Generic placeholder image

Current Molecular Medicine

Editor-in-Chief

ISSN (Print): 1566-5240
ISSN (Online): 1875-5666

Review Article

The Antidiabetic Mechanisms of Hesperidin: Hesperidin Nanocarriers as Promising Therapeutic Options for Diabetes

Author(s): Fatemeh Kaviani, Iraj Baratpour and Sorayya Ghasemi*

Volume 24, Issue 12, 2024

Published on: 17 November, 2023

Page: [1483 - 1493] Pages: 11

DOI: 10.2174/0115665240268940231113044317

Price: $65

Abstract

A natural flavonoid with exceptional medicinal capabilities, hesperidin, has shown encouraging results in the treatment of diabetes. Thoughts are still being held on the particular processes through which hesperidin exerts its anti-diabetic effects. This work clarifies the complex antidiabetic mechanisms of hesperidin by investigating the molecular pathways involved in glucose homeostasis, insulin signaling, and oxidative stress control. Additionally, the article explores the newly developing field of nanocarrier-based systems as a prospective means of boosting the therapeutic efficiency of hesperidin in the treatment of diabetes. This is because there are difficulties connected with the efficient delivery of hesperidin. These cutting-edge platforms show enormous potential for changing diabetes therapy by utilizing the benefits of nanocarriers, such as enhanced solubility, stability, and targeted delivery. In conclusion, our comprehensive review emphasizes the antidiabetic potential of hesperidin and underscores the intriguing possibilities provided by hesperidin nanocarriers in the search for more effective and individualized diabetes therapies.

Keywords: Hesperidin, diabetes, nanocarrier, antidiabetic mechanisms, treatment, efficient delivery.

[1]
Hussain T, Tan B, Murtaza G, et al. Flavonoids and type 2 diabetes: Evidence of efficacy in clinical and animal studies and delivery strategies to enhance their therapeutic efficacy. Pharmacol Res 2020; 152: 104629.
[http://dx.doi.org/10.1016/j.phrs.2020.104629] [PMID: 31918019]
[2]
Kusna IN, Sudirman S, Widiyanto B, Supriyana S. The effectiveness of acupressure pen and active stretching (acupenas) on fasting blood sugar levels among type 2 diabetes mellitus patient. Int J Nurs Heal Serv 2020; 3(6): 672-9.
[3]
Mahsa S, Motlagh HN, Vessal M, Arabsolghar R. The protective effects of Olive leaf extract on Type 2 diabetes, the ex-pression of liver superoxide dismutase and total antioxidant capacity of plasma in rats. Trends Pharmacol Sci 2020; 2020(1): 6.
[4]
Tsalamandris S, Antonopoulos AS, Oikonomou E, et al. The role of inflammation in diabetes: Current concepts and future perspectives. Eur Cardiol 2019; 14(1): 50-9.
[http://dx.doi.org/10.15420/ecr.2018.33.1] [PMID: 31131037]
[5]
Gandhi GR, Vasconcelos ABS, Wu DT, et al. Citrus flavonoids as promising phytochemicals targeting diabetes and related complications: A systematic review of in vitro and in vivo studies. Nutrients 2020; 12(10): 2907.
[http://dx.doi.org/10.3390/nu12102907] [PMID: 32977511]
[6]
Khajouei A, Hosseini E, Abdizadeh T, Kian M, Ghasemi S. Beneficial effects of minocycline on the ovary of polycystic ovary syndrome mouse model: Molecular docking analysis and evaluation of TNF-α, TNFR2, TLR-4 gene expression. J Reprod Immunol 2021; 144: 103289.
[http://dx.doi.org/10.1016/j.jri.2021.103289] [PMID: 33610928]
[7]
Forouhi NG, Wareham NJ. Epidemiology of diabetes. Medicine 2019; 47(1): 22-7.
[http://dx.doi.org/10.1016/j.mpmed.2018.10.004]
[8]
Liga S, Paul C, Péter F. Flavonoids: Overview of biosynthesis, biological activity, and current extraction techniques. Plants 2023; 12(14): 2732.
[http://dx.doi.org/10.3390/plants12142732] [PMID: 37514347]
[9]
Rengasamy KRR, Khan H, Gowrishankar S, et al. The role of flavonoids in autoimmune diseases: Therapeutic updates. Pharmacol Ther 2019; 194: 107-31.
[http://dx.doi.org/10.1016/j.pharmthera.2018.09.009] [PMID: 30268770]
[10]
Hasan S, Mansour H, Wehbe N, Nasser SA, Iratni R, Nasrallah G, et al. Therapeutic potential of flavonoids in cancer: ROS-mediated mechanisms. In: Biomedicine & Pharmacotherapy. Elsevier 2022.
[11]
Wang Z, Yang L. The therapeutic potential of natural dietary flavonoids against SARS-CoV-2 infection. Nutrients 2023; 15(15): 3443.
[http://dx.doi.org/10.3390/nu15153443] [PMID: 37571380]
[12]
Yuan D, Guo Y, Pu F, et al. Opportunities and challenges in enhancing the bioavailability and bioactivity of dietary flavonoids: A novel delivery system perspective. Food Chem 2024; 430: 137115.
[http://dx.doi.org/10.1016/j.foodchem.2023.137115] [PMID: 37566979]
[13]
Aggarwal V, Tuli HS, Thakral F, et al. Molecular mechanisms of action of hesperidin in cancer: Recent trends and advancements. Exp Biol Med 2020; 245(5): 486-97.
[http://dx.doi.org/10.1177/1535370220903671] [PMID: 32050794]
[14]
Sulaiman GM, Waheeb HM, Jabir MS, Khazaal SH, Dewir YH, Naidoo Y. Hesperidin loaded on gold nanoparticles as a drug delivery system for a successful biocompatible, anti-cancer, anti-inflammatory and phagocytosis inducer model. Sci Rep 2020; 10(1): 9362.
[http://dx.doi.org/10.1038/s41598-020-66419-6] [PMID: 32518242]
[15]
Maaliki D, Shaito AA, Pintus G, El-Yazbi A, Eid AH. Flavonoids in hypertension: A brief review of the underlying mechanisms. Curr Opin Pharmacol 2019; 45: 57-65.
[http://dx.doi.org/10.1016/j.coph.2019.04.014] [PMID: 31102958]
[16]
Fardoun MM, Maaliki D, Halabi N, et al. Flavonoids in adipose tissue inflammation and atherosclerosis: One arrow, two targets. Clin Sci 2020; 134(12): 1403-32.
[http://dx.doi.org/10.1042/CS20200356] [PMID: 32556180]
[17]
Barrón SJC, González CC, Parrilla AE. Nanoparticle-mediated delivery of flavonoids: Impact on proinflammatory cytokine production: A systematic review. Biomolecules 2023; 13(7): 1158.
[http://dx.doi.org/10.3390/biom13071158] [PMID: 37509193]
[18]
Umeno A, Horie M, Murotomi K, Nakajima Y, Yoshida Y. Antioxidative and antidiabetic effects of natural polyphenols and isoflavones. Molecules 2016; 21(6): 708.
[http://dx.doi.org/10.3390/molecules21060708] [PMID: 27248987]
[19]
Iranshahi M, Rezaee R, Parhiz H, Roohbakhsh A, Soltani F. Protective effects of flavonoids against microbes and toxins: The cases of hesperidin and hesperetin. Life Sci 2015; 137: 125-32.
[http://dx.doi.org/10.1016/j.lfs.2015.07.014] [PMID: 26188593]
[20]
Bilia AR, Isacchi B, Righeschi C, Guccione C, Bergonzi MC. Flavonoids Loaded in Nanocarriers: An Opportunity to Increase Oral Bioavailability and Bioefficacy. Food Nutr Sci 2014; 5(13): 1212-327.
[http://dx.doi.org/10.4236/fns.2014.513132]
[21]
du Preez BVP, de Beer D, Joubert E. By-product of honeybush (Cyclopia maculata) tea processing as source of hesperidin-enriched nutraceutical extract. Ind Crops Prod 2016; 87: 132-41.
[http://dx.doi.org/10.1016/j.indcrop.2016.04.012]
[22]
Maria I, Iris C, Freddy JT, et al. Hesperidin functions as an ergogenic aid by increasing endothelial function and decreasing exercise-induced oxidative stress and inflammation, thereby contributing to improved exercise performance. Nutrients 2022; 14(14): 2955.
[23]
Miles EA, Calder PC. Effects of citrus fruit juices and their bioactive components on inflammation and immunity: A narrative review. Front Immunol 2021; 12: 712608.
[http://dx.doi.org/10.3389/fimmu.2021.712608] [PMID: 34249019]
[24]
Bellavite P, Donzelli A. Hesperidin and SARS-CoV-2: New light on the healthy function of citrus fruits. Antioxidants 2020; 9(8): 742.
[http://dx.doi.org/10.3390/antiox9080742] [PMID: 32823497]
[25]
Hajialyani M, Farzaei HM, Echeverría J, Nabavi SM, Uriarte E, Sobarzo-Sánchez E. Hesperidin as a neuroprotective agent: A review of animal and clinical evidence. Molecules 2019; 24(3): 648.
[http://dx.doi.org/10.3390/molecules24030648] [PMID: 30759833]
[26]
Kumar S, Pandey AK. Chemistry and biological activities of flavonoids: An overview. Sci World J 2013; 2013: 162750.
[http://dx.doi.org/10.1155/2013/162750]
[27]
Pecio Ł, Pecio S, Mroczek T, Oleszek W. Spiro-flavonoids in nature: A critical review of structural diversity and bioactivity. Molecules 2023; 28(14): 5420.
[http://dx.doi.org/10.3390/molecules28145420] [PMID: 37513292]
[28]
Sohel M, Sultana H, Sultana T, et al. Chemotherapeutic potential of hesperetin for cancer treatment, with mechanistic insights: A comprehensive review. Heliyon 2022; 8(1): e08815.
[http://dx.doi.org/10.1016/j.heliyon.2022.e08815] [PMID: 35128104]
[29]
Lu Y, Luo Q, Jia X, Tam JP, Yang H, Shen Y, et al. Multidisciplinary strategies to enhance therapeutic effects of flavonoids from Epimedii Folium: Integration of herbal medicine, enzyme engineering, and nanotechnology. J Pharm Anal 2022.
[PMID: 37102112]
[30]
Cunha C, Daniel-da-Silva AL, Oliveira H. Drug delivery systems and flavonoids: Current knowledge in melanoma treatment and future perspectives. Micromachines 2022; 13(11): 1838.
[http://dx.doi.org/10.3390/mi13111838] [PMID: 36363859]
[31]
Tejada S, Pinya S, Martorell M, et al. Potential anti-inflammatory effects of hesperidin from the genus citrus. Curr Med Chem 2019; 25(37): 4929-45.
[http://dx.doi.org/10.2174/0929867324666170718104412] [PMID: 28721824]
[32]
Garg A, Garg S, Zaneveld LJD, Singla AK. Chemistry and pharmacology of the citrus bioflavonoid hesperidin. Phytother Res 2001; 15(8): 655-69.
[http://dx.doi.org/10.1002/ptr.1074] [PMID: 11746857]
[33]
Mu Q, Zhang Y, Cheng Q, Huang H, Huang C, Tang L. Research progress on the mechanism of action of hesperetin in cerebral ischemia: A narrative review. Ann Transl Med 2022; 10(14): 806.
[http://dx.doi.org/10.21037/atm-22-3136] [PMID: 35965833]
[34]
Majumdar S, Srirangam R. Solubility, stability, physicochemical characteristics and in vitro ocular tissue permeability of hesperidin: A natural bioflavonoid. Pharm Res 2009; 26(5): 1217-25.
[http://dx.doi.org/10.1007/s11095-008-9729-6] [PMID: 18810327]
[35]
Kumar PP, Kumar SKT, Nainita KM, et al. Cerebroprotective potential of hesperidin nanoparticles against bilateral common carotid artery occlusion reperfusion injury in rats and in silico approaches. Neurotox Res 2020; 37(2): 264-74.
[http://dx.doi.org/10.1007/s12640-019-00098-8] [PMID: 31422568]
[36]
Kim J, Wie MB, Ahn M, Tanaka A, Matsuda H, Shin T. Benefits of hesperidin in central nervous system disorders: A review. Anat Cell Biol 2019; 52(4): 369-77.
[http://dx.doi.org/10.5115/acb.19.119] [PMID: 31949974]
[37]
Nectoux AM, Abe C, Huang SW, et al. Absorption and metabolic behavior of hesperidin (rutinosylated hesperetin) after single oral administration to Sprague-Dawley rats. J Agric Food Chem 2019; 67(35): 9812-9.
[http://dx.doi.org/10.1021/acs.jafc.9b03594] [PMID: 31392887]
[38]
Roohbakhsh A, Parhiz H, Soltani F, Rezaee R, Iranshahi M. Neuropharmacological properties and pharmacokinetics of the citrus flavonoids hesperidin and hesperetin - A mini-review. Life Sci 2014; 113(1-2): 1-6.
[http://dx.doi.org/10.1016/j.lfs.2014.07.029] [PMID: 25109791]
[39]
Jiao Q, Xu L, Jiang L, Jiang Y, Zhang J, Liu B. Metabolism study of hesperetin and hesperidin in rats by UHPLC-LTQ-Orbitrap MSn. Xenobiotica 2020; 50(11): 1311-22.
[http://dx.doi.org/10.1080/00498254.2019.1567956] [PMID: 30654682]
[40]
Bagwe-Parab S, Kaur G, Buttar HSTH. Absorption, metabolism, and disposition of flavonoids and their role in the prevention of distinctive cancer types. In: Singh Tuli H, Ed. Current aspects of flavonoids: Their role in cancer treatment. Singapore: Springer 2019; pp. 125-37.
[http://dx.doi.org/10.1007/978-981-13-5874-6_6]
[41]
Actis-Goretta L, Dew TP, Lévèques A, et al. Gastrointestinal absorption and metabolism of hesperetin‐7‐ O ‐rutinoside and hesperetin‐7‐ O ‐glucoside in healthy humans. Mol Nutr Food Res 2015; 59(9): 1651-62.
[http://dx.doi.org/10.1002/mnfr.201500202] [PMID: 26018925]
[42]
Nour K Y, Roumieh R, Bassil EP, Ghoubaira JA, Kobeissy F, Eid AH. Nanoparticles: Attractive tools to treat colorectal cancer. Semin Cancer Biol 2022; 86((Pt 2)): 1-13.
[43]
Nikezić AV, Novaković JG. Nano/microcarriers in drug delivery: Moving the timeline to contemporary. Curr Med Chem 2023; 30(26): 2996-3023.
[http://dx.doi.org/10.2174/0929867329666220821193938] [PMID: 36017848]
[44]
Gholami L, Ivari JR, Nasab NK, Oskuee RK, Sathyapalan T, Sahebkar A. Recent advances in lung cancer therapy based on nanomaterials: A review. Curr Med Chem 2023; 30(3): 335-55.
[http://dx.doi.org/10.2174/0929867328666210810160901] [PMID: 34375182]
[45]
Younis NK, Ghoubaira JA, Bassil EP, Tantawi HN, Eid AH. Metal-based nanoparticles: Promising tools for the management of cardiovascular diseases. Nanomedicine 2021; 36: 102433.
[http://dx.doi.org/10.1016/j.nano.2021.102433] [PMID: 34171467]
[46]
Mirhadi E, Kesharwani P, Johnston TP, Sahebkar A. Nanomedicine-mediated therapeutic approaches for pulmonary arterial hypertension. Drug Discov Today 2023; 28(6): 103599.
[http://dx.doi.org/10.1016/j.drudis.2023.103599] [PMID: 37116826]
[47]
Waheeb HM, Sulaiman GM, Jabir MS. Effect of hesperidin conjugated with golden nanoparticles on phagocytic activity: in vitro study. In: AIP Conference Proceedings. AIP Publishing LLC 2020.
[48]
He Y, Al-Mureish A, Wu N. Nanotechnology in the treatment of diabetic complications: A comprehensive narrative review. J Diabetes Res 2021; 2021
[49]
Díaz MR, Vivas-Mejia PE. Nanoparticles as drug delivery systems in cancer medicine: Emphasis on RNAi-containing nanoliposomes. Pharmaceuticals 2013; 6(11): 1361-80.
[http://dx.doi.org/10.3390/ph6111361] [PMID: 24287462]
[50]
Rocha S, Lucas M, Ribeiro D, Corvo ML, Fernandes E, Freitas M. Nano-based drug delivery systems used as vehicles to enhance polyphenols therapeutic effect for diabetes mellitus treatment. Pharmacol Res 2021; 169(April): 105604.
[http://dx.doi.org/10.1016/j.phrs.2021.105604] [PMID: 33845125]
[51]
Kuthati Y, Kankala RK, Lee CH. Layered double hydroxide nanoparticles for biomedical applications: Current status and recent prospects. Appl Clay Sci 2015; 112-113: 100-16.
[http://dx.doi.org/10.1016/j.clay.2015.04.018]
[52]
Chakraborty M, Dasgupta S, Sengupta S, et al. A facile synthetic strategy for Mg-Al layered double hydroxide material as nanocarrier for methotrexate. Ceram Int 2012; 38(2): 941-9.
[http://dx.doi.org/10.1016/j.ceramint.2011.08.014]
[53]
Chen BH, Inbaraj SB. Nanoemulsion and nanoliposome based strategies for improving anthocyanin stability and bioavailability. Nutrients 2019; 11(5): 1052.
[http://dx.doi.org/10.3390/nu11051052] [PMID: 31083417]
[54]
Ahmed EM. Hydrogel: Preparation, characterization, and applications: A review. J Adv Res 2015; 6(2): 105-21.
[http://dx.doi.org/10.1016/j.jare.2013.07.006] [PMID: 25750745]
[55]
Sharma G, Sharma AR, Nam JS, Doss GPC, Lee SS, Chakraborty C. Nanoparticle based insulin delivery system: The next generation efficient therapy for Type 1 diabetes. J Nanobiotechnol 2015; 13(1): 74.
[http://dx.doi.org/10.1186/s12951-015-0136-y] [PMID: 26498972]
[56]
Elahi N, Kamali M, Baghersad MH. Recent biomedical applications of gold nanoparticles: A review. Talanta 2018; 184: 537-56.
[http://dx.doi.org/10.1016/j.talanta.2018.02.088] [PMID: 29674080]
[57]
Loiseau A, Asila V, Boitel-Aullen G, Lam M, Salmain M, Boujday S. Silver-based plasmonic nanoparticles for and their use in biosensing. Biosensors 2019; 9(2): 78.
[http://dx.doi.org/10.3390/bios9020078] [PMID: 31185689]
[58]
Chatterjee A, Bharadiya P, Hansora D. Layered double hydroxide based bionanocomposites. Appl Clay Sci 2019; 177: 19-36.
[http://dx.doi.org/10.1016/j.clay.2019.04.022]
[59]
Mishra G, Dash B, Pandey S. Layered double hydroxides: A brief review from fundamentals to application as evolving biomaterials. Appl Clay Sci 2018; 153: 172-86.
[http://dx.doi.org/10.1016/j.clay.2017.12.021]
[60]
Ganesan P, Arulselvan P, Choi DK. Phytobioactive compound-based nanodelivery systems for the treatment of type 2 diabetes mellitus - current status. Int J Nanomedicine 2017; 12: 1097-111.
[http://dx.doi.org/10.2147/IJN.S124601] [PMID: 28223801]
[61]
Elshazly SM, Abd El Motteleb DM, Ibrahim IAAEH. Hesperidin protects against stress induced gastric ulcer through regulation of peroxisome proliferator activator receptor gamma in diabetic rats. Chem Biol Interact 2018; 291: 153-61.
[http://dx.doi.org/10.1016/j.cbi.2018.06.027] [PMID: 29944876]
[62]
Al-Rikabi R, Al-Shmgani H, Dewir YH, El-Hendawy S. In vivo and in vitro evaluation of the protective effects of hesperidin in lipopolysaccharide-induced inflammation and cytotoxicity of cell. Molecules 2020; 25(3): 478.
[http://dx.doi.org/10.3390/molecules25030478] [PMID: 31979178]
[63]
El-Shahawy AAG, Abdel-Moneim A, Ebeid ASM, Eldin ZE, Zanaty MI. A novel layered double hydroxide-hesperidin nanoparticles exert antidiabetic, antioxidant and anti-inflammatory effects in rats with diabetes. Mol Biol Rep 2021; 48(6): 5217-32.
[http://dx.doi.org/10.1007/s11033-021-06527-2] [PMID: 34244888]
[64]
Gaur PK, Pal H, Puri D, Kumar N, Shanmugam SK. Formulation and development of hesperidin loaded solid lipid nanoparticles for diabetes. Biointerface Res Appl Chem 2020; 10(1): 4728-33.
[65]
Pradhan SP, Sahoo S, Behera A, Sahoo R, Sahu PK. Memory amelioration by hesperidin conjugated gold nanoparticles in diabetes induced cognitive impaired rats. J Drug Deliv Sci Technol 2022; 69: 103145.
[http://dx.doi.org/10.1016/j.jddst.2022.103145]
[66]
Kumar S, Ravichandran S. In vivo antidiabetic evaluation of nanoparticles encompass dual bioflavonoid. Int J Pharmacomet Integr Biosci 2018; 3(1): 11-8.
[67]
Saad S, Ahmad I, Kawish SM, et al. Improved cardioprotective effects of hesperidin solid lipid nanoparticles prepared by supercritical antisolvent technology. Colloids Surf B Biointerfaces 2020; 187: 110628.
[http://dx.doi.org/10.1016/j.colsurfb.2019.110628] [PMID: 31753617]
[68]
Fathi M, Varshosaz J, Mohebbi M, Shahidi F. Hesperetin-loaded solid lipid nanoparticles and nanostructure lipid carriers for food fortification: Preparation, characterization, and modeling. Food Bioprocess Technol 2013; 6(6): 1464-75.
[http://dx.doi.org/10.1007/s11947-012-0845-2]
[69]
Jin H, Zhao Z, Lan Q, et al. Nasal delivery of hesperidin/chitosan nanoparticles suppresses cytokine storm syndrome in a mouse model of acute lung injury. Front Pharmacol 2021; 11: 592238.
[http://dx.doi.org/10.3389/fphar.2020.592238] [PMID: 33584267]
[70]
Ramos-Lopez O, Milagro FI, Riezu-Boj JI, Martinez JA. Epigenetic signatures underlying inflammation: An interplay of nutrition, physical activity, metabolic diseases, and environmental factors for personalized nutrition. Inflamm Res 2021; 70(1): 29-49.
[http://dx.doi.org/10.1007/s00011-020-01425-y] [PMID: 33231704]
[71]
de Gonzalo-Calvo D, Neitzert K, Fernández M, et al. Differential inflammatory responses in aging and disease: TNF-α and IL-6 as possible biomarkers. Free Radic Biol Med 2010; 49(5): 733-7.
[http://dx.doi.org/10.1016/j.freeradbiomed.2010.05.019] [PMID: 20639132]
[72]
Alzamil H. Elevated serum TNF-α is related to obesity in type 2 diabetes mellitus and is associated with glycemic control and insulin resistance. J Obes 2020; 2020
[73]
Rehman K, Akash MSH, Liaqat A, Kamal S, Qadir MI, Rasul A. Role of interleukin-6 in development of insulin resistance and type 2 diabetes mellitus. Crit Rev Eukaryot Gene Expr 2017; 27(3): 229-36.
[http://dx.doi.org/10.1615/CritRevEukaryotGeneExpr.2017019712] [PMID: 29199608]
[74]
Pouvreau C, Dayre A, Butkowski E, de Jong B, Jelinek HF. Inflammation and oxidative stress markers in diabetes and hypertension. J Inflamm Res 2018; 11: 61-8.
[http://dx.doi.org/10.2147/JIR.S148911] [PMID: 29497324]
[75]
Ighodaro OM. Molecular pathways associated with oxidative stress in diabetes mellitus. Biomed Pharmacother 2018; 108: 656-62.
[http://dx.doi.org/10.1016/j.biopha.2018.09.058] [PMID: 30245465]
[76]
Darenskaya MA, Kolesnikova LI, Kolesnikov SI. Oxidative stress: Pathogenetic role in diabetes mellitus and its complications and therapeutic approaches to correction. Bull Exp Biol Med 2021; 171(2): 179-89.
[http://dx.doi.org/10.1007/s10517-021-05191-7] [PMID: 34173093]
[77]
Sharma R, Satyanarayana P, Anand P, Aruna Kumari G. Adiponectin level association with MDA in the patients with type 2 diabetes mellitus. Biomed Pharmacol J 2020; 13(2): 943-55.
[http://dx.doi.org/10.13005/bpj/1963]
[78]
Yildirim M, Degirmenci U, Akkapulu M, et al. The effect of Rheum ribes L. on oxidative stress in diabetic rats. J Basic Clin Physiol Pharmacol 2020; 32(1)
[PMID: 32813675]
[79]
Caro-Ordieres T, Marín-Royo G, Opazo-Ríos L, et al. The coming age of flavonoids in the treatment of diabetic complications. J Clin Med 2020; 9(2): 346.
[http://dx.doi.org/10.3390/jcm9020346] [PMID: 32012726]
[80]
Kumar B, Gupta SK, Srinivasan BP, et al. Hesperetin rescues retinal oxidative stress, neuroinflammation and apoptosis in diabetic rats. Microvasc Res 2013; 87: 65-74.
[http://dx.doi.org/10.1016/j.mvr.2013.01.002] [PMID: 23376836]
[81]
Chen YJ, Kong L, Tang ZZ, et al. Hesperetin ameliorates diabetic nephropathy in rats by activating Nrf2/ARE/glyoxalase 1 pathway. Biomed Pharmacother 2019; 111: 1166-75.
[http://dx.doi.org/10.1016/j.biopha.2019.01.030] [PMID: 30841430]
[82]
Iskender H, Dokumacioglu E, Sen T, et al. The effects of hesperidin and quercetin on serum tumor necrosis factor-alpha and interleukin-6 levels in streptozotocin-induced diabetes model. Pharmacogn Mag 2018; 14(54): 167-73.
[http://dx.doi.org/10.4103/pm.pm_41_17] [PMID: 29720826]
[83]
Hanchang W, Wongmanee N, Yoopum S, Rojanaverawong W. Protective role of hesperidin against diabetes induced spleen damage: Mechanism associated with oxidative stress and inflammation. J Food Biochem 2022; 46(12): e14444.
[http://dx.doi.org/10.1111/jfbc.14444] [PMID: 36165434]
[84]
Homayouni F, Haidari F, Hedayati M, Zakerkish M, Ahmadi K. Blood pressure lowering and anti‐inflammatory effects of hesperidin in type 2 diabetes; a randomized double‐blind controlled clinical trial. Phytother Res 2018; 32(6): 1073-9.
[http://dx.doi.org/10.1002/ptr.6046] [PMID: 29468764]
[85]
Behera A, Pradhan SP, Tejaswani P, Sa N, Pattnaik S, Sahu PK. Ameliorative and neuroprotective effect of core-shell type se@au conjugated hesperidin nanoparticles in diabetes-induced cognitive impairment. Mol Neurobiol 2023; 60(12): 7329-45.
[http://dx.doi.org/10.1007/s12035-023-03539-w] [PMID: 37561235]
[86]
Svendsen B, Larsen O, Gabe MBN, et al. Insulin secretion depends on intra-islet glucagon signaling. Cell Rep 2018; 25(5): 1127-1134.e2.
[http://dx.doi.org/10.1016/j.celrep.2018.10.018] [PMID: 30380405]
[87]
Haythorne E, Rohm M, van de Bunt M, et al. Diabetes causes marked inhibition of mitochondrial metabolism in pancreatic β-cells. Nat Commun 2019; 10(1): 2474.
[http://dx.doi.org/10.1038/s41467-019-10189-x] [PMID: 31171772]
[88]
Rahmi R, Machrina Y, Yamamoto Z. The effect of various training on the expression of the 5’amp-activated protein kinase A2 and glucose transporter-4 in type-2 diabetes mellitus rat. Open Access Maced J Med Sci 2022; 10: 1-5.
[89]
Ashcroft FM, Gribble FM. ATP-sensitive K + channels and insulin secretion: Their role in health and disease. Diabetologia 1999; 42(8): 903-19.
[http://dx.doi.org/10.1007/s001250051247] [PMID: 10491749]
[90]
Yang H, Yang L. Targeting cAMP/PKA pathway for glycemic control and type 2 diabetes therapy. J Mol Endocrinol 2016; 57(2): R93-R108.
[http://dx.doi.org/10.1530/JME-15-0316] [PMID: 27194812]
[91]
Xiong H, Wang J, Ran Q, et al. Hesperidin: A therapeutic agent for obesity. Drug Des Devel Ther 2019; 13: 3855-66.
[http://dx.doi.org/10.2147/DDDT.S227499] [PMID: 32009777]
[92]
Hameed A, Ashraf S, Israr Khan M, Hafizur RM, Ul-Haq Z. Protein kinase A-dependent insulinotropic effect of selected flavonoids. Int J Biol Macromol 2018; 119: 149-56.
[http://dx.doi.org/10.1016/j.ijbiomac.2018.07.012] [PMID: 30003913]
[93]
Eghtesadi S, Mohammadi M, Vafa M, et al. Effects of hesperidin supplementation on glycemic control, lipid profile and inflammatory factors in patients with type 2 diabetes: A randomized, double-blind and placebo-controlled clinical trial. Endocrine Abst 2016; 43
[http://dx.doi.org/10.1530/endoabs.43.OC16]
[94]
Manoel-Caetano FS, Xavier DJ, Evangelista AF, et al. Gene expression profiles displayed by peripheral blood mononuclear cells from patients with type 2 diabetes mellitus focusing on biological processes implicated on the pathogenesis of the disease. Gene 2012; 511(2): 151-60.
[http://dx.doi.org/10.1016/j.gene.2012.09.090] [PMID: 23036710]
[95]
Hill-Briggs F, Adler NE, Berkowitz SA, et al. Social determinants of health and diabetes: A scientific review. Diabetes Care 2021; 44(1): 258-79.
[96]
Ma C, Zhang Y, Li Y, Chen C, Cai W, Zeng Y. The role of PPARγ in advanced glycation end products-induced inflammatory response in human chondrocytes. PLoS One 2015; 10(5): e0125776.
[http://dx.doi.org/10.1371/journal.pone.0125776] [PMID: 26024533]
[97]
Chen YJ, Chan DC, Lan KC, et al. PPARγ is involved in the hyperglycemia‐induced inflammatory responses and collagen degradation in human chondrocytes and diabetic mouse cartilages. J Orthop Res 2015; 33(3): 373-81.
[http://dx.doi.org/10.1002/jor.22770] [PMID: 25410618]
[98]
Agrawal YO, Sharma PK, Shrivastava B, et al. Hesperidin produces cardioprotective activity via PPAR-γ pathway in ischemic heart disease model in diabetic rats. PLoS One 2014; 9(11): e111212.
[http://dx.doi.org/10.1371/journal.pone.0111212] [PMID: 25369053]
[99]
Pallauf K, Duckstein N, Hasler M, Klotz L-O, Rimbach G. Flavonoids as putative inducers of the transcription factors Nrf2, FoxO, and PPARγ. Oxid Med Cell Longev 2017; 2017
[100]
Mahmoud AM, Mohammed HM, Khadrawy SM, Galaly SR. Hesperidin protects against chemically induced hepatocarcinogenesis via modulation of Nrf2/ARE/HO-1, PPARγ and TGF-β1/Smad3 signaling, and amelioration of oxidative stress and inflammation. Chem Biol Interact 2017; 277: 146-58.
[http://dx.doi.org/10.1016/j.cbi.2017.09.015] [PMID: 28935427]
[101]
Zhu X, Liu H, Liu Y, Chen Y, Liu Y, Yin X. The antidepressant-like effects of hesperidin in streptozotocin‐induced diabetic rats by activating Nrf2/ARE/Glyoxalase 1 pathway. Front Pharmacol 2020; 11: 1325.
[http://dx.doi.org/10.3389/fphar.2020.01325] [PMID: 32982741]
[102]
Kuzu M, Kandemir FM, Yıldırım S, Çağlayan C, Küçükler S. Attenuation of sodium arsenite-induced cardiotoxicity and neurotoxicity with the antioxidant, anti-inflammatory, and antiapoptotic effects of hesperidin. Environ Sci Pollut Res Int 2021; 28(9): 10818-31.
[http://dx.doi.org/10.1007/s11356-020-11327-5] [PMID: 33099738]
[103]
Roohbakhsh A, Parhiz H, Soltani F, Rezaee R, Iranshahi M. Molecular mechanisms behind the biological effects of hesperidin and hesperetin for the prevention of cancer and cardiovascular diseases. Life Sci 2015; 124: 64-74.
[http://dx.doi.org/10.1016/j.lfs.2014.12.030] [PMID: 25625242]
[104]
Karim N, Shishir MRI, Gowd V, Chen W. Hesperidin-an emerging bioactive compound against metabolic diseases and its potential biosynthesis pathway in microorganism. Food Rev Int 2021; 1-23.
[105]
Yari Z, Movahedian M, Imani H, Alavian SM, Hedayati M, Hekmatdoost A. The effect of hesperidin supplementation on metabolic profiles in patients with metabolic syndrome: A randomized, double-blind, placebo-controlled clinical trial. Eur J Nutr 2020; 59(6): 2569-77.
[http://dx.doi.org/10.1007/s00394-019-02105-2] [PMID: 31844967]
[106]
Ferreira de Oliveira JMP, Santos C, Fernandes E. Therapeutic potential of hesperidin and its aglycone hesperetin: Cell cycle regulation and apoptosis induction in cancer models. Phytomedicine 2020; 73: 152887.
[http://dx.doi.org/10.1016/j.phymed.2019.152887] [PMID: 30975541]
[107]
Balakrishnan K, Casimeer SC, Ghidan AY, Al Antary TM, Singaravelu A. Exploration of antioxidant, antibacterial activities of green synthesized hesperidin loaded PLGA nanoparticles. Biointerface Res Appl Chem 2021; 11(6): 14520-8.
[http://dx.doi.org/10.33263/BRIAC116.1452014528]
[108]
Najafi Z, Einafshar E, Mirzavi F, Amiri H, Jalili-Nik M, Soukhtanloo M. Protective effect of hesperidin-loaded selenium nanoparticles stabilized by chitosan on glutamate-induced toxicity in PC12 cells. J Nanopart Res 2023; 25(9): 178.
[http://dx.doi.org/10.1007/s11051-023-05828-w]
[109]
Simos YV, Spyrou K, Patila M, et al. Trends of nanotechnology in type 2 diabetes mellitus treatment. Asian J Pharmaceut Sci 2021; 16(1): 62-76.
[http://dx.doi.org/10.1016/j.ajps.2020.05.001] [PMID: 33613730]
[110]
Xu Y, Van Hul M, Suriano F, Préat V, Cani PD, Beloqui A. Novel strategy for oral peptide delivery in incretin-based diabetes treatment. Gut 2020; 69(5): 911-9.
[http://dx.doi.org/10.1136/gutjnl-2019-319146] [PMID: 31401561]
[111]
El-Naggar ME, Al-Joufi F, Anwar M, Attia MF, El-Bana MA. Curcumin-loaded PLA-PEG copolymer nanoparticles for treatment of liver inflammation in streptozotocin-induced diabetic rats. Colloids Surf B Biointerfaces 2019; 177: 389-98.
[http://dx.doi.org/10.1016/j.colsurfb.2019.02.024] [PMID: 30785036]
[112]
Karthick V, Kumar VG, Dhas TS, Singaravelu G, Sadiq AM, Govindaraju K. Effect of biologically synthesized gold nanoparticles on alloxan-induced diabetic rats-An in vivo approach. Colloids Surf B Biointerfaces 2014; 122: 505-11.
[http://dx.doi.org/10.1016/j.colsurfb.2014.07.022] [PMID: 25092583]
[113]
Ghosh S, More P, Nitnavare R, Jagtap S, Chippalkatti R, Derle A, et al. Antidiabetic and antioxidant properties of copper nanoparticles synthesized by medicinal plant Dioscorea bulbifera. J Nanomed Nanotechnol 2015; (S6): 1.
[114]
Alkhalaf MI, Hussein RH, Hamza A. Green synthesis of silver nanoparticles by Nigella sativa extract alleviates diabetic neuropathy through anti-inflammatory and antioxidant effects. Saudi J Biol Sci 2020; 27(9): 2410-9.
[http://dx.doi.org/10.1016/j.sjbs.2020.05.005] [PMID: 32884424]
[115]
Amjadi S, Mesgari Abbasi M, Shokouhi B, Ghorbani M, Hamishehkar H. Enhancement of therapeutic efficacy of betanin for diabetes treatment by liposomal nanocarriers. J Funct Foods 2019; 59: 119-28.
[http://dx.doi.org/10.1016/j.jff.2019.05.015]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy