Generic placeholder image

Journal of Current Toxicology and Venomics

Editor-in-Chief

ISSN (Print): 2950-5704
ISSN (Online): 2950-5712

Research Article

Neuroethological Analysis of the Effects of Venom of the Spider Vitalius Platyomma (Theraphosidae, Theraphosinae) Microinjected into the Lateral Ventricle of Wistar Rats

Author(s): Alessandra Mussi Ribeiro*, Eliane Estábile, Fabrizio dos Santos Cardoso, Wagner Ferreira dos Santos and Norberto Garcia-Cairasco*

Volume 4, 2024

Published on: 07 December, 2023

Article ID: e291123223992 Pages: 10

DOI: 10.2174/0126661217263227231103050833

Price: $65

Open Access Journals Promotions 2
Abstract

Introduction: Spiders are predators that use their venom to immobilize their prey. These spider toxins are able to affect the central nervous system of mammals.

Methods: We hypothesized that venom from the tarantula Vitalius platyomma may induce behavioral changes in male Wistar rats. To test this hypothesis, the behavioral effects of venom were investigated after intracerebroventricular microinjection using the neuroethological method (behavioral sequences) associated with the ETHOMATIC program, evaluating frequency, duration, and strength of statistical association between pairs (dyads) of behaviors.

Results: The results obtained in this present study showed that the intracerebral administration of V. platyomma crude venom provoked a difference in the time of freezing of animals. In addition, animals showed after the freezing period changes in the exploratory and grooming clusters and additional complex sequences of behaviors such as wild running.

Conclusion: This study clearly demonstrated the appearance of seizure-like behaviors, similar to audiogenic brainstem-dependent seizures such as those observed in genetically-selected audiogenic strains.

Keywords: Spider toxin, seizures, convulsions, epilepsy, wild running, freezing.

[1]
Jackson H, Usherwood PNR. Spider toxins as tools for dissecting elements of excitatory amino acid transmission. Trends Neurosci 1988; 11(6): 278-83.
[http://dx.doi.org/10.1016/0166-2236(88)90112-9] [PMID: 2465627]
[2]
Johnson JH, Bloomquist JR, Krapcho KJ, et al. Novel insecticidal peptides from Tegenaria agrestis spider venom may have a direct effect on the insect central nervous system. Arch Insect Biochem Physiol 1998; 38(1): 19-31.
[http://dx.doi.org/10.1002/(SICI)1520-6327(1998)38:1<19:AID-ARCH3>3.0.CO;2-Q] [PMID: 9589602]
[3]
Lazarovici P. Snake-and spider-venom-derived toxins as lead compounds for drug development. Snake and Spider Toxins: Methods Protocol 2020; 3-26.
[http://dx.doi.org/10.1007/978-1-4939-9845-6_1]
[4]
Eisner T, Meinwald J. Chemical ecology. Proc Natl Acad Sci 1995; 92(1): 1.
[http://dx.doi.org/10.1073/pnas.92.1.1] [PMID: 7816795]
[5]
Moe ST, Smith DL, Chien YE, Raszkiewicz JL, Artman LD, Mueller AL. Design, synthesis, and biological evaluation of spider toxin (argiotoxin-636) analogs as NMDA receptor antagonists. Pharm Res 1998; 15(1): 31-8.
[http://dx.doi.org/10.1023/A:1011988317683] [PMID: 9487543]
[6]
Rash LD, Hodgson WC. Pharmacology and biochemistry of spider venoms. Toxicon 2002; 40(3): 225-54.
[http://dx.doi.org/10.1016/S0041-0101(01)00199-4] [PMID: 11711120]
[7]
King JB, Gross J, Lovly CM, Piwnica-Worms H, Townsend RR. Identification of protein phosphorylation sites within Ser/Thr‐rich cluster domains using site‐directed mutagenesis and hybrid linear quadrupole ion trap Fourier transform ion cyclotron resonance mass spectrometry. Rapid Commun Mass Spectrom 2007; 21(21): 3443-51.
[http://dx.doi.org/10.1002/rcm.3223] [PMID: 17918214]
[8]
Nicholson GM. Insect-selective spider toxins targeting voltage-gated sodium channels. Toxicon 2007; 49(4): 490-512.
[http://dx.doi.org/10.1016/j.toxicon.2006.11.027] [PMID: 17223149]
[9]
Del Brutto OH. Neurological effects of venomous bites and stings. Handb Clin Neurol 2013; 114: 349-68.
[http://dx.doi.org/10.1016/B978-0-444-53490-3.00028-5] [PMID: 23829924]
[10]
Jiménez-Vargas JM, Possani LD, Luna-Ramírez K. Arthropod toxins acting on neuronal potassium channels. Neuropharmacology 2017; 127: 139-60.
[http://dx.doi.org/10.1016/j.neuropharm.2017.09.025] [PMID: 28941737]
[11]
Usherwood PNR. Insect glutamate receptors. In: In Advances in insect physiology. Academic Press 1994; 24: pp. 309-41.
[http://dx.doi.org/10.1016/S0065-2806(08)60086-7]
[12]
Escoubas P. Molecular diversification in spider venoms: A web of combinatorial peptide libraries. Mol Divers 2006; 10(4): 545-54.
[http://dx.doi.org/10.1007/s11030-006-9050-4] [PMID: 17096075]
[13]
Silva J, Monge-Fuentes V, Gomes F, et al. Pharmacological alternatives for the treatment of neurodegenerative disorders: Wasp and bee venoms and their components as new neuroactive tools. Toxins 2015; 7(8): 3179-209.
[http://dx.doi.org/10.3390/toxins7083179] [PMID: 26295258]
[14]
de Souza JM, Goncalves BDC, Gomez MV, Vieira LB, Ribeiro FM. Animal toxins as therapeutic tools to treat neurodegenerative diseases. Front Pharmacol 2018; 9: 145.
[http://dx.doi.org/10.3389/fphar.2018.00145] [PMID: 29527170]
[15]
Choi D. Glutamate neurotoxicity and diseases of the nervous system. Neuron 1988; 1(8): 623-34.
[http://dx.doi.org/10.1016/0896-6273(88)90162-6] [PMID: 2908446]
[16]
Javitt DC. Glutamate as a therapeutic target in psychiatric disorders. Mol Psychiatry 2004; 9(11): 984-997, 979.
[http://dx.doi.org/10.1038/sj.mp.4001551] [PMID: 15278097]
[17]
Miladinovic T, Nashed M, Singh G. Overview of glutamatergic dysregulation in central pathologies. Biomolecules 2015; 5(4): 3112-41.
[http://dx.doi.org/10.3390/biom5043112] [PMID: 26569330]
[18]
Pál B. Involvement of extrasynaptic glutamate in physiological and pathophysiological changes of neuronal excitability. Cell Mol Life Sci 2018; 75(16): 2917-49.
[http://dx.doi.org/10.1007/s00018-018-2837-5] [PMID: 29766217]
[19]
Foley S, Lüddecke T, Cheng DQ, et al. Tarantula phylogenomics: A robust phylogeny of deep theraphosid clades inferred from transcriptome data sheds light on the prickly issue of urticating setae evolution. Mol Phylogenet Evol 2019; 140: 106573.
[http://dx.doi.org/10.1016/j.ympev.2019.106573] [PMID: 31374259]
[20]
Araque A, Ferreira W, Lucas S, Bun˜o W. Glutamatergic postsynaptic block by Pamphobeteus spider venoms in crayfish. Brain Res 1992; 571(1): 109-14.
[http://dx.doi.org/10.1016/0006-8993(92)90515-B] [PMID: 1319261]
[21]
Rocha-e-Silva TAA, Collares-Buzato CB, da Cruz-Höfling MA, Hyslop S. Venom apparatus of the brazilian tarantula vitalius dubius mello-Leitão 1923 (Theraphosidae). Cell Tissue Res 2009; 335(3): 617-29.
[http://dx.doi.org/10.1007/s00441-008-0738-x] [PMID: 19132396]
[22]
Rocha-e-Silva TAA, Sutti R, Hyslop S. Milking and partial characterization of venom from the Brazilian spider Vitalius dubius (Theraphosidae). Toxicon 2009; 53(1): 153-61.
[http://dx.doi.org/10.1016/j.toxicon.2008.10.026] [PMID: 19032960]
[23]
Rocha-e-Silva TAA, Rostelato-Ferreira S, Leite GB, da Silva PI Jr, Hyslop S, Rodrigues-Simioni L. VdTX-1, a reversible nicotinic receptor antagonist isolated from venom of the spider Vitalius dubius (Theraphosidae). Toxicon 2013; 70: 135-41.
[http://dx.doi.org/10.1016/j.toxicon.2013.04.020] [PMID: 23668938]
[24]
Sutti R, Tamascia M, Hyslop S, Rocha-e-Silva TA. Purification and characterization of a hyaluronidase from venom of the spider Vitalius dubius (Araneae, Theraphosidae). J Venom Anim Toxins Incl Trop Dis 2014; 20(1): 2.
[http://dx.doi.org/10.1186/1678-9199-20-2] [PMID: 24495716]
[25]
Sutti R, Rosa BB, Wunderlich B, da Silva Junior PI, Rocha e Silva TAA. Antimicrobial activity of the toxin VdTX-I from the spider Vitalius dubius (Araneae, Theraphosidae). Biochem Biophys Rep 2015; 4: 324-8.
[http://dx.doi.org/10.1016/j.bbrep.2015.09.018] [PMID: 29124220]
[26]
Ribeiro AM, dos Santos WF, Garcia-Cairasco N. Neuroethological analysis of the effects of spider venom from Scaptocosa raptoria (Lycosidae: Araneae) microinjected in the lateral ventricle of Wistar rats. Brain Res Bull 2000; 52(6): 581-8.
[http://dx.doi.org/10.1016/S0361-9230(00)00300-2] [PMID: 10974500]
[27]
Rodrigues MCA, Guizzo R, dos Santos WF, Cairasco NG. A comparative neuroethological study of limbic seizures induced by Parawixia bistriata venom and kainic acid injections in rats. Brain Res Bull 2001; 55(1): 79-86.
[http://dx.doi.org/10.1016/S0361-9230(01)00495-6] [PMID: 11427341]
[28]
Tsutsui J, Terra VC, Oliveira JAC, Garcia-Cairasco N. Neuroethological evaluation of audiogenic seizures and audiogenic-like seizures induced by microinjection of bicuculline into the inferior colliculus. I. Effects of midcollicular knife cuts. Behav Brain Res 1992; 52(1): 7-17.
[http://dx.doi.org/10.1016/S0166-4328(05)80320-1] [PMID: 1335263]
[29]
Terra VC, Garcia-Cairasco N. Neuroethological evaluation of audiogenic seizures and audiogenic-like seizures induced by microinjection of bicuculline into the inferior colliculus. II. Effects of nigral clobazam microinjections. Behav Brain Res 1992; 52(1): 19-28.
[http://dx.doi.org/10.1016/S0166-4328(05)80321-3] [PMID: 1335262]
[30]
Garcia-Cairasco N. A critical review on the participation of inferior colliculus in acoustic-motor and acoustic-limbic networks involved in the expression of acute and kindled audiogenic seizures. Hear Res 2002; 168(1-2): 208-22.
[http://dx.doi.org/10.1016/S0378-5955(02)00371-4] [PMID: 12117522]
[31]
Garcia-Cairasco N, Umeoka EHL, Cortes de Oliveira JA. The Wistar Audiogenic Rat (WAR) strain and its contributions to epileptology and related comorbidities: History and perspectives. Epilepsy Behav 2017; 71(Pt B): 250-73.
[http://dx.doi.org/10.1016/j.yebeh.2017.04.001] [PMID: 28506440]
[32]
Terra VC, Garcia-Cairasco N. NMDA-dependent audiogenic seizures are differentially regulated by inferior colliculus subnuclei. Behav Brain Res 1994; 62(1): 29-39.
[http://dx.doi.org/10.1016/0166-4328(94)90035-3] [PMID: 7917031]
[33]
Garcia-Cairasco N, Sabbatini RM. Role of the substantia nigra in audiogenic seizures: A neuroethological analysis in the rat. Braz J Med Biol Res 1983; 16(2): 171-83.
[PMID: 6686072]
[34]
Garcia-Cairasco N, Doretto MC, Prado RP, Jorge BPD, Terra VC, Oliveira JAC. New insights into behavioral evaluation of audiogenic seizures. A comparison of two ethological methods. Behav Brain Res 1992; 48(1): 49-56.
[http://dx.doi.org/10.1016/S0166-4328(05)80138-X] [PMID: 1622553]
[35]
Barrera-Bailón B, Oliveira JAC, López DE, Muñoz LJ, Garcia-Cairasco N, Sancho C. Pharmacological and neuroethological studies of three antiepileptic drugs in the Genetic Audiogenic Seizure Hamster (GASH:Sal). Epilepsy Behav 2013; 28(3): 413-25.
[http://dx.doi.org/10.1016/j.yebeh.2013.05.028] [PMID: 23872084]
[36]
Barrera-Bailón B, Oliveira JAC, López DE, Muñoz LJ, Garcia-Cairasco N, Sancho C. Pharmacological and neuroethological study of the acute and chronic effects of lamotrigine in the genetic audiogenic seizure hamster (GASH:Sal). Epilepsy Behav 2017; 71(Pt B): 207-17.
[http://dx.doi.org/10.1016/j.yebeh.2015.11.005] [PMID: 26876275]
[37]
Paxinos G, Watson C. The rat brain in stereotaxic coordinates: hard cover edition. Elsevier 2007.
[38]
Hartree EF. Determination of protein: A modification of the lowry method that gives a linear photometric response. Anal Biochem 1972; 48(2): 422-7.
[http://dx.doi.org/10.1016/0003-2697(72)90094-2] [PMID: 4115981]
[39]
Garcia-Cairasco N, Wakamatsu H, Oliveira JAC, Gomes ELT, Del Bel EA, Mello LEAM. Neuroethological and morphological (Neo-Timm staining) correlates of limbic recruitment during the development of audiogenic kindling in seizure susceptible Wistar rats. Epilepsy Res 1996; 26(1): 177-92.
[http://dx.doi.org/10.1016/S0920-1211(96)00050-2] [PMID: 8985699]
[40]
Katz PS. The golden age of comparative neuroethology on display in Japan. Brain Behav Evol 2014; 84(4): 243-5.
[http://dx.doi.org/10.1159/000367885] [PMID: 25341457]
[41]
Dal-Cól MLC, Terra-Bustamante VC, Velasco TR, Oliveira JAC, Sakamoto AC, Garcia-Cairasco N. Neuroethology application for the study of human temporal lobe epilepsy: From basic to applied sciences. Epilepsy Behav 2006; 8(1): 149-60.
[http://dx.doi.org/10.1016/j.yebeh.2005.08.010] [PMID: 16246630]
[42]
Bertti P, Dal-Cól MLC, Wichert-Ana L, et al. The neurobiological substrates of behavioral manifestations during temporal lobe seizures: A neuroethological and ictal SPECT correlation study. Epilepsy Behav 2010; 17(3): 344-53.
[http://dx.doi.org/10.1016/j.yebeh.2009.12.030] [PMID: 20153261]
[43]
Tejada J, Costa KM, Bertti P, Garcia-Cairasco N. The epilepsies: Complex challenges needing complex solutions. Epilepsy Behav 2013; 26(3): 212-28.
[http://dx.doi.org/10.1016/j.yebeh.2012.09.029] [PMID: 23146364]
[44]
McCown TJ, Greenwood RS, Frye GD, Breese GR. Electrically elicited seizures from the inferior colliculus: A potential site for the genesis of epilepsy? Exp Neurol 1984; 86(3): 527-42.
[http://dx.doi.org/10.1016/0014-4886(84)90087-6] [PMID: 6437856]
[45]
Bagri A, Sandner G, Di Scala G. Wild running and switch-off behavior elicited by electrical stimulation of the inferior colliculus: Effect of anticonvulsant drugs. Pharmacol Biochem Behav 1991; 39(3): 683-8.
[http://dx.doi.org/10.1016/0091-3057(91)90147-T] [PMID: 1784596]
[46]
Bagri A, Di Scala G, Sandner G. Wild running elicited by microinjections of bicuculline or morphine into the inferior colliculus of rats: Lack of effect of periaqueductal gray lesions. Pharmacol Biochem Behav 1992; 41(4): 727-32.
[http://dx.doi.org/10.1016/0091-3057(92)90219-6] [PMID: 1594640]
[47]
McCown TJ, Duncan GE, Johnson KB, Breese GR. Metabolic and functional mapping of the neural network subserving inferior collicular seizure generalization. Brain Res 1995; 701(1-2): 117-28.
[http://dx.doi.org/10.1016/0006-8993(95)00970-X] [PMID: 8925273]
[48]
Sandoval MRL, Dorce VAC. Behavioural and electroencephalographic effects of Tityus serrulatus scorpion venom in rats. Toxicon 1993; 31(2): 205-12.
[http://dx.doi.org/10.1016/0041-0101(93)90287-S] [PMID: 8456448]
[49]
Nencioni ALA, Carvalho FF, Lebrun I, Dorce VAC, Sandoval MRL. Neurotoxic effects of three fractions isolated from Tityus serrulatus scorpion venom. Pharmacol Toxicol 2000; 86(4): 149-55.
[http://dx.doi.org/10.1034/j.1600-0773.2000.d01-28.x] [PMID: 10815747]
[50]
Romcy-Pereira RN, Garcia-Cairasco N. Hippocampal cell proliferation and epileptogenesis after audiogenic kindling are not accompanied by mossy fiber sprouting or fluoro-jade staining. Neuroscience 2003; 119(2): 533-46.
[http://dx.doi.org/10.1016/S0306-4522(03)00191-X] [PMID: 12770566]
[51]
Dutra Moraes MF, Galvis-Alonso OY, Garcia-Cairasco N. Audiogenic kindling in the Wistar rat: a potential model for recruitment of limbic structures. Epilepsy Res 2000; 39(3): 251-9.
[http://dx.doi.org/10.1016/S0920-1211(00)00107-8] [PMID: 10771251]
[52]
Jobe PC, Laird HE. Neurotransmitter abnormalities as determinants of seizure susceptibility and intensity in the genetic models of epilepsy. Biochem Pharmacol 1981; 30(23): 3137-44.
[http://dx.doi.org/10.1016/0006-2952(81)90510-4] [PMID: 6119088]
[53]
Schmitt P, Sandner G, Karli P. Escape and approach induced by brain stimulation:A parametric analysis. Behav Brain Res 1981; 2(1): 49-79.
[http://dx.doi.org/10.1016/0166-4328(81)90038-3] [PMID: 7225219]
[54]
Sandner G, Schmitt P, Karli P. Mapping of jumping, rearing, squealing and switch-off behaviors elicited by periaqueductal gray stimulation in the rat. Physiol Behav 1987; 39(3): 333-9.
[http://dx.doi.org/10.1016/0031-9384(87)90231-9] [PMID: 3575473]
[55]
Depoortere R, Sandner G, Di Scala G. Aversion induced by electrical stimulation of the mesencephalic locomotor region in the intact and freely moving rat. Physiol Behav 1990; 47(3): 561-7.
[http://dx.doi.org/10.1016/0031-9384(90)90127-P] [PMID: 2359770]
[56]
Castilho V, Avanzi V, Brandão ML. Antinociception elicited by aversive stimulation of the inferior colliculus. Pharmacol Biochem Behav 1999; 62(3): 425-31.
[http://dx.doi.org/10.1016/S0091-3057(98)00197-X] [PMID: 10080233]
[57]
Castilho VM, Brandão ML. Conditioned antinociception and freezing using electrical stimulation of the dorsal periaqueductal gray or inferior colliculus as unconditioned stimulus are differentially regulated by 5-HT2A receptors in rats. Psychopharmacology (Berl) 2001; 155(2): 154-62.
[http://dx.doi.org/10.1007/s002130100697] [PMID: 11401004]
[58]
Garbuz DG, Davletshin AA, Litvinova SA, Fedotova IB, Surina NM, Poletaeva II. Rodent models of audiogenic epilepsy: Genetic aspects, advantages, current problems and perspectives. Biomedicines 2022; 10(11): 2934.
[http://dx.doi.org/10.3390/biomedicines10112934] [PMID: 36428502]
[59]
Rossetti F, Rodrigues MCA, de Oliveira JAC, Garcia-Cairasco N. Behavioral and EEG effects of GABAergic manipulation of the nigrotectal pathway in the Wistar audiogenic rat strain. Epilepsy Behav 2011; 22(2): 191-9.
[http://dx.doi.org/10.1016/j.yebeh.2011.06.033] [PMID: 21820967]
[60]
Rossetti F, Rodrigues MCA, Marroni SS, et al. Behavioral and EEG effects of GABAergic manipulation of the nigro-tectal pathway in the Wistar audiogenic rat (WAR) strain II: An EEG wavelet analysis and retrograde neuronal tracer approach. Epilepsy Behav 2012; 24(4): 391-8.
[http://dx.doi.org/10.1016/j.yebeh.2012.04.133] [PMID: 22704998]
[61]
Seymour PA, Mena EE. In vivo NMDA antagonist activity of the polyamine spider venom component, argiotoxin-636. Proc Natl Acad Sci 1989; 463: 24.
[62]
Jackson H, Parks TN. Anticonvulsant action of an arylamine-containing fraction from Agelenopsis spider venom. Brain Res 1990; 526(2): 338-41.
[http://dx.doi.org/10.1016/0006-8993(90)91243-A] [PMID: 2257489]
[63]
Takazawa A, Yamazaki O, Kanai H, Ishida N, Kato N, Yamauchi T. Potent and long-lasting anticonvulsant effects of 1-naphthylacetyl spermine, an analogue of Joro spider toxin, against amygdaloid kindled seizures in rats. Brain Res 1996; 706(1): 173-6.
[http://dx.doi.org/10.1016/0006-8993(95)01334-2] [PMID: 8720508]
[64]
Twede VD, Miljanich G, Olivera BM, Bulaj G. Neuroprotective and cardioprotective conopeptides: An emerging class of drug leads. Curr Opin Drug Discov Devel 2009; 12(2): 231-9.
[PMID: 19333868]
[65]
Jackson HC, Scheideler MA. Behavioural and anticonvulsant effects of Ca2+ channel toxins in DBA/2 mice. Psychopharmacology 1996; 126(1): 85-90.
[http://dx.doi.org/10.1007/BF02246415] [PMID: 8853221]
[66]
Krystal JH. Neuroethology as a translational neuroscience strategy in the era of the NIMH Research Domain Criteria. Psychophysiology 2016; 53(3): 364-6.
[http://dx.doi.org/10.1111/psyp.12465] [PMID: 26877127]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy