Generic placeholder image

Endocrine, Metabolic & Immune Disorders - Drug Targets

Editor-in-Chief

ISSN (Print): 1871-5303
ISSN (Online): 2212-3873

Research Article

Role of Clinical Features, Pathogenic and Etiological Characteristics of Community-acquired Pneumonia with Type 2 Diabetes Mellitus in Early Diagnosis

Author(s): Bai-Yi Liu, Dan Zhang, Zhu Fan, Jing-Jing Jin, Cai-Hong Li, Rui-Nan Guo, Xue-Juan Li and Yan Huang*

Volume 24, Issue 8, 2024

Published on: 22 November, 2023

Page: [958 - 966] Pages: 9

DOI: 10.2174/0118715303273741231117060753

Price: $65

Open Access Journals Promotions 2
Abstract

Objective: To study the etiological characteristics of community-acquired pneumonia (CAP) combined with type 2 diabetes (T2D), providing a reference for early clinical diagnosis and treatment of the disease.

Methods: We selected a total of 93 patients with CAP and analyzed their metagenomics nextgeneration sequencing (mNGS) data. The case group comprised 46 patients with combined CAP/T2D, and the control group comprised 47 patients without diabetes. We analyzed the pathogenic findings of the two groups.

Results: There were statistically significant differences in age between the two groups (P = 0.001). Leukocytes (P = 0.012), blood platelets (P = 0.034), fibrinogen (P = 0.037), D-dimer (P = 0.000), calcitonin ogen (P = 0.015), ultrasensitive C-reactive protein or C-reactive protein (CRP) (P = 0.000), serum amyloid A (P = 0.000), and erythrocyte sedimentation rate (P = 0.003) were higher in the case group than in the control group. Albumin was lower in the case group than in the control group. All differences were statistically significant. The infection rates of Klebsiella pneumoniae (P = 0.030), Pseudomonas aeruginosa (P = 0.043), and Candida albicans (P = 0.032) were significantly different between the two groups.

Conclusion: Compared with those without diabetes, the infection rates of Klebsiella pneumoniae, Pseudomonas aeruginosa, and Candida albicans were higher in patients with combined CAP/T2D.

Keywords: Inflammation, lung infection, metagenomic sequencing, type 2 diabetes mellitus, early clinical diagnosis, C-reactive protein.

Graphical Abstract
[1]
Saeedi, P.; Petersohn, I.; Salpea, P. Global and regional diabetes prevalence estimates for 2019 and projections for 2030 and 2045: results from the international diabetes federation diabetes atlas In: Diabetes Res Clin Pract, 9th edition; , 2019; 157, p. 107843.
[2]
Daryabor, G.; Atashzar, M.R.; Kabelitz, D.; Meri, S.; Kalantar, K. The effects of type 2 diabetes mellitus on organ metabolism and the immune system. Front. Immunol., 2020, 11, 1582.
[http://dx.doi.org/10.3389/fimmu.2020.01582] [PMID: 32793223]
[3]
Lopez-de-Andres, A.; Albadalejo-Vicente, R.; de Miguel-Diez, J.; Hernandez-Barrera, V.; Ji, Z.; Zamorano-Leon, J.J.; Lopez-Herranz, M.; Jimenez-Garcia, R. Incidence and outcomes of hospitalization for community-acquired, ventilator-associated and non-ventilator hospital-acquired pneumonias in patients with type 2 diabetes mellitus in Spain. BMJ Open Diabetes Res. Care, 2020, 8(1), e001447.
[http://dx.doi.org/10.1136/bmjdrc-2020-001447] [PMID: 32561561]
[4]
Kofteridis, D.P.; Giourgouli, G.; Plataki, M.N.; Andrianaki, A.M.; Maraki, S.; Papadakis, J.A.; Zacharioudaki, M.E.; Samonis, G. Community‐acquired pneumonia in elderly adults with type 2 diabetes mellitus. J. Am. Geriatr. Soc., 2016, 64(3), 649-651.
[http://dx.doi.org/10.1111/jgs.14011] [PMID: 27000342]
[5]
Partouche, H.; Lepoutre, A.; Vaure, C.B.; Poisson, T.; Toubiana, L.; Gilberg, S. Incidence of all-cause adult community-acquired pneumonia in primary care settings in France. Med. Mal. Infect., 2018, 48(6), 389-395.
[http://dx.doi.org/10.1016/j.medmal.2018.02.012] [PMID: 29656842]
[6]
Lopardo, G.D.; Fridman, D.; Raimondo, E.; Albornoz, H.; Lopardo, A.; Bagnulo, H.; Goleniuk, D.; Sanabria, M.; Stamboulian, D. Incidence rate of community-acquired pneumonia in adults: A population-based prospective active surveillance study in three cities in South America. BMJ Open, 2018, 8(4), e019439.
[http://dx.doi.org/10.1136/bmjopen-2017-019439] [PMID: 29643153]
[7]
Simner, P.J.; Miller, S.; Carroll, K.C. Understanding the promises and hurdles of metagenomic next-generation sequencing as a diagnostic tool for infectious diseases. Clin. Infect. Dis., 2018, 66(5), 778-788.
[http://dx.doi.org/10.1093/cid/cix881] [PMID: 29040428]
[8]
Miao, Q.; Ma, Y.; Wang, Q.; Pan, J.; Zhang, Y.; Jin, W.; Yao, Y.; Su, Y.; Huang, Y.; Wang, M.; Li, B.; Li, H.; Zhou, C.; Li, C.; Ye, M.; Xu, X.; Li, Y.; Hu, B. Microbiological diagnostic performance of metagenomic next-generation sequencing when applied to clinical practice. Clin. Infect. Dis., 2018, 67(Suppl. 2), S231-S240.
[http://dx.doi.org/10.1093/cid/ciy693] [PMID: 30423048]
[9]
Langelier, C.; Kalantar, K.L.; Moazed, F.; Wilson, M.R.; Crawford, E.D.; Deiss, T.; Belzer, A.; Bolourchi, S.; Caldera, S.; Fung, M.; Jauregui, A.; Malcolm, K.; Lyden, A.; Khan, L.; Vessel, K.; Quan, J.; Zinter, M.; Chiu, C.Y.; Chow, E.D.; Wilson, J.; Miller, S.; Matthay, M.A.; Pollard, K.S.; Christenson, S.; Calfee, C.S.; DeRisi, J.L. Integrating host response and unbiased microbe detection for lower respiratory tract infection diagnosis in critically ill adults. Proc. Natl. Acad. Sci. USA, 2018, 115(52), E12353-E12362.
[http://dx.doi.org/10.1073/pnas.1809700115] [PMID: 30482864]
[10]
Liu, H.; Zhang, Y.; Yang, J.; Liu, Y.; Chen, J. Application of mNGS in the etiological analysis of lower respiratory tract infections and the prediction of drug resistance. Microbiol. Spectr., 2022, 10(1), e02502-21.
[http://dx.doi.org/10.1128/spectrum.02502-21] [PMID: 35171007]
[11]
Expert consensus on the clinical application of second-generation sequencing for detection of infectious agents by macrogenomics in China. Chinese J Infectious Dis., 2020, 38(11), 681-689.
[12]
Wagner, N.M.; Brandhorst, G.; Czepluch, F.; Lankeit, M.; Eberle, C.; Herzberg, S.; Faustin, V.; Riggert, J.; Oellerich, M.; Hasenfuss, G.; Konstantinides, S.; Schäfer, K. Circulating regulatory T cells are reduced in obesity and may identify subjects at increased metabolic and cardiovascular risk. Obesity (Silver Spring), 2013, 21(3), 461-468.
[http://dx.doi.org/10.1002/oby.20087] [PMID: 23592653]
[13]
Zeng, C.; Shi, X.; Zhang, B.; Liu, H.; Zhang, L.; Ding, W.; Zhao, Y. The imbalance of Th17/Th1/Tregs in patients with type 2 diabetes: Relationship with metabolic factors and complications. J. Mol. Med. (Berl.), 2012, 90(2), 175-186.
[http://dx.doi.org/10.1007/s00109-011-0816-5] [PMID: 21964948]
[14]
Saini, M.; Kulandaivelan, S.; Bansal, V.K.; Saini, V.; Sharma, S.; Kaur, J.; Sondh, A. Pulmonary pathology among patients with type 2 diabetes mellitus: An updated systematic review and meta-analysis. Curr. Diabetes Rev., 2020, 16(7), 759-769.
[http://dx.doi.org/10.2174/1573399815666190716130324] [PMID: 31333139]
[15]
Kahnert, K.; Lucke, T.; Biertz, F.; Lechner, A.; Watz, H.; Alter, P.; Bals, R.; Behr, J.; Holle, R.; Huber, R.M.; Karrasch, S.; Stubbe, B.; Wacker, M.; Söhler, S.; Wouters, E.F.M.; Vogelmeier, C.; Jörres, R.A. Transfer factor for carbon monoxide in patients with COPD and diabetes: Results from the German COSYCONET cohort. Respir. Res., 2017, 18(1), 14.
[http://dx.doi.org/10.1186/s12931-016-0499-0] [PMID: 28086884]
[16]
Sánchez, E.; Gutiérrez-Carrasquilla, L.; Barbé, F.; Betriu, À.; López-Cano, C.; Gaeta, A.M.; Purroy, F.; Pamplona, R.; Ortega, M.; Fernández, E.; Hernández, C.; Lecube, A.; Simó, R.; Rius, F.; Hernández, M.; Valdivielso, J.M.; Bermúdez-López, M.; Martínez-Alonso, M.; Sánchez-de-la-Torre, M.; Polanco, D.; Torres, G.; Suárez, G.; Colàs-Campàs, L.; Benabdelhak, I.; Portero-Otin, M.; Jové, M.; Miquel, E.; Farràs, C. Lung function measurements in the prediabetes stage: Data from the ILERVAS Project. Acta Diabetol., 2019, 56(9), 1005-1012.
[http://dx.doi.org/10.1007/s00592-019-01333-6] [PMID: 30989377]
[17]
Heukels, P.; Moor, C.C.; von der Thüsen, J.H.; Wijsenbeek, M.S.; Kool, M. Inflammation and immunity in IPF pathogenesis and treatment. Respir. Med., 2019, 147, 79-91.
[http://dx.doi.org/10.1016/j.rmed.2018.12.015] [PMID: 30704705]
[18]
Li, L.; Li, Z.; Bi, J.; Li, H.; Wang, S.; Shao, C.; Song, Y. The association between serum albumin/prealbumin level and disease severity in non‐CF bronchiectasis. Clin. Exp. Pharmacol. Physiol., 2020, 47(9), 1537-1544.
[http://dx.doi.org/10.1111/1440-1681.13331] [PMID: 32347970]
[19]
Hu, F.; Lou, Y.; Shi, J.; Cao, L.; Wang, C.; Ma, J.; Peng, X.; Xu, S.; Chen, H.; Zhao, D.; Zhao, Y.; Guo, C.; Liu, D.; Zhou, Q.; Li, Q.; Liu, F.; Tian, G.; Wu, X.; Qie, R.; Han, M.; Huang, S.; Zhao, P.; Zhang, M.; Hu, D.; Qin, P. Baseline serum albumin and its dynamic change is associated with type 2 diabetes risk: A large cohort study in China. Diabetes Metab. Res. Rev., 2020, 36(5), e3296.
[http://dx.doi.org/10.1002/dmrr.3296] [PMID: 32017334]
[20]
Gresele, P.; Momi, S.; Marcucci, R.; Ramundo, F.; De Stefano, V.; Tripodi, A. Interactions of adenoviruses with platelets and coagulation and the vaccine-induced immune thrombotic thrombocytopenia syndrome. Haematologica, 2021, 106(12), 3034-3045.
[http://dx.doi.org/10.3324/haematol.2021.279289] [PMID: 34407607]
[21]
Yin, J.; Niu, Y.; Qian, L.; Zhang, X.; Liu, Z.; Wang, R. Mean platelet volume predicts survival in patients with hepatocellular carcinoma and type 2 diabetes. Diabetes Res. Clin. Pract., 2019, 151, 120-127.
[http://dx.doi.org/10.1016/j.diabres.2019.04.012] [PMID: 30959147]
[22]
Ding, Q.; Wang, F.; Guo, X.; Liang, M. The relationship between mean platelet volume and metabolic syndrome in patients with type 2 diabetes mellitus. Medicine (Baltimore), 2021, 100(13), e25303.
[http://dx.doi.org/10.1097/MD.0000000000025303] [PMID: 33787620]
[23]
Di Yacovo, S.; Garcia-Vidal, C.; Viasus, D.; Adamuz, J.; Oriol, I.; Gili, F.; Vilarrasa, N.; García-Somoza, M.D.; Dorca, J.; Carratalà, J. Clinical features, etiology, and outcomes of community-acquired pneumonia in patients with diabetes mellitus. Medicine (Baltimore), 2013, 92(1), 42-50.
[http://dx.doi.org/10.1097/MD.0b013e31827f602a] [PMID: 23263718]
[24]
Wang, X. Distribution and drug resistance of pathogenic bacteria in patients with simple pulmonary infection and diabetes mellitus complicated by pulmonary infection. Hebei Medical Journal, 2019, 41(7), 1087-1089.
[25]
Zhu, Y.; Lu, S.F.; Si, W.F. Clinical study of patients with diabetes mellitus complicated by pulmonary infection. Chin. J. Prev. Med, 2020, 21(10), 1107-1111.
[26]
Vamos, E.P.; Pape, U.J.; Curcin, V.; Harris, M.J.; Valabhji, J.; Majeed, A.; Millett, C. Effectiveness of the influenza vaccine in preventing admission to hospital and death in people with type 2 diabetes. CMAJ, 2016, 188(14), E342-E351.
[http://dx.doi.org/10.1503/cmaj.151059] [PMID: 27455981]
[27]
Alsalman, J.; Zaid, T.; Makhlooq, M.; Madan, M.; Mohamed, Z.; Alarayedh, A.; Ghareeb, A.; Kamal, N. A retrospective study of the epidemiology and clinical manifestation of invasive aspergillosis in a major tertiary care hospital in Bahrain. J. Infect. Public Health, 2017, 10(1), 49-58.
[http://dx.doi.org/10.1016/j.jiph.2016.02.015] [PMID: 27033677]
[28]
Rotjanapan, P.; Chen, Y.C.; Chakrabarti, A.; Li, R.Y.; Rudramurthy, S.M.; Yu, J.; Kung, H.C.; Watcharananan, S.; Tan, A.L.; Saffari, S.E.; Tan, B.H. Epidemiology and clinical characteristics of invasive mould infections: A multicenter, retrospective analysis in five Asian countries. Med. Mycol., 2018, 56(2), 186-196.
[http://dx.doi.org/10.1093/mmy/myx029] [PMID: 28525619]
[29]
Ngo, M.D.; Bartlett, S.; Ronacher, K. Diabetes-associated susceptibility to tuberculosis: Contribution of hyperglycemia vs. dyslipidemia. Microorganisms, 2021, 9(11), 2282.
[http://dx.doi.org/10.3390/microorganisms9112282] [PMID: 34835407]
[30]
Cadena, J.; Rathinavelu, S.; Lopez-Alvarenga, J.C.; Restrepo, B.I. The re-emerging association between tuberculosis and diabetes: Lessons from past centuries. Tuberculosis (Edinb.), 2019, 116, S89-S97.
[http://dx.doi.org/10.1016/j.tube.2019.04.015] [PMID: 31085129]
[31]
Al-Rifai, R.H.; Pearson, F.; Critchley, J.A.; Abu-Raddad, L.J. Association between diabetes mellitus and active tuberculosis: A systematic review and meta-analysis. PLoS One, 2017, 12(11), e0187967.
[http://dx.doi.org/10.1371/journal.pone.0187967] [PMID: 29161276]
[32]
Buasroung, P.; Petnak, T.; Liwtanakitpipat, P.; Kiertiburanakul, S. Prevalence of diabetes mellitus in patients with tuberculosis: A prospective cohort study. Int. J. Infect. Dis., 2022, 116, 374-379.
[http://dx.doi.org/10.1016/j.ijid.2022.01.047] [PMID: 35093530]
[33]
Bacon, S.L.; Lavoie, K.L.; Arsenault, A.; Dupuis, J.; Pilote, L.; Laurin, C.; Gordon, J.; Gautrin, D.; Vadeboncoeur, A. The research on endothelial function in women and men at risk for cardiovascular disease (REWARD) study: Methodology. BMC Cardiovasc. Disord., 2011, 11(1), 50.
[http://dx.doi.org/10.1186/1471-2261-11-50] [PMID: 21831309]
[34]
Schulz, E.; Gori, T.; Münzel, T. Oxidative stress and endothelial dysfunction in hypertension. Hypertens. Res., 2011, 34(6), 665-673.
[http://dx.doi.org/10.1038/hr.2011.39] [PMID: 21512515]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy