Generic placeholder image

Current Pharmaceutical Design

Editor-in-Chief

ISSN (Print): 1381-6128
ISSN (Online): 1873-4286

Review Article

A Comprehensive Review on Drug Therapies and Nanomaterials used in Orthodontic Treatment

Author(s): Nitasha Chauhan, Mohit Kumar, Simran Chaurasia, Yogesh Garg, Shruti Chopra and Amit Bhatia*

Volume 29, Issue 39, 2023

Published on: 23 November, 2023

Page: [3154 - 3165] Pages: 12

DOI: 10.2174/0113816128276153231117054242

Price: $65

Abstract

Orthodontic treatment typically requires an extended duration of 1-2 years to complete the treatment. Accelerating the rate of tooth movement during orthodontic treatment is essential for shortening the overall treatment duration. After the completion of orthodontic treatment, a prominent concern arises in the form of orthodontic relapse, where the teeth tend to revert to their original positions. This issue affects approximately 60% of the global population, underscoring the importance of implementing effective measures to address orthodontic relapse. An approach in this regard involves the targeted administration of herbal and synthetic drugs applied directly to the specific area of interest to facilitate tooth movement and prevent orthodontic relapse. Apart from this, researchers are investigating the feasibility of utilizing different types of nanoparticles to improve the process of orthodontic tooth movement. In recent years, there has been a noticeable increase in the number of studies examining the effects of various drugs on orthodontics. However, the currently available literature does not provide significant evidence relating to orthodontic tooth movement. In this review, the authors provide valuable information about the drugs and nanomaterials that are capable of further enhancing the rate of orthodontic tooth movement and reducing the risk of orthodontic relapse. However, a notable hurdle remains, i.e., there is no marketed formulation available that can enhance orthodontic tooth movement and reduce treatment time. Therefore, researchers should try herbal-synthetic approaches to achieve a synergistic effect that can enhance orthodontic tooth movement. In this nutshell, there is an urgent need to develop a non-invasive, patient-compliant, and cost-effective formulation that will provide quality treatment and ultimately reduce the treatment time. Another critical issue is orthodontic relapse, which can be addressed by employing drugs that slow down osteoclastogenesis, thereby preventing tooth movement after treatment. Nevertheless, extensive research is still required to overcome this challenge in the future.

Keywords: Orthodontic tooth movement, orthodontic relapse, osteoclast, RANKL, nanomaterial, drug therapies.

[1]
Becker A. Orthodontic treatment of impacted teeth. John Wiley & Sons 2012; 133: pp. 330-1.
[http://dx.doi.org/10.1002/9781118709641]
[2]
Sennimalai K, Selvaraj M, Mohaideen K, Gothankar G, Arora G. Effect of oral environment on contemporary orthodontic materials and its clinical implications. J Orthod Sci 2023; 12(1): 1-8.
[http://dx.doi.org/10.4103/jos.jos_73_22] [PMID: 37351388]
[3]
Archambault A, Lacoursiere R, Badawi H, Major PW, Carey J, Flores-Mir C. Torque expression in stainless steel orthodontic brackets. A systematic review. Angle Orthod 2010; 80(1): 201-10.
[http://dx.doi.org/10.2319/080508-352.1] [PMID: 19852662]
[4]
Littlewood SJ, Millett DT, Doubleday B, Bearn DR, Worthington HV. Retention procedures for stabilising tooth position after treatment with orthodontic braces. Cochrane Database Syst Rev 2016; 2016(1): CD002283.
[http://dx.doi.org/10.1002/14651858.CD002283.pub4]
[5]
Saini SG, Kahlon SS, Sharma K, Dhillon HS, Chhina KK, Hayer GS. Different types of elastics in orthodontics. Indian J Compr Dent Care 2014; 4(2): 497-501.
[6]
Weir T. Clear aligners in orthodontic treatment. Aust Dent J 2017; 62(S1): 58-62.
[http://dx.doi.org/10.1111/adj.12480] [PMID: 28297094]
[7]
Lombardo L, Arreghini A, Ramina F, Huanca GLT, Siciliani G. Predictability of orthodontic movement with orthodontic aligners: A retrospective study. Prog Orthod 2017; 18(1): 35.
[http://dx.doi.org/10.1186/s40510-017-0190-0] [PMID: 29130127]
[8]
Fink DF, Smith RJ. The duration of orthodontic treatment. Am J Orthod Dentofacial Orthop 1992; 102(1): 45-51.
[http://dx.doi.org/10.1016/0889-5406(92)70013-Z] [PMID: 1626530]
[9]
Morton J, Derakhshan M, Kaza S, Li C. Design of the Invisalign system performance. Semin Orthod 2017; 23(1): 3-11.
[http://dx.doi.org/10.1053/j.sodo.2016.10.001]
[10]
Chang JH, Chen PJ, Arul MR, et al. Injectable RANKL sustained release formulations to accelerate orthodontic tooth movement. Eur J Orthod 2020; 42(3): 317-25.
[http://dx.doi.org/10.1093/ejo/cjz027] [PMID: 31147678]
[11]
Li Y, Jacox LA, Little SH, Ko CC. Orthodontic tooth movement: The biology and clinical implications. Kaohsiung J Med Sci 2018; 34(4): 207-14.
[http://dx.doi.org/10.1016/j.kjms.2018.01.007] [PMID: 29655409]
[12]
Barbieri G, Solano P, Alarcón JA, et al. Biochemical markers of bone metabolism in gingival crevicular fluid during early orthodontic tooth movement. Angle Orthod 2013; 83(1): 63-9.
[http://dx.doi.org/10.2319/022812-168.1] [PMID: 22716279]
[13]
Roberts-Harry D, Sandy J. Orthodontics. Part 11: Orthodontic tooth movement. Br Dent J 2004; 196(7): 391-4.
[http://dx.doi.org/10.1038/sj.bdj.4811129] [PMID: 15071525]
[14]
Dudic A, Kiliaridis S, Mombelli A, Giannopoulou C. Composition changes in gingival crevicular fluid during orthodontic tooth movement: comparisons between tension and compression sides. Eur J Oral Sci 2006; 114(5): 416-22.
[http://dx.doi.org/10.1111/j.1600-0722.2006.00387.x] [PMID: 17026508]
[15]
Niklas A, Proff P, Gosau M, Römer P. The role of hypoxia in orthodontic tooth movement. Int J Dent 2013; 2013: 841840.
[http://dx.doi.org/10.1155/2013/841840]
[16]
Omi M, Mishina Y. Role of osteoclasts in oral homeostasis and jawbone diseases. Oral Sci Int 2021; 18(1): 14-27.
[http://dx.doi.org/10.1002/osi2.1078] [PMID: 34220275]
[17]
Bourauel C, Vollmer D, Jäger A. Application of bone remodeling theories in the simulation of orthodontic tooth movements. J Orofac Orthop 2000; 61(4): 266-79.
[http://dx.doi.org/10.1007/s000560050012] [PMID: 10961052]
[18]
Meghji S. Bone remodelling. Br Dent J 1992; 172(6): 235-42.
[http://dx.doi.org/10.1038/sj.bdj.4807835] [PMID: 1554530]
[19]
Raggatt LJ, Partridge NC. Cellular and molecular mechanisms of bone remodeling. J Biol Chem 2010; 285(33): 25103-8.
[http://dx.doi.org/10.1074/jbc.R109.041087] [PMID: 20501658]
[20]
Rowe P, Koller A, Sharma S. Physiology, bone remodeling. Treasure Island (FL): StatPearls Publishing 2018.
[21]
Delaisse JM. The reversal phase of the bone-remodeling cycle: Cellular prerequisites for coupling resorption and formation. Bonekey Rep 2014; 3: 561.
[http://dx.doi.org/10.1038/bonekey.2014.56] [PMID: 25120911]
[22]
Tompkins KA. The osteoimmunology of alveolar bone loss. Connect Tissue Res 2016; 57(2): 69-90.
[http://dx.doi.org/10.3109/03008207.2016.1140152] [PMID: 26950207]
[23]
Yamaguchi M. RANK/RANKL/OPG during orthodontic tooth movement. Orthod Craniofac Res 2009; 12(2): 113-9.
[http://dx.doi.org/10.1111/j.1601-6343.2009.01444.x] [PMID: 19419454]
[24]
Meeran N. Iatrogenic possibilities of orthodontic treatment and modalities of prevention. J Orthod Sci 2013; 2(3): 73-86.
[http://dx.doi.org/10.4103/2278-0203.119678] [PMID: 24987646]
[25]
Showkatbakhsh R, Jamilian A, Showkatbakhsh M. The effect of pulsed electromagnetic fields on the acceleration of tooth movement. World J Orthod 2010; 11(4): e52-6.
[PMID: 21490989]
[26]
Lindskog-Stokland B, Wennström JL, Nyman S, Thilander B. Orthodontic tooth movement into edentulous areas with reduced bone height. An experimental study in the dog. Eur J Orthod 1993; 15(2): 89-96.
[http://dx.doi.org/10.1093/ejo/15.2.89] [PMID: 8500541]
[27]
Alsino HI, Hajeer MY, Burhan AS, Alkhouri I, Darwich K, Alsino HI. The effectiveness of periodontally accelerated osteogenic orthodontics (PAOO) in accelerating tooth movement and supporting alveolar bone thickness during orthodontic treatment: A systematic review. Cureus 2022; 14(5): e24985.
[http://dx.doi.org/10.7759/cureus.24985] [PMID: 35582021]
[28]
Lu W, Zhang X, Firth F, Mei L, Yi J, Gong C. Sclerostin injection enhances orthodontic tooth movement in rats. Arch Oral Biol 2019; 99: 43-50.
[29]
Murphy NC, Wilcko WM, Bissada NF. Corticotomy and postmodern incarnations of surgically facilitated orthodontic therapy (SFOT). Biol Mech tooth Mov 2015; 2015: 210.
[30]
Mheissen S, Khan H, Alsafadi AS, Almuzian M. The effectiveness of surgical adjunctive procedures in the acceleration of orthodontic tooth movement: A systematic review of systematic reviews and meta-analysis. J Orthod 2021; 48(2): 156-71.
[http://dx.doi.org/10.1177/1465312520988735] [PMID: 33546565]
[31]
Sirisha K, Srinivas M, Ravindranath D, Gowd P. Wilckodontics-a novel synergy in time to save time. J Clin diagnostic Res JCDR 2014; 8(1): 322.
[32]
Young L, Binderman I, Yaffe A, Beni L, Vardimon AD. Fiberotomy enhances orthodontic tooth movement and diminishes relapse in a rat model. Orthod Craniofac Res 2013; 16(3): 161-8.
[http://dx.doi.org/10.1111/ocr.12014] [PMID: 23323644]
[33]
Liou EJW, Huang CS. Rapid canine retraction through distraction of the periodontal ligament. Am J Orthod Dentofacial Orthop 1998; 114(4): 372-82.
[http://dx.doi.org/10.1016/S0889-5406(98)70181-7] [PMID: 9790320]
[34]
Nimeri G, Kau CH, Abou-Kheir NS, Corona R. Acceleration of tooth movement during orthodontic treatment - A frontier in Orthodontics. Prog Orthod 2013; 14(1): 42.
[http://dx.doi.org/10.1186/2196-1042-14-42] [PMID: 24326040]
[35]
Dibart S, Surmenian J, Sebaoun JD, Montesani L. Rapid treatment of Class II malocclusion with piezocision: Two case reports. Int J Periodontics Restorative Dent 2010; 30(5): 487-93.
[PMID: 20814602]
[36]
Chen M-J, Chen S-C, Cheng J-H, Tseng DDS. Surgical methods to accelerate tooth movement. Taiwan J Orthod 2020; 32(2): 2.
[37]
Kalemaj Z, DebernardI CL, Buti J. Efficacy of surgical and non- surgical interventions on accelerating orthodontic tooth movement: A systematic review. Eur J Oral Implantology 2015; 8(1): 9-24.
[PMID: 25738176]
[38]
Almpani K, Kantarci A. Surgical methods for the acceleration of the orthodontic tooth movement. Front Oral Biol 2016; 18: 92-101.
[http://dx.doi.org/10.1159/000382051] [PMID: 26599122]
[39]
Ali Alhasyimi A, Fathmah Rosyida N. Cocoa administration may accelerate orthodontic tooth movement by inducing osteoclastogenesis in rats. Iran J Basic Med Sci 2019; 22(2): 206-10.
[PMID: 30834087]
[40]
Murtaza N, Hamid WU, Shamim A, et al. Combined effect of nicotine and caffeine on orthodontic tooth movement in rats. JIMDC 2020; 9(2): 109-14.
[http://dx.doi.org/10.35787/jimdc.v9i2.462]
[41]
Asefi S, Seifi M, Fard G, Lotfi A. Innovative evaluation of local injective gel of curcumin on the orthodontic tooth movement in rats. Dent Res J 2018; 15(1): 40-9.
[http://dx.doi.org/10.4103/1735-3327.223618] [PMID: 29497446]
[42]
Tian R, Xie X, Li J, Du Y, Yin X, Lu X. Effects of hederin (Hed) on alveolar bone microstructure during tooth movement in rats. J Biomater Tissue Eng 2023; 13(1): 137-42.
[http://dx.doi.org/10.1166/jbt.2023.3236]
[43]
Herniyati H, Devi LS, Prameswari N. Analysis of the potency of robusta coffee (Coffea canephora) to increase the expression of FGF2, Collagen 1 and ALP in the periodontal ligament during orthodontic tooth movement. Trends Sci 2023; 20(8): 6440.
[http://dx.doi.org/10.48048/tis.2023.6440]
[44]
Golshah A, Omidi K, Nikkerdar N, Ghorbani F. Effect of caffeine injection on orthodontic tooth movement in rats: an experimental study on rats. Int J Dent 2022; 2022.
[http://dx.doi.org/10.1155/2022/7204806]
[45]
Zhu X, Yuan H, Ningjuan O, et al. 6-Shogaol promotes bone resorption and accelerates orthodontic tooth movement through the JNK-NFATc1 signaling axis. J Bone Miner Metab 2021; 39(6): 962-73.
[http://dx.doi.org/10.1007/s00774-021-01245-y] [PMID: 34191125]
[46]
Ma D, Wang X, Ren X, Bu J, Zheng D, Zhang J. Asperosaponin VI injection enhances orthodontic tooth movement in rats. Med Sci Monit 2020; 26: e922372.
[http://dx.doi.org/10.12659/MSM.922372] [PMID: 32323648]
[47]
Xiao LQ, Wang HT, Li YL, et al. The effects of dried root aqueous extract of Salvia miltiorrhiza and its major ingredient in acceleration of orthodontic tooth movement in rat. Iran J Basic Med Sci 2015; 18(10): 1044-9.
[PMID: 26730341]
[48]
Chen Y, Wang X-X, Zhao B-J, Bu J, Su Y-R, Zhang J. Original article effects of icariin on orthodontic tooth movement in rats. Int J Clin Exp Med 2015; 8(6): 8068-16.
[49]
Wang Y, Wang X, Zhang L, Jin S, Zhang J. Effects of traditional Chinese medicine on bone remodeling during orthodontic tooth movement. J Ethnopharmacol 2012; 141(2): 642-6.
[http://dx.doi.org/10.1016/j.jep.2011.09.003] [PMID: 21925257]
[50]
Parasuraman S. Herbal drug discovery: Challenges and perspectives. Curr Pharmacogenomics Person Med 2018; 16(1): 63-8.
[http://dx.doi.org/10.2174/1875692116666180419153313]
[51]
Subbiah U, Elango S, Jayesh R. Herbals and green synthesized nanoparticles in dentistry. Nanobiomaterials in Clinical Dentistry. Elsevier 2019; pp. 617-46.
[52]
Raisz LG, Trummel CL, Holick MF, Deluca HF. 1,25-dihydroxycholecalciferol: A potent stimulator of bone resorption in tissue culture. Science 1972; 175(4023): 768-9.
[http://dx.doi.org/10.1126/science.175.4023.768] [PMID: 4333399]
[53]
Al-Hasani NR, Al-Bustani AI, Ghareeb MM, Hussain SA. Clinical efficacy of locally injected calcitriol in orthodontic tooth movement. Int J Pharm Pharm Sci 2011; 3(5): 139-43.
[54]
Sekhavat AR, Mousavizadeh K, Pakshir HR, Aslani FS. Effect of misoprostol, a prostaglandin E1 analog, on orthodontic tooth movement in rats. Am J Orthod Dentofacial Orthop 2002; 122(5): 542-7.
[http://dx.doi.org/10.1067/mod.2002.126153] [PMID: 12439483]
[55]
Lu W, Li X, Yang Y, et al. PTH/PTHrP in controlled release hydrogel enhances orthodontic tooth movement by regulating periodontal bone remodaling. J Periodontal Res 2021; 56(5): 885-96.
[http://dx.doi.org/10.1111/jre.12885] [PMID: 33856055]
[56]
Collins MK, Sinclair PM. The local use of vitamin D to increase the rate of orthodontic tooth movement. Am J Orthod Dentofacial Orthop 1988; 94(4): 278-84.
[http://dx.doi.org/10.1016/0889-5406(88)90052-2] [PMID: 3177281]
[57]
Marin GC, Johann ACBR, Silva IC, et al. The influence of fluoxetine on orthodontic tooth movement in rats. Braz Oral Res 2023; 37: e007.
[http://dx.doi.org/10.1590/1807-3107bor-2023.vol37.0007] [PMID: 36700590]
[58]
Mehta S, Wang K, Chen PJ, et al. How does alendronate affect orthodontic tooth movement in osteogenesis imperfecta: An in vivo study on a mice model. Eur J Orthod 2023; 45(2): 217-23.
[http://dx.doi.org/10.1093/ejo/cjad001] [PMID: 36772933]
[59]
Gad AM, Soliman SO. Evaluation of systemic Omega-3 PUFAs effect on orthodontic tooth movement in a rabbit model: RCT. Angle Orthod 2023; 93(4): 476-81.
[http://dx.doi.org/10.2319/110222-750.1] [PMID: 36928563]
[60]
Khalaf RM, Almudhi AA. Effects of vitamin D deficiency on the rate of orthodontic tooth movement: An animal study. Saudi Dent J 2022; 34(2): 129-35.
[http://dx.doi.org/10.1016/j.sdentj.2021.12.008] [PMID: 35241902]
[61]
Aghili HA, Hoseini SM, Yassaei S, Fatahi Meybodi SA, Zaeim MHT, Moghadam MG. Effects of carbonated soft drink consumption on orthodontic tooth movements in rats. J Dent 2014; 11(2): 123-30.
[PMID: 24910686]
[62]
Araujo CM, Johann ACBR, Camargo ES, Tanaka OM. The effects of binge-pattern alcohol consumption on orthodontic tooth movement. Dental Press J Orthod 2014; 19(6): 93-8.
[http://dx.doi.org/10.1590/2176-9451.19.6.093-098.oar] [PMID: 25628085]
[63]
Thompson HE. Orthodontic relapses analyzed in a study of connective tissue fibers. Am J Orthod 1959; 45(2): 93-109.
[http://dx.doi.org/10.1016/0002-9416(59)90050-8]
[64]
Aoki Y, Kako S, Miyazawa K, et al. Dynamics and observations of long-term orthodontic tooth movement and subsequent relapse in C57BL/6 mice. Exp Anim 2023; 72(1): 103-11.
[http://dx.doi.org/10.1538/expanim.22-0099] [PMID: 36261388]
[65]
Dolci GS, Ballarini A, Gameiro GH, Onofre de Souza D, de Melo F, Fossati ACM. Atorvastatin inhibits osteoclastogenesis and arrests tooth movement. Am J Orthod Dentofacial Orthop 2018; 153(6): 872-82.
[http://dx.doi.org/10.1016/j.ajodo.2017.09.021] [PMID: 29853245]
[66]
Elson A, Anuj A, Barnea-Zohar M, Reuven N. The origins and formation of bone-resorbing osteoclasts. Bone 2022; 164: 116538.
[http://dx.doi.org/10.1016/j.bone.2022.116538] [PMID: 36028118]
[67]
Muggeo P, Grassi M, D’Ascanio V, et al. Bone remodeling markers in children with acute lymphoblastic leukemia after intensive chemotherapy: The screenshot of a biochemical signature. Cancers 2023; 15(9): 2554.
[http://dx.doi.org/10.3390/cancers15092554] [PMID: 37174020]
[68]
Zhou JP, Feng G, Zhou WW, et al. Expression of osteoprotegerin and receptor activator of nuclear factor κB ligand in root resorption induced by heavy force in rats. J Orofac Orthop 2011; 72(6): 457-68.
[http://dx.doi.org/10.1007/s00056-011-0050-3] [PMID: 22138776]
[69]
Musich DR. Orthodontic treatment in patients requiring orthognathic surgical procedures. Integr Clin Orthod 2012; 1: 332.
[70]
Liu X, Muhammed FK, Liu Y. Simvastatin encapsulated in exosomes can enhance its inhibition of relapse after orthodontic tooth movement. Am J Orthod Dentofacial Orthop 2022; 162(6): 881-9.
[http://dx.doi.org/10.1016/j.ajodo.2021.07.025] [PMID: 36117030]
[71]
Alnajar HAAM, Al Groosh DH. The effects of calcitonin on post-orthodontic relapse in rats. Clin Exp Dent Res 2021; 7(3): 293-301.
[http://dx.doi.org/10.1002/cre2.373] [PMID: 33300289]
[72]
Dolci GS, Portela LV, Onofre de Souza D, Medeiros Fossati AC. Atorvastatin-induced osteoclast inhibition reduces orthodontic relapse. Am J Orthod Dentofacial Orthop 2017; 151(3): 528-38.
[http://dx.doi.org/10.1016/j.ajodo.2016.08.026] [PMID: 28257738]
[73]
Liu Y, Zhang T, Zhang C, et al. Aspirin blocks orthodontic relapse via inhibition of CD4 + T lymphocytes. J Dent Res 2017; 96(5): 586-94.
[http://dx.doi.org/10.1177/0022034516685527] [PMID: 28060561]
[74]
Yabumoto T, Miyazawa K, Tabuchi M, et al. Stabilization of tooth movement by administration of reveromycin A to osteoprotegerin-deficient knockout mice. Am J Orthod Dentofacial Orthop 2013; 144(3): 368-80.
[http://dx.doi.org/10.1016/j.ajodo.2013.04.016] [PMID: 23992809]
[75]
Sydorak I, Dang M, Baxter SJ, et al. Microsphere controlled drug delivery for local control of tooth movement. Eur J Orthod 2019; 41(1): 1-8.
[http://dx.doi.org/10.1093/ejo/cjy017] [PMID: 29608684]
[76]
Azami N, Chen PJ, Mehta S, et al. Raloxifene administration enhances retention in an orthodontic relapse model. Eur J Orthod 2020; 42(4): 371-7.
[http://dx.doi.org/10.1093/ejo/cjaa008] [PMID: 32065225]
[77]
Alhasyimi AA, Rosyida NF, Rihadini MS. Postorthodontic relapse prevention by administration of grape seed (Vitis vinifera) extract containing cyanidine in rats. Eur J Dent 2019; 13(4): 629-34.
[http://dx.doi.org/10.1055/s-0039-3401440] [PMID: 31891981]
[78]
Haugen S, Aasarød KM, Stunes AK, et al. Adiponectin prevents orthodontic tooth movement in rats. Arch Oral Biol 2017; 83: 304-11.
[http://dx.doi.org/10.1016/j.archoralbio.2017.08.009] [PMID: 28866437]
[79]
Liu X, Wang X, Zhang L, Yang F, Nie F, Zhang J. Inhibitory effects of resveratrol on orthodontic tooth movement and associated root resorption in rats. Arch Oral Biol 2020; 111(44): 104642.
[http://dx.doi.org/10.1016/j.archoralbio.2019.104642] [PMID: 31887570]
[80]
Jia F, Liu X, Li L, Mallapragada S, Narasimhan B, Wang Q. Multifunctional nanoparticles for targeted delivery of immune activating and cancer therapeutic agents. J Control Release 2013; 172(3): 1020-34.
[http://dx.doi.org/10.1016/j.jconrel.2013.10.012] [PMID: 24140748]
[81]
Vasconcelos I, Santos T. Nanotechnology applications in sepsis: Essential knowledge for clinicians. Pharmaceutics 2023; 15(6): 1682.
[http://dx.doi.org/10.3390/pharmaceutics15061682] [PMID: 37376129]
[82]
Kumar M, Hilles AR, Almurisi SH, Bhatia A, Mahmood S. Micro and nano-carriers-based pulmonary drug delivery system: Their current updates, challenges, and limitations – A review. JCIS Open 2023; 12: 100095.
[http://dx.doi.org/10.1016/j.jciso.2023.100095]
[83]
Yadav S, Sharma AK, Kumar P. Nanoscale self-assembly for therapeutic delivery. Front Bioeng Biotechnol 2020; 8: 127.
[http://dx.doi.org/10.3389/fbioe.2020.00127] [PMID: 32158749]
[84]
Kumar M, Kumar D, Garg Y, Mahmood S, Chopra S, Bhatia A. Marine-derived polysaccharides and their therapeutic potential in wound healing application - A review. Int J Biol Macromol 2023; 253(Pt 6): 127331.
[http://dx.doi.org/10.1016/j.ijbiomac.2023.127331] [PMID: 37820901]
[85]
Nargis M, Raju Ahmed ABI. Emerging nanomaterials in drug delivery and therapy. Emerg Nanomater Their Impact Soc 21st Century. Materials Research Forum LLC 2023; 135: pp. 125-51.
[http://dx.doi.org/10.21741/9781644902172-6]
[86]
Abid N, Khan AM, Shujait S, et al. Synthesis of nanomaterials using various top-down and bottom-up approaches, influencing factors, advantages, and disadvantages: A review. Adv Colloid Interface Sci 2022; 300: 102597.
[http://dx.doi.org/10.1016/j.cis.2021.102597] [PMID: 34979471]
[87]
Kumar M, Dogra R, Mandal UK. Nanomaterial-based delivery of vaccine through nasal route: Opportunities, challenges, advantages, and limitations. J Drug Deliv Sci Technol 2022; 74: 103533.
[http://dx.doi.org/10.1016/j.jddst.2022.103533]
[88]
Kumar M, Keshwania P, Chopra S, Mahmood S, Bhatia A. Therapeutic potential of nanocarrier-mediated delivery of phytoconstituents for wound healing: Their current status and future perspective. AAPS PharmSciTech 2023; 24(6): 155.
[http://dx.doi.org/10.1208/s12249-023-02616-6] [PMID: 37468691]
[89]
Prabha J, Kumar M, Kumar D, Chopra S, Bhatia A. Nano-platform strategies of herbal components for the management of rheumatoid arthritis: A review on the battle for next-generation formulations. Curr Drug Deliv 2024.
[PMID: 37622715]
[90]
Kumar M, Kumar D, Kumar S, Kumar A, Mandal UK. A recent review on bio-availability enhancement of poorly water-soluble drugs by using bioenhancer and nanoparticulate drug delivery system. Curr Pharm Des 2022; 28(39): 3212-24.
[http://dx.doi.org/10.2174/1381612829666221021152354] [PMID: 36281868]
[91]
Ullah A, Aziz T, Ullah N, Nawaz T. Molecular mechanisms of Sanguinarine in cancer prevention and treatment. Anticancer Agents Med Chem 2023; 23(7): 765-78.
[http://dx.doi.org/10.2174/1871520622666220831124321] [PMID: 36045531]
[92]
Kumar M, Mahmood S, Mandal UK. An updated account on formulations and strategies for the treatment of burn infection – A review. Curr Pharm Des 2022; 28(18): 1480-92.
[http://dx.doi.org/10.2174/1381612828666220519145859] [PMID: 35598231]
[93]
Kumar M, Hilles AR, Ge Y, Bhatia A, Mahmood S. A review on polysaccharides mediated electrospun nanofibers for diabetic wound healing: Their current status with regulatory perspective. Int J Biol Macromol 2023; 234: 123696.
[http://dx.doi.org/10.1016/j.ijbiomac.2023.123696] [PMID: 36801273]
[94]
Lancina MG III. Nanomedicine Drug Delivery across Mucous Membranes. Virginia Commonwealth University 2017; pp. 1-24.
[95]
Kumar M, Sharma A, Mahmood S, Thakur A, Mirza MA, Bhatia A. Franz diffusion cell and its implication in skin permeation studies. J Dispers Sci Technol 2023; 1-14.
[http://dx.doi.org/10.1080/01932691.2023.2188923]
[96]
Bapat RA, Chaubal TV, Joshi CP, et al. An overview of application of silver nanoparticles for biomaterials in dentistry. Mater Sci Eng C 2018; 91: 881-98.
[http://dx.doi.org/10.1016/j.msec.2018.05.069] [PMID: 30033323]
[97]
Sen D, Patil V, Smriti K, et al. Nanotechnology and nanomaterials in dentistry: Present and future perspectives in clinical applications. EEng Sci 2022; 20: 14-24.
[http://dx.doi.org/10.30919/es8d703]
[98]
Aziz T, Ullah A, Fan H, et al. Cellulose nanocrystals applications in health, medicine and catalysis. J Polym Environ 2021; 29(7): 2062-71.
[http://dx.doi.org/10.1007/s10924-021-02045-1]
[99]
Song R, Murphy M, Li C, Ting K, Soo C, Zheng Z. Current development of biodegradable polymeric materials for biomedical applications. Drug Des Devel Ther 2018; 12: 3117-45.
[http://dx.doi.org/10.2147/DDDT.S165440] [PMID: 30288019]
[100]
Aziz T, Ullah A, Ali A, et al. Manufactures of bio-degradable and bio-based polymers for bio-materials in the pharmaceutical field. J Appl Polym Sci 2022; 139(29): e52624.
[http://dx.doi.org/10.1002/app.52624]
[101]
Delavarian F, Ghorbanzadeh R, Salehi-Vaziri A. Effects of nano-micelles curcumin-based photodynamic therapy on expression of RUNX2 as an indicator of bone regeneration in orthodontic tooth movement. Photodiagn Photodyn Ther 2023; 44: 103775.
[http://dx.doi.org/10.1016/j.pdpdt.2023.103775] [PMID: 37652179]
[102]
Lee KH, Cheon Lee S, Jung Kim H, Kang YG, Kim SJ. Effect of locally delivered protein complex-loaded nanoparticles on bone remodelling of atrophic alveolar ridge in beagles. Orthod Craniofac Res 2022; 25(1): 55-63.
[http://dx.doi.org/10.1111/ocr.12487] [PMID: 33931954]
[103]
Firth FA, Farrar R, Farella M. Investigating orthodontic tooth movement: Challenges and future directions. J R Soc N Z 2020; 50(1): 67-79.
[http://dx.doi.org/10.1080/03036758.2019.1684957]
[104]
Patterson BM, Dalci O, Darendeliler MA, Papadopoulou AK. Corticotomies and orthodontic tooth movement: A systematic review. J Oral Maxillofac Surg 2016; 74(3): 453-73.
[http://dx.doi.org/10.1016/j.joms.2015.10.011] [PMID: 26608454]
[105]
Pahkala RH, Kellokoski JK. Surgical-orthodontic treatment and patients’ functional and psychosocial well-being. Am J Orthod Dentofacial Orthop 2007; 132(2): 158-64.
[http://dx.doi.org/10.1016/j.ajodo.2005.09.033] [PMID: 17693364]
[106]
Franzen TJ, Brudvik P, Vandevska-Radunovic V. Periodontal tissue reaction during orthodontic relapse in rat molars. Eur J Orthod 2013; 35(2): 152-9.
[http://dx.doi.org/10.1093/ejo/cjr127] [PMID: 22023883]
[107]
Wishney M. Potential risks of orthodontic therapy: A critical review and conceptual framework. Aust Dent J 2017; 62(S1): 86-96.
[http://dx.doi.org/10.1111/adj.12486] [PMID: 27868202]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy