco V, Tortoreto M, et al. miR-34a-mediated survivin inhibition improves the antitumor activity of selinexor in triple-negative breast cancer. Pharmaceuticals 2021; 14(6): 523.
[http://dx.doi.org/10.3390/ph14060523] [PMID: 34072442]
[60]
Deng S, Wang M, Wang C, et al. p53 downregulates PD-L1 expression via miR-34a to inhibit the growth of triple-negative breast cancer cells: A potential clinical immunotherapeutic target. Mol Biol Rep 2023; 50(1): 577-87.
[http://dx.doi.org/10.1007/s11033-022-08047-z] [PMID: 36352176]
[61]
Weihua Z, Guorong Z, Xiaolong C, Weizhan L. MiR-33a functions as a tumor suppressor in triple-negative breast cancer by targeting EZH2. Cancer Cell Int 2020; 20(1): 85.
[http://dx.doi.org/10.1186/s12935-020-1160-z] [PMID: 32206036]
[62]
Encarnación-Medina J, Godoy L, Matta J, Ortiz-Sánchez C. Identification of Exo-miRNAs: A summary of the efforts in translational studies involving triple-negative breast cancer. Cells 2023; 12(9): 1339.
[http://dx.doi.org/10.3390/cells12091339] [PMID: 37174739]
[63]
Phan B, Majid S, Ursu S, et al. Tumor suppressor role of microRNA-1296 in triple-negative breast cancer. Oncotarget 2016; 7(15): 19519-30.
[http://dx.doi.org/10.18632/oncotarget.6961] [PMID: 26799586]
[64]
Bar I, Merhi A, Abdel-Sater F, et al. The MicroRNA miR-210 is expressed by cancer cells but also by the tumor microenvironment in triple-negative breast cancer. J Histochem Cytochem 2017; 65(6): 335-46.
[http://dx.doi.org/10.1369/0022155417702849] [PMID: 28402752]
[65]
Yu T, Di G. Role of tumor microenvironment in triple-negative breast cancer and its prognostic significance. Chin J Cancer Res 2017; 29(3): 237-52.
[http://dx.doi.org/10.21147/j.issn.1000-9604.2017.03.10] [PMID: 28729775]
[66]
Balkrishna A, Mittal R, Arya V. Potential role of miRNA in metastatic cascade of triple-negative Breast Cancer. Curr Cancer Drug Targets 2021; 21(2): 153-62.
[http://dx.doi.org/10.2174/1568009620999201103201626] [PMID: 33155912]
[67]
Wang X, Qiu H, Tang R, et al. miR-30a inhibits epithelial-mesenchymal transition and metastasis in triple-negative breast cancer by targeting ROR1. Oncol Rep 2018; 39(6): 2635-43.
[http://dx.doi.org/10.3892/or.2018.6379] [PMID: 29693179]
[68]
Xie J, Zheng S, Zou Y, et al. Turning up a new pattern: Identification of cancer-associated fibroblast-related clusters in TNBC. Front Immunol 2022; 13: 1022147.
[http://dx.doi.org/10.3389/fimmu.2022.1022147] [PMID: 36275659]
[69]
Hu J, Lai Y, Huang H, et al. TCOF1 upregulation in triple-negative breast cancer promotes stemness and tumour growth and correlates with poor prognosis. Br J Cancer 2022; 126(1): 57-71.
[http://dx.doi.org/10.1038/s41416-021-01596-3] [PMID: 34718356]
[70]
Kim JE, Kim BG, Jang Y, Kang S, Lee JH, Cho NH. The stromal loss of miR-4516 promotes the FOSL1-dependent proliferation and malignancy of triple negative breast cancer. Cancer Lett 2020; 469: 256-65.
[http://dx.doi.org/10.1016/j.canlet.2019.10.039] [PMID: 31672492]
[71]
Zhao C, Qiao Y, Jonsson P, et al. Genome-wide profiling of AP-1-regulated transcription provides insights into the invasiveness of triple-negative breast cancer. Cancer Res 2014; 74(14): 3983-94.
[http://dx.doi.org/10.1158/0008-5472.CAN-13-3396] [PMID: 24830720]
[72]
Chu J, Li Y, Fan X, et al. MiR-4319 suppress the malignancy of triple-negative breast cancer by regulating self-renewal and tumorigenesis of stem cells. Cell Physiol Biochem 2018; 48(2): 593-604.
[http://dx.doi.org/10.1159/000491888] [PMID: 30021199]
[73]
Wicha MS, Liu S, Dontu G. Cancer stem cells: An old idea-a paradigm shift. Cancer Res 2006; 66(4): 1883-90.
[http://dx.doi.org/10.1158/0008-5472.CAN-05-3153] [PMID: 16488983]
[74]
Lee KL, Kuo YC, Ho YS, Huang YH. Triple-negative breast cancer: Current understanding and future therapeutic breakthrough targeting cancer stemness. Cancers 2019; 11(9): 1334.
[http://dx.doi.org/10.3390/cancers11091334] [PMID: 31505803]
[75]
Park SY, Choi JH, Nam JS. Targeting cancer stem cells in triple-negative breast cancer. Cancers 2019; 11(7): 965.
[http://dx.doi.org/10.3390/cancers11070965] [PMID: 31324052]
[76]
Li Y, Liang Y, Sang Y, et al. MiR-770 suppresses the chemo-resistance and metastasis of triple negative breast cancer via direct targeting of STMN1. Cell Death Dis 2018; 9(1): 14.
[http://dx.doi.org/10.1038/s41419-017-0030-7] [PMID: 29323124]
[77]
Bai T, Yokobori T, Altan B, et al. High STMN1 level is associated with chemo-resistance and poor prognosis in gastric cancer patients. Br J Cancer 2017; 116(9): 1177-85.
[http://dx.doi.org/10.1038/bjc.2017.76] [PMID: 28334732]
[78]
Nakasone ES, Askautrud HA, Kees T, et al. Imaging tumor-stroma interactions during chemotherapy reveals contributions of the microenvironment to resistance. Cancer Cell 2012; 21(4): 488-503.
[http://dx.doi.org/10.1016/j.ccr.2012.02.017] [PMID: 22516258]
[79]
Fan Y, He S. The characteristics of tumor microenvironment in triple negative breast cancer. Cancer Manag Res 2022; 14: 1-17.
[http://dx.doi.org/10.2147/CMAR.S316700] [PMID: 35018117]
[80]
Liu C, Li Y, Xing X, et al. Immunogenomic landscape analyses of immune molecule signature-based risk panel for patients with triple-negative breast cancer. Mol Ther Nucleic Acids 2022; 28: 670-84.
[http://dx.doi.org/10.1016/j.omtn.2022.04.034] [PMID: 35614988]
[81]
Mediratta K, El-Sahli S, D’Costa V, Wang L. Current progresses and challenges of immunotherapy in triple-negative breast cancer. Cancers 2020; 12(12): 3529.
[http://dx.doi.org/10.3390/cancers12123529] [PMID: 33256070]
[82]
Ding L, Gu H, Xiong X, et al. MicroRNAs involved in carcinogenesis, prognosis, therapeutic resistance, and applications in human triple-negative breast cancer. Cells 2019; 8(12): 1492.
[http://dx.doi.org/10.3390/cells8121492] [PMID: 31766744]
[83]
Idowu MO, Kmieciak M, Dumur C, et al. CD44+/CD24−/low cancer stem/progenitor cells are more abundant in triple-negative invasive breast carcinoma phenotype and are associated with poor outcome. Hum Pathol 2012; 43(3): 364-73.
[http://dx.doi.org/10.1016/j.humpath.2011.05.005] [PMID: 21835433]
[84]
Dong G, Liang X, Wang D, et al. High expression of miR-21 in triple-negative breast cancers was correlated with a poor prognosis and promoted tumor cell in vitro proliferation. Med Oncol 2014; 31(7): 57.
[http://dx.doi.org/10.1007/s12032-014-0057-x] [PMID: 24930006]
[85]
Song X, Liu Z, Yu Z. LncRNA NEF is downregulated in triple negative breast cancer and correlated with poor prognosis. Acta Biochim Biophys Sin 2019; 51(4): 386-92.
[http://dx.doi.org/10.1093/abbs/gmz021] [PMID: 30839051]
[86]
Cascione L, Gasparini P, Lovat F, et al. Integrated microRNA and mRNA signatures associated with survival in triple negative breast cancer. PLoS One 2013; 8(2): e55910.
[http://dx.doi.org/10.1371/journal.pone.0055910] [PMID: 23405235]
[87]
Jiao Q, Wu A, Shao G, et al. The latest progress in research on triple negative breast cancer (TNBC): Risk factors, possible therapeutic targets and prognostic markers. J Thorac Dis 2014; 6(9): 1329-35.
[PMID: 25276378]
[88]
Qattan A. Novel miRNA targets and therapies in the triple-negative breast cancer microenvironment: An emerging Hope for a challenging disease. Int J Mol Sci 2020; 21(23): 8905.
[http://dx.doi.org/10.3390/ijms21238905] [PMID: 33255471]
[89]
Piasecka D, Braun M, Kordek R, Sadej R, Romanska H. MicroRNAs in regulation of triple-negative breast cancer progression. J Cancer Res Clin Oncol 2018; 144(8): 1401-11.
[http://dx.doi.org/10.1007/s00432-018-2689-2] [PMID: 29923083]
[90]
Santana TABS, de Oliveira Passamai L, de Miranda FS, et al. The role of miRNAs in the prognosis of triple-negative breast cancer: A systematic review and meta-analysis. Diagnostics 2022; 13(1): 127.
[http://dx.doi.org/10.3390/diagnostics13010127] [PMID: 36611419]
[91]
Zografos E, Zagouri F, Kalapanida D, et al. Prognostic role of microRNAs in breast cancer: A systematic review. Oncotarget 2019; 10(67): 7156-78.
[http://dx.doi.org/10.18632/oncotarget.27327] [PMID: 31903173]
[92]
Qin Q, Furong W, Baosheng L. Multiple functions of hypoxia-regulated miR-210 in cancer. J Exp Clin Cancer Res 2014; 33(1): 50.
[http://dx.doi.org/10.1186/1756-9966-33-50] [PMID: 24909053]
[93]
Kelly TJ, Souza AL, Clish CB, Puigserver P. A hypoxia-induced positive feedback loop promotes hypoxia-inducible factor 1α stability through miR-210 suppression of glycerol-3-phosphate dehydrogenase 1-like. Mol Cell Biol 2011; 31(13): 2696-706.
[http://dx.doi.org/10.1128/MCB.01242-10] [PMID: 21555452]
[94]
Bar I, Theate I, Haussy S, et al. MiR-210 is overexpressed in tumor-infiltrating plasma cells in triple-negative breast cancer. J Histochem Cytochem 2020; 68(1): 25-32.
[95]
Huang WC, Chi HC, Tung SL, et al. Identification of the novel tumor suppressor role of focad/mir-491-5p to inhibit cancer stemness, drug resistance and metastasis via regulating rabif/mmp signaling in triple negative breast cancer. Cells 2021; 10(10): 2524.
[http://dx.doi.org/10.3390/cells10102524] [PMID: 34685504]
[96]
Sadri F, Hosseini SF, Aghayei A, Fereidouni M, Rezaei Z. The tumor suppressor roles and mechanisms of MiR-491 in human cancers. DNA Cell Biol 2022; 41(9): 810-23.
[http://dx.doi.org/10.1089/dna.2022.0274] [PMID: 35914029]
[97]
Yang S, Wang D, Zhong S, et al. Tumor-derived exosomal circPSMA1 facilitates the tumorigenesis, metastasis, and migration in triple-negative breast cancer (TNBC) through miR-637/Akt1/β- catenin (cyclin D1) axis. Cell Death Dis 2021; 12(5): 420.
[http://dx.doi.org/10.1038/s41419-021-03680-1] [PMID: 33911067]
[98]
Shen J, Liang C, Su X, et al. Dysfunction and ceRNA network of the tumor suppressor miR-637 in cancer development and prognosis. Biomark Res 2022; 10(1): 72.
[http://dx.doi.org/10.1186/s40364-022-00419-8] [PMID: 36175921]
[99]
Stover DG, Parsons HA, Ha G, et al. Association of cell-free DNA tumor fraction and somatic copy number alterations with survival in metastatic triple-negative breast cancer. J Clin Oncol 2018; 36(6): 543-53.
[http://dx.doi.org/10.1200/JCO.2017.76.0033] [PMID: 29298117]
[100]
Que T, Song Y, Liu Z, et al. Decreased miRNA-637 is an unfavorable prognosis marker and promotes glioma cell growth, migration and invasion via direct targeting Akt1. Oncogene 2015; 34(38): 4952-63.
[http://dx.doi.org/10.1038/onc.2014.419] [PMID: 25597410]
[101]
Yu B, You W, Chen G, Yu Y, Yang Q. MiR-140-5p inhibits cell proliferation and metastasis by regulating MUC1 via BCL2A1/MAPK pathway in triple negative breast cancer. Cell Cycle 2019; 18(20): 2641-50.
[http://dx.doi.org/10.1080/15384101.2019.1653107] [PMID: 31411515]
[102]
Güllü G, Peker I, Haholu A, et al. Clinical significance of miR-140-5p and miR-193b expression in patients with breast cancer and relationship to IGFBP5. Genet Mol Biol 2015; 38(1): 21-9.
[http://dx.doi.org/10.1590/S1415-475738120140167] [PMID: 25983620]
[103]
Mahajan M, Sitasawad S. Mir-140-5p attenuates hypoxia-induced breast cancer progression by targeting nrf2/ho-1 axis in a keap1-independent mechanism. Cells 2021; 11(1): 12.
[http://dx.doi.org/10.3390/cells11010012] [PMID: 35011574]
[104]
Lu Y, Qin T, Li J, et al. MicroRNA-140-5p inhibits invasion and angiogenesis through targeting VEGF-A in breast cancer. Cancer Gene Ther 2017; 24(9): 386-92.
[http://dx.doi.org/10.1038/cgt.2017.30] [PMID: 28752859]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy