Generic placeholder image

Current Signal Transduction Therapy

Editor-in-Chief

ISSN (Print): 1574-3624
ISSN (Online): 2212-389X

Mini-Review Article

The Regulatory Role of Circular RNAs as miRNA Sponges in Cervical Cancer

Author(s): Sajad Najafi, Farhoodeh Ghaedrahmati, Mahrokh Abouali Gale Dari, Maryam Farzaneh* and Razieh Mohammad Jafari

Volume 18, Issue 3, 2023

Published on: 24 November, 2023

Article ID: e241123223777 Pages: 9

DOI: 10.2174/0115743624273536231105142321

Price: $65

Open Access Journals Promotions 2
Abstract

Cervical cancer is ranked as the fourth most frequently diagnosed cancer and the fourth leading cause of cancer-related deaths among females. Cervical cancer is a complex disease influenced by various genetic, epigenetic, and environmental factors. While treatment options such as radiotherapy, chemotherapy, and hormonal therapy exist, the prognosis remains poor due to high rates of distant and lymphatic metastasis. Recent research has shed light on the role of non-coding RNAs (ncRNAs) in cervical cancer development, with circular RNAs (circRNAs) emerging as a potentially significant regulator of cellular processes. Through targeting miRNAs/mRNAs, circRNAs can impact cell growth and invasion in cervical cancer cells, making them a promising biomarker for diagnosis and treatment. This review provides an overview of the functional roles of circRNAs in the context of cervical cancer.

Keywords: ncRNAs, circRNAs, cervical cancer, pathogenesis, diagnosis, biomarker.

[1]
Sung H, Ferlay J, Siegel RL, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 can-cers in 185 countries. CA Cancer J Clin 2021; 71(3): 209-49.
[http://dx.doi.org/10.3322/caac.21660] [PMID: 33538338]
[2]
Hillemanns P, Soergel P, Hertel H, Jentschke M. Epidemiology and early detection of cervical cancer. Oncol Res Treat 2016; 39(9): 501-6.
[http://dx.doi.org/10.1159/000448385] [PMID: 27614953]
[3]
Staley H, Shiraz A, Shreeve N, Bryant A, Martin-Hirsch PP, Gajjar K. Interventions targeted at women to encourage the uptake of cervical screening. Cochrane Database Syst Rev 2021; 9(9): CD002834.
[PMID: 34694000]
[4]
Walboomers JM, Jacobs MV, Manos MM, et al. Human papillomavirus is a necessary cause of invasive cervical cancer worldwide. J Pathol 1999; 189(1): 12-9.
[http://dx.doi.org/10.1002/(SICI)1096-9896(199909)189:1<12:AID-PATH431>3.0.CO;2-F] [PMID: 10451482]
[5]
de Martel C, Plummer M, Vignat J, Franceschi S. Worldwide burden of cancer attributable to HPV by site, country and HPV type. Int J Cancer 2017; 141(4): 664-70.
[http://dx.doi.org/10.1002/ijc.30716] [PMID: 28369882]
[6]
Marth C, Landoni F, Mahner S, McCormack M, Gonzalez-Martin A, Colombo N. Cervical cancer: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann Oncol 2017; 28 (Suppl. 4): iv72-83.
[http://dx.doi.org/10.1093/annonc/mdx220] [PMID: 28881916]
[7]
Tsikouras P, Zervoudis S, Manav B, et al. Cervical cancer: Screening, diagnosis and staging. J BUON 2016; 21(2): 320-5.
[PMID: 27273940]
[8]
Johnson CA, James D, Marzan A, Armaos M. Cervical cancer: An overview of pathophysiology and managementSeminars in oncology nursing. Elsevier 2019; pp. 166-74.
[http://dx.doi.org/10.1016/j.soncn.2019.02.003]
[9]
Mezei AK, Armstrong HL, Pedersen HN, et al. Cost-effectiveness of cervical cancer screening methods in low- and middle-income countries: A systematic review. Int J Cancer 2017; 141(3): 437-46.
[http://dx.doi.org/10.1002/ijc.30695] [PMID: 28297074]
[10]
Burmeister CA, Khan SF, Schäfer G, et al. Cervical cancer therapies: Current challenges and future perspectives. Tumour Virus Research 2022; p. 200238.
[11]
Xu Z, Yan Y, Zeng S, et al. Circular RNAs: Clinical relevance in cancer. Oncotarget 2018; 9(1): 1444-60.
[http://dx.doi.org/10.18632/oncotarget.22846] [PMID: 29416705]
[12]
Meng S, Zhou H, Feng Z, et al. CircRNA: Functions and properties of a novel potential biomarker for cancer. Mol Cancer 2017; 16(1): 94.
[http://dx.doi.org/10.1186/s12943-017-0663-2] [PMID: 28535767]
[13]
Chen LL. The expanding regulatory mechanisms and cellular functions of circular RNAs. Nat Rev Mol Cell Biol 2020; 21(8): 475-90.
[http://dx.doi.org/10.1038/s41580-020-0243-y] [PMID: 32366901]
[14]
Kristensen LS, Andersen MS, Stagsted LVW, Ebbesen KK, Hansen TB, Kjems J. The biogenesis, biology and characterization of circular RNAs. Nat Rev Genet 2019; 20(11): 675-91.
[http://dx.doi.org/10.1038/s41576-019-0158-7] [PMID: 31395983]
[15]
Chen LL, Yang L. Regulation of circRNA biogenesis. RNA Biol 2015; 12(4): 381-8.
[http://dx.doi.org/10.1080/15476286.2015.1020271] [PMID: 25746834]
[16]
Memczak S, Jens M, Elefsinioti A, et al. Circular RNAs are a large class of animal RNAs with regulatory potency. Nature 2013; 495(7441): 333-8.
[http://dx.doi.org/10.1038/nature11928] [PMID: 23446348]
[17]
Jeck WR, Sorrentino JA, Wang K, et al. Circular RNAs are abundant, conserved, and associated with ALU repeats. RNA 2013; 19(2): 141-57.
[http://dx.doi.org/10.1261/rna.035667.112] [PMID: 23249747]
[18]
Hallajzadeh J, Amirani E, Mirzaei H, et al. Circular RNAs: New genetic tools in melanoma. Biomarkers Med 2020; 14(7): 563-71.
[http://dx.doi.org/10.2217/bmm-2019-0567] [PMID: 32462914]
[19]
Conn SJ, Pillman KA, Toubia J, et al. The RNA binding protein quaking regulates formation of circRNAs. Cell 2015; 160(6): 1125-34.
[http://dx.doi.org/10.1016/j.cell.2015.02.014] [PMID: 25768908]
[20]
Errichelli L, Dini Modigliani S, Laneve P, et al. FUS affects circular RNA expression in murine embryonic stem cell-derived motor neu-rons. Nat Commun 2017; 8(1): 14741.
[http://dx.doi.org/10.1038/ncomms14741] [PMID: 28358055]
[21]
Zhang XO, Wang HB, Zhang Y, Lu X, Chen LL, Yang L. Complementary sequence-mediated exon circularization. Cell 2014; 159(1): 134-47.
[http://dx.doi.org/10.1016/j.cell.2014.09.001] [PMID: 25242744]
[22]
Liang D, Wilusz JE. Short intronic repeat sequences facilitate circular RNA production. Genes Dev 2014; 28(20): 2233-47.
[http://dx.doi.org/10.1101/gad.251926.114] [PMID: 25281217]
[23]
Ivanov A, Memczak S, Wyler E, et al. Analysis of intron sequences reveals hallmarks of circular RNA biogenesis in animals. Cell Rep 2015; 10(2): 170-7.
[http://dx.doi.org/10.1016/j.celrep.2014.12.019] [PMID: 25558066]
[24]
Barrett SP, Wang PL, Salzman J. Circular RNA biogenesis can proceed through an exon-containing lariat precursor. elife 2015; 4: e07540.
[http://dx.doi.org/10.7554/eLife.07540]
[25]
Zhang Y, Zhang XO, Chen T, et al. Circular intronic long noncoding RNAs. Mol Cell 2013; 51(6): 792-806.
[http://dx.doi.org/10.1016/j.molcel.2013.08.017] [PMID: 24035497]
[26]
Noto JJ, Schmidt CA, Matera AG. Engineering and expressing circular RNAs via tRNA splicing. RNA Biol 2017; 14(8): 978-84.
[http://dx.doi.org/10.1080/15476286.2017.1317911] [PMID: 28402213]
[27]
Tang X, Ren H, Guo M, Qian J, Yang Y, Gu C. Review on circular RNAs and new insights into their roles in cancer. Comput Struct Biotechnol J 2021; 19: 910-28.
[http://dx.doi.org/10.1016/j.csbj.2021.01.018] [PMID: 33598105]
[28]
Dong P, Xu D, Xiong Y, et al. The expression, functions and mechanisms of circular rnas in gynecological cancers. Cancers 2020; 12(6): 1472.
[http://dx.doi.org/10.3390/cancers12061472] [PMID: 32512912]
[29]
Liu J, Zhu H, Fu L, Xu T. Investigating the underlying mechanisms of circular rnas and their application in clinical research of cervical cancer. Front Genet 2021; 12: 653051.
[http://dx.doi.org/10.3389/fgene.2021.653051] [PMID: 33841509]
[30]
Bach DH, Lee SK, Sood AK. Circular RNAs in cancer. Mol Ther Nucleic Acids 2019; 16: 118-29.
[http://dx.doi.org/10.1016/j.omtn.2019.02.005] [PMID: 30861414]
[31]
Najafi S. The emerging roles and potential applications of circular RNAs in ovarian cancer: A comprehensive review. J Cancer Res Clin Oncol 2023; 149(5): 2211-34.
[PMID: 36053324]
[32]
O’Brien J, Hayder H, Zayed Y, Peng C. Overview of MicroRNA biogenesis, mechanisms of actions, and circulation. Front Endocrinol 2018; 9: 402.
[http://dx.doi.org/10.3389/fendo.2018.00402] [PMID: 30123182]
[33]
Sarkar D, Diermeier SD. Circular RNAs: Potential applications as therapeutic targets and biomarkers in breast cancer. Noncoding RNA 2021; 7(1): 2.
[http://dx.doi.org/10.3390/ncrna7010002] [PMID: 33466455]
[34]
Shen H, Liu B, Xu J, et al. Circular RNAs: Characteristics, biogenesis, mechanisms and functions in liver cancer. J Hematol Oncol 2021; 14(1): 134.
[http://dx.doi.org/10.1186/s13045-021-01145-8] [PMID: 34461958]
[35]
Wang C, Tan S, Li J, Liu WR, Peng Y, Li W. CircRNAs in lung cancer - biogenesis, function and clinical implication. Cancer Lett 2020; 492: 106-15.
[http://dx.doi.org/10.1016/j.canlet.2020.08.013] [PMID: 32860847]
[36]
Long F, Lin Z, Li L, et al. Comprehensive landscape and future perspectives of circular RNAs in colorectal cancer. Mol Cancer 2021; 20(1): 26.
[http://dx.doi.org/10.1186/s12943-021-01318-6] [PMID: 33536039]
[37]
Perez de Acha O, Rossi M, Gorospe M. Circular RNAs in blood malignancies. Front Mol Biosci 2020; 7: 109.
[http://dx.doi.org/10.3389/fmolb.2020.00109] [PMID: 32676504]
[38]
Najafi S. Circular RNAs as emerging players in cervical cancer tumorigenesis; A review to roles and biomarker potentials. Int J Biol Macromol 2022; 206: 939-53.
[http://dx.doi.org/10.1016/j.ijbiomac.2022.03.103] [PMID: 35318084]
[39]
Chaichian S, Shafabakhsh R, Mirhashemi SM, Moazzami B, Asemi Z. Circular RNAs: A novel biomarker for cervical cancer. J Cell Physiol 2020; 235(2): 718-24.
[http://dx.doi.org/10.1002/jcp.29009] [PMID: 31240697]
[40]
Shi Y, He R, Yang Y, et al. Circular RNAs: Novel biomarkers for cervical, ovarian and endometrial cancer (Review). Oncol Rep 2020; 44(5): 1787-98.
[http://dx.doi.org/10.3892/or.2020.7780] [PMID: 33000238]
[41]
Tornesello ML, Faraonio R, Buonaguro L, et al. The role of microRNAs, long non-coding RNAs, and circular RNAs in cervical cancer. Front Oncol 2020; 10: 150.
[http://dx.doi.org/10.3389/fonc.2020.00150] [PMID: 32154165]
[42]
Branchini BR, Southworth TL, Fontaine DM, Kohrt D, Florentine CM, Grossel MJ. A firefly luciferase dual color bioluminescence report-er assay using two substrates to simultaneously monitor two gene expression events. Sci Rep 2018; 8(1): 5990.
[http://dx.doi.org/10.1038/s41598-018-24278-2] [PMID: 29662072]
[43]
Dori M, Caroli J, Forcato M. Circr, a Computational Tool to Identify miRNA:circRNA Associations. Front Bioinform 2022; p. 2.
[http://dx.doi.org/10.3389/fbinf.2022.852834]
[44]
Tang Q, Chen Z, Zhao L, Xu H. Circular RNA hsa_circ_0000515 acts as a miR-326 sponge to promote cervical cancer progression through up-regulation of ELK1. Aging 2019; 11(22): 9982-99.
[http://dx.doi.org/10.18632/aging.102356] [PMID: 31772143]
[45]
Lin L, Li N, Hu X, Sun J, He Y. Identification of circ_0085616 as an upregulated and oncogenic circular rna in cervical cancer Via the miR-503-5p-Mediated ATXN7L3 activation. Cancer Biother Radiopharm 2020; cbr.2020.3865.
[http://dx.doi.org/10.1089/cbr.2020.3865] [PMID: 33090006]
[46]
Li Y, Tang Y, Li Z, Hou G, Du X. CircSOS2 promotes cervical squamous cell carcinoma by regulation of proliferation, cell cycle, apopto-sis, migration, invasion, and glycolysis by targeting miR-543/FNDC3B axis. Arch Biochem Biophys 2021; 708: 108925.
[http://dx.doi.org/10.1016/j.abb.2021.108925] [PMID: 34023283]
[47]
Wu P, Li C, Ye D, et al. Circular RNA circEPSTI1 accelerates cervical cancer progression via miR-375/409-3P/515-5p-SLC7A11 axis. Aging 2021; 13(3): 4663-73.
[http://dx.doi.org/10.18632/aging.202518] [PMID: 33534779]
[48]
Chen M, Ai G, Zhou J, Mao W, Li H, Guo J. circMTO1 promotes tumorigenesis and chemoresistance of cervical cancer via regulating miR-6893. Biomed Pharmacother 2019; 117: 109064.
[http://dx.doi.org/10.1016/j.biopha.2019.109064] [PMID: 31226633]
[49]
Zhang J, Cai R, Zhang Y, Wang X. Involvement of a novel circularRNA, hsa_circ_0000520, attenuates tumorigenesis of cervical cancer cell through competitively binding with miR‐146b‐3p. J Cell Mol Med 2020; 24(15): 8480-90.
[http://dx.doi.org/10.1111/jcmm.15414] [PMID: 32592222]
[50]
Yuan DD, Jia CD, Yan MY, Wang J. Circular RNA hsa_circ_0000730 restrains cell proliferation, migration, and invasion in cervical can-cer through miR ‐942‐5p/PTEN axis. Kaohsiung J Med Sci 2021; 37(11): 964-72.
[http://dx.doi.org/10.1002/kjm2.12443] [PMID: 34562344]
[51]
Tian JDC, Liang L. Involvement of circular RNA SMARCA5/microRNA-620 axis in the regulation of cervical cancer cell proliferation, invasion and migration. Eur Rev Med Pharmacol Sci 2018; 22(24): 8589-98.
[PMID: 30575898]
[52]
Xu J, Zhang Y, Huang Y, et al. circEYA1 functions as a sponge of miR-582-3p to suppress cervical adenocarcinoma tumorigenesis via upregulating CXCL14. Mol Ther Nucleic Acids 2020; 22: 1176-90.
[http://dx.doi.org/10.1016/j.omtn.2020.10.026] [PMID: 33312754]
[53]
Zhang C, Liu P, Huang J, et al. Circular RNA hsa_circ_0043280 inhibits cervical cancer tumor growth and metastasis via miR-203a-3p/PAQR3 axis. Cell Death Dis 2021; 12(10): 888-.
[http://dx.doi.org/10.1038/s41419-021-04193-7] [PMID: 34588429]
[54]
Li J, Guo R, Liu Q, Sun J, Wang H, Circular RNA. Circ-ITCH inhibits the malignant behaviors of cervical cancer by microRNA-93-5p/FOXK2 axis. Reprod Sci 2020; 27(3): 860-8.
[http://dx.doi.org/10.1007/s43032-020-00140-7] [PMID: 31993998]
[55]
Cai H, Zhang P, Xu M, Yan L, Liu N, Wu X. Circular RNA hsa_circ_0000263 participates in cervical cancer development by regulating target gene of miR‐150‐5p. J Cell Physiol 2019; 234(7): 11391-400.
[http://dx.doi.org/10.1002/jcp.27796] [PMID: 30569515]
[56]
Yang S, Jiang Y, Ren X, et al. FOXA1-induced circOSBPL10 potentiates cervical cancer cell proliferation and migration through miR-1179/UBE2Q1 axis. Cancer Cell Int 2020; 20(1): 389-9.
[http://dx.doi.org/10.1186/s12935-020-01360-2] [PMID: 32831649]
[57]
Zhao X, Dong W, Luo G, Xie J, Liu J, Yu F. Silencing of hsa_circ_0009035 suppresses cervical cancer progression and enhances radio-sensitivity through MicroRNA 889-3p-dependent regulation of HOXB7. Mol Cell Biol 2021; 41(6): e00631-20.
[http://dx.doi.org/10.1128/MCB.00631-20] [PMID: 33782039]
[58]
Xu AL, Wang WS, Zhao MY, Sun JN, Chen XR, Hou JQ. Circular RNA circ_0011385 promotes cervical cancer progression through com-petitively binding to miR ‐149‐5p and up‐regulating SOX4 expression. Kaohsiung J Med Sci 2021; 37(12): 1058-68.
[http://dx.doi.org/10.1002/kjm2.12432] [PMID: 34369654]
[59]
Ji F, Du R, Chen T, et al. Circular RNA circSLC26A4 accelerates cervical cancer progression via miR-1287-5p/HOXA7 axis. Mol Ther Nucleic Acids 2020; 19: 413-20.
[http://dx.doi.org/10.1016/j.omtn.2019.11.032] [PMID: 31896069]
[60]
Ma N, Li X, Wei H, Zhang H, Zhang S. Circular RNA circNFATC3 acts as a miR-9-5p sponge to promote cervical cancer development by upregulating SDC2. Cell Oncol (Dordr) 2021; 44(1): 93-107.
[http://dx.doi.org/10.1007/s13402-020-00555-z] [PMID: 32902825]
[61]
Song T, Xu A, Zhang Z, et al. CircRNA hsa_circRNA_101996 increases cervical cancer proliferation and invasion through activating TPX2 expression by restraining miR‐8075. J Cell Physiol 2019; 234(8): 14296-305.
[http://dx.doi.org/10.1002/jcp.28128] [PMID: 30633364]
[62]
Qian W, Huang T, Feng W. Circular RNA HIPK3 promotes EMT of cervical cancer through sponging miR-338-3p to up-regulate HIF-1α. Cancer Manag Res 2020; 12: 177-87.
[http://dx.doi.org/10.2147/CMAR.S232235] [PMID: 32021434]
[63]
Song TF, Xu AL, Chen XH, Gao JY, Gao F, Kong XC. Circular RNA circRNA_101996 promoted cervical cancer development by regulat-ing miR ‐1236‐3p/TRIM37 axis. Kaohsiung J Med Sci 2021; 37(7): 547-61.
[http://dx.doi.org/10.1002/kjm2.12378] [PMID: 33728810]
[64]
Chen L, Zhang X, Wang S, Lin X, Xu L. Circ_0084927 facilitates cervical cancer development via sponging miR-142-3p and upregulating ARL2. Cancer Manag Res 2020; 12: 9271-83.
[http://dx.doi.org/10.2147/CMAR.S263596] [PMID: 33061617]
[65]
Rong X, Gao W, Yang X, Guo J. Downregulation of hsa_circ_0007534 restricts the proliferation and invasion of cervical cancer through regulating miR-498/BMI-1 signaling. Life Sci 2019; 235: 116785.
[http://dx.doi.org/10.1016/j.lfs.2019.116785] [PMID: 31445025]
[66]
Ding Y, Yuan X, Gu W. Circular RNA RBM33 contributes to cervical cancer progression via modulation of the miR-758-3p/PUM2 axis. J Mol Histol 2021; 52(2): 173-85.
[http://dx.doi.org/10.1007/s10735-020-09933-1] [PMID: 33398465]
[67]
Tian Y, Xu Z, Fu J. CircularRNA-9119 promotes the proliferation of cervical cancer cells by sponging miR-126/MDM4. Mol Cell Biochem 2020; 470(1-2): 53-62.
[http://dx.doi.org/10.1007/s11010-020-03745-3] [PMID: 32385717]
[68]
Fan S, Zhao S, Gao X, et al. Circular RNA circGSE1 promotes cervical cancer progression through miR-138-5p/Vimentin. OncoTargets Ther 2020; 13: 13371-86.
[http://dx.doi.org/10.2147/OTT.S282425] [PMID: 33408484]
[69]
Zhou B, Li T, Xie R, et al. CircFAT1 facilitates cervical cancer malignant progression by regulating ERK1/2 and p38 MAPK pathway through miR ‐409‐3p/CDK8 axis. Drug Dev Res 2021; 82(8): 1131-43.
[http://dx.doi.org/10.1002/ddr.21816] [PMID: 33818788]
[70]
Chen H, Gu B, Zhao X, et al. Circular RNA hsa_circ_0007364 increases cervical cancer progression through activating methionine adeno-syltransferase II alpha (MAT2A) expression by restraining microRNA-101-5p. Bioengineered 2020; 11(1): 1269-79.
[http://dx.doi.org/10.1080/21655979.2020.1832343] [PMID: 33138667]
[71]
Meng L, Jia X, Yu W, Wang C, Chen J, Liu F. Circular RNA UBAP2 contributes to tumor growth and metastasis of cervical cancer via modulating miR-361-3p/SOX4 axis. Cancer Cell Int 2020; 20(1): 357-7.
[http://dx.doi.org/10.1186/s12935-020-01436-z] [PMID: 32760224]
[72]
Ma H-B, Yao Y-N, Yu J-J, Chen X-X, Li H-F. Extensive profiling of circular RNAs and the potential regulatory role of circRNA-000284 in cell proliferation and invasion of cervical cancer via sponging miR-506. Am J Transl Res 2018; 10(2): 592-604.
[PMID: 29511454]
[73]
Huang P, Qi B, Yao H, Zhang L, Li Y, Li Q. Circular RNA cSMARCA5 regulates the progression of cervical cancer by acting as a microRNA 432 sponge. Mol Med Rep 2020; 21(3): 1217-23.
[http://dx.doi.org/10.3892/mmr.2020.10910] [PMID: 31922210]
[74]
Wang Z, Ren C, Yang L, et al. Silencing of circular RNA_0000326 inhibits cervical cancer cell proliferation, migration and invasion by boosting microRNA-338-3p-dependent down-regulation of CDK4. Aging 2021; 13(6): 9119-34.
[http://dx.doi.org/10.18632/aging.103711] [PMID: 33735107]
[75]
Shao S, Wang C, Wang S, Zhang H, Zhang Y. Hsa_circ_0075341 is up-regulated and exerts oncogenic properties by sponging miR-149-5p in cervical cancer. Biomed Pharmacother 2020; 121: 109582.
[http://dx.doi.org/10.1016/j.biopha.2019.109582] [PMID: 31706100]
[76]
Chen Z, Ling K, Zhu Y, Deng L, Li Y, Liang Z. circ0000069 promotes cervical cancer cell proliferation and migration by inhibiting miR-4426. Biochem Biophys Res Commun 2021; 551: 114-20.
[http://dx.doi.org/10.1016/j.bbrc.2021.03.020] [PMID: 33725572]
[77]
Shi P, Zhang X, Lou C, Xue Y, Guo R, Chen S. Hsa_circ_0084927 regulates cervical cancer advancement via regulation of the miR-634/TPD52 axis. Cancer Manag Res 2020; 12: 9435-48.
[http://dx.doi.org/10.2147/CMAR.S272478] [PMID: 33061631]
[78]
Meng Q, Li Y, Kong C, Gao X, Jiang X. Circ_0000388 exerts oncogenic function in cervical cancer cells by regulating miR-337-3p/TCF12 axis. Cancer Biother Radiopharm 2021; 36(1): 58-69.
[http://dx.doi.org/10.1089/cbr.2019.3159] [PMID: 32119786]
[79]
Hong H, Zhu H, Zhao S, et al. The novel circCLK3/miR-320a/FoxM1 axis promotes cervical cancer progression. Cell Death Dis 2019; 10(12): 950-0.
[http://dx.doi.org/10.1038/s41419-019-2183-z] [PMID: 31831728]
[80]
Xu YJ, Yu H, Liu GX. Hsa_circ_0031288/hsa‐miR‐139‐3p/Bcl‐6 regulatory feedback circuit influences the invasion and migration of cervical cancer HeLa cells. J Cell Biochem 2020; 121(10): 4251-60.
[http://dx.doi.org/10.1002/jcb.29650] [PMID: 32277518]
[81]
Zhang Y, Li X, Zhang J, Mao L. Circ-CCDC66 upregulates REXO1 expression to aggravate cervical cancer progression via restraining miR-452-5p. Cancer Cell Int 2021; 21(1): 20.
[http://dx.doi.org/10.1186/s12935-020-01732-8] [PMID: 33407514]
[82]
Wang J, Li H, Liang Z. circ-MYBL2 serves as a sponge For miR-361-3p promoting cervical cancer cells proliferation and invasion. OncoTargets Ther 2019; 12: 9957-64.
[http://dx.doi.org/10.2147/OTT.S218976] [PMID: 31819492]
[83]
Li X, Ma N, Zhang Y, et al. Circular RNA circNRIP1 promotes migration and invasion in cervical cancer by sponging miR-629-3p and regulating the PTP4A1/ERK1/2 pathway. Cell Death Dis 2020; 11(5): 399-9.
[http://dx.doi.org/10.1038/s41419-020-2607-9] [PMID: 32457332]
[84]
Xie H, Wang J, Wang B. Circular RNA Circ_0003221 promotes cervical cancer progression by regulating miR-758-3p/CPEB4 axis. Cancer Manag Res 2021; 13: 5337-50.
[http://dx.doi.org/10.2147/CMAR.S311242] [PMID: 34262342]
[85]
Hu C, Wang Y, Li A, Zhang J, Xue F, Zhu L. Overexpressed circ_0067934 acts as an oncogene to facilitate cervical cancer progression via the miR‐545/EIF3C axis. J Cell Physiol 2019; 234(6): 9225-32.
[http://dx.doi.org/10.1002/jcp.27601] [PMID: 30362562]
[86]
Wang W, Xu A, Zhao M, Sun J, Gao L. Circ_0001247 functions as a miR-1270 sponge to accelerate cervical cancer progression by up-regulating ZEB2 expression level. Biotechnol Lett 2021; 43(3): 745-55.
[http://dx.doi.org/10.1007/s10529-020-03059-w] [PMID: 33386495]
[87]
Tian-zhao D, Yang Y, Xing-xuan W, Yu-xin C, Xue-lian W. Profiling of circular RNAs and circTPCN/miR-634/mTOR regulatory pathway in cervical cancer. Genomics 2021; 113(4): 2253-63.
[http://dx.doi.org/10.1016/j.ygeno.2021.05.026] [PMID: 34029698]
[88]
Yao Z, Shu L, Yi Y, Qiao L. Hsa_circRNA_000543 predicts poor prognosis and promotes cervical cancer cell progression through regu-lating miR-567/ZNF268 axis. Cancer Manag Res 2021; 13: 5211-22.
[http://dx.doi.org/10.2147/CMAR.S302201] [PMID: 34234564]
[89]
Gao YL, Zhang MY, Xu B, et al. Circular RNA expression profiles reveal that hsa_circ_0018289 is up-regulated in cervical cancer and promotes the tumorigenesis. Oncotarget 2017; 8(49): 86625-33.
[http://dx.doi.org/10.18632/oncotarget.21257] [PMID: 29156822]
[90]
Huang D, Li C. circ ACACA promotes proliferation, invasion, migration and glycolysis of cervical cancer cells by targeting the miR 582 5p/ERO1A signaling axis. Oncol Lett 2021; 22(5): 795-5.
[http://dx.doi.org/10.3892/ol.2021.13056] [PMID: 34584570]
[91]
Wu F, Zhou J. CircAGFG1 promotes cervical cancer progression via miR-370-3p/RAF1 signaling. BMC Cancer 2019; 19(1): 1067-7.
[http://dx.doi.org/10.1186/s12885-019-6269-x] [PMID: 31703640]
[92]
Ding L, Zhang H. Circ-ATP8A2 promotes cell proliferation and invasion as a ceRNA to target EGFR by sponging miR-433 in cervical cancer. Gene 2019; 705: 103-8.
[http://dx.doi.org/10.1016/j.gene.2019.04.068] [PMID: 31029604]
[93]
Tang X, Wen X, Li Z, et al. Hsa_circ_0102171 aggravates the progression of cervical cancer through targeting miR‐4465/CREBRF axis. J Cell Physiol 2021; 236(7): 4973-84.
[http://dx.doi.org/10.1002/jcp.30210] [PMID: 33615474]
[94]
Wang Y, Wang L, Wang W, Guo X. Overexpression of circular RNA hsa_circ_0001038 promotes cervical cancer cell progression by act-ing as a ceRNA for miR-337-3p to regulate cyclin-M3 and metastasis-associated in colon cancer 1 expression. Gene 2020; 733: 144273.
[http://dx.doi.org/10.1016/j.gene.2019.144273] [PMID: 31809842]
[95]
Zhang W, Zhang S. Downregulation of circRNA_0000285 suppresses cervical cancer development by regulating miR197-3p–ELK1 axis. Cancer Manag Res 2020; 12: 8663-74.
[http://dx.doi.org/10.2147/CMAR.S253174] [PMID: 32982457]
[96]
Zheng Q, Zhang J, Zhang T, et al. Hsa_circ_0000520 overexpression increases CDK2 expression via miR-1296 to facilitate cervical can-cer cell proliferation. J Transl Med 2021; 19(1): 314-4.
[http://dx.doi.org/10.1186/s12967-021-02953-9] [PMID: 34284793]
[97]
Liu S, Li B, Li Y, Song H. Circular RNA circ_0000228 promotes the malignancy of cervical cancer via microRNA-195-5p/lysyl oxidase-like protein 2 axis. Bioengineered 2021; 12(1): 4397-406.
[http://dx.doi.org/10.1080/21655979.2021.1954846] [PMID: 34308761]
[98]
Xie J, Chen Q, Zhou P, Fan W. Circular RNA hsa_circ_0000511 improves epithelial mesenchymal transition of cervical cancer by regulat-ing hsa-mir-296-5p/HMGA1. J Immunol Res 2021; 2021: 1-17.
[http://dx.doi.org/10.1155/2021/9964538] [PMID: 34136582]
[99]
Wang H, Wei M, Kang Y, Xing J, Zhao Y. Circular RNA circ_PVT1 induces epithelial-mesenchymal transition to promote metastasis of cervical cancer. Aging 2020; 12(20): 20139-51.
[http://dx.doi.org/10.18632/aging.103679] [PMID: 33109773]
[100]
Mao Y, Zhang L, Li Y. circEIF4G2 modulates the malignant features of cervical cancer via the miR 218/HOXA1 pathway. Mol Med Rep 2019; 19(5): 3714-22.
[http://dx.doi.org/10.3892/mmr.2019.10032] [PMID: 30896864]
[101]
Zou H, Chen H, Liu S, Gan X. Identification of a novel circ_0018289/miR-183-5p/TMED5 regulatory network in cervical cancer devel-opment. World J Surg Oncol 2021; 19(1): 246-6.
[http://dx.doi.org/10.1186/s12957-021-02350-y] [PMID: 34404391]
[102]
Yang W, Xie T. Hsa_circ_CSPP1/MiR-361-5p/ITGB1 regulates proliferation and migration of cervical cancer (CC) by modulating the PI3K-Akt signaling pathway. Reprod Sci 2020; 27(1): 132-44.
[http://dx.doi.org/10.1007/s43032-019-00008-5] [PMID: 32046405]
[103]
Liu J, Wang D, Long Z, Liu J, Li W. CircRNA8924 promotes cervical cancer cell proliferation, migration and invasion by competitively binding to MiR-518d-5p/519-5p family and modulating the expression of CBX8. Cell Physiol Biochem 2018; 48(1): 173-84.
[http://dx.doi.org/10.1159/000491716] [PMID: 30007986]
[104]
Ou R, Lv J, Zhang Q, et al. circAMOTL1 motivates AMOTL1 expression to facilitate cervical cancer growth. Mol Ther Nucleic Acids 2020; 19: 50-60.
[http://dx.doi.org/10.1016/j.omtn.2019.09.022] [PMID: 31812104]
[105]
Guo J, Chen M, Ai G, Mao W, Li H, Zhou J. Hsa_circ_0023404 enhances cervical cancer metastasis and chemoresistance through VEGFA and autophagy signaling by sponging miR-5047. Biomed Pharmacother 2019; 115: 108957.
[http://dx.doi.org/10.1016/j.biopha.2019.108957] [PMID: 31082770]
[106]
Ma H, Tian T, Liu X, et al. Upregulated circ_0005576 facilitates cervical cancer progression via the miR-153/KIF20A axis. Biomed Pharmacother 2019; 118: 109311.
[http://dx.doi.org/10.1016/j.biopha.2019.109311] [PMID: 31545253]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy