Generic placeholder image

Current Drug Research Reviews

Editor-in-Chief

ISSN (Print): 2589-9775
ISSN (Online): 2589-9783

Review Article

Liraglutide Improves Diabetic Cardiomyopathy by Downregulation of Cardiac Inflammatory and Apoptosis Markers

Author(s): Polly Gupta and Rustam Ekbbal*

Volume 16, Issue 3, 2024

Published on: 15 November, 2023

Page: [289 - 299] Pages: 11

DOI: 10.2174/0125899775243787231103075804

Price: $65

Open Access Journals Promotions 2
Abstract

Background: Diabetic cardiomyopathy is one of the leading causes of mortality for people with diabetes worldwide. The majority of the formalistic alterations in the heart associated with diabetic cardiomyopathy have been found to be primarily caused by the ongoing oxidative stress brought on by hyperglycemia, which leads to the dysfunctional reactions of apoptosis and inflammation. Liraglutide, a long-acting counterpart of glucagon-like peptide-1, has been demonstrated to have a number of therapeutic applications in medicine and other biological processes.

Methods: The PubMed database was searched using the terms liraglutide, DCM, and all associated inflammatory markers.

Results: There has been a lot of research on liraglutide's potential to protect the heart from cardiomyopathy brought on by diabetes. Liraglutide's therapeutic actions as an antioxidant, antihyperglycemic, anti-apoptotic, and anti-inflammatory medicine may help to lessen diabetic cardiomyopathy.

Conclusion: The most recent studies on the effects of liraglutide therapy on DCM are presented in this review, along with an explanation of the underlying mechanisms.

Keywords: Glucagon-like peptide-1, liraglutide, oxidative stress, systolic dysfunction, diastolic dysfunction, diabetic cardiomyopathy.

Graphical Abstract
[1]
Sun H, Saeedi P, Karuranga S, et al. IDF Diabetes Atlas: Global, regional and country-level diabetes prevalence estimates for 2021 and projections for 2045. Diabetes Res Clin Pract 2022; 183: 109119.
[http://dx.doi.org/10.1016/j.diabres.2021.109119] [PMID: 34879977]
[2]
Einarson TR, Acs A, Ludwig C, Panton UH. Prevalence of cardiovascular disease in type 2 diabetes: a systematic literature review of scientific evidence from across the world in 2007–2017. Cardiovasc Diabetol 2018; 17(1): 83.
[http://dx.doi.org/10.1186/s12933-018-0728-6] [PMID: 29884191]
[3]
Institute for Public Health. Institute for Public Health (IPH) 2015, National Health and Morbidity Survey 2015 (NHMS 2015). Minist Heal Malaysia 2015; II: 1689-99.
[4]
Jia G, Hill MA, Sowers JR. Diabetic Cardiomyopathy. Circ Res 2018; 122(4): 624-38.
[http://dx.doi.org/10.1161/CIRCRESAHA.117.311586] [PMID: 29449364]
[5]
Paolillo S, Marsico F, Prastaro M, et al. Diabetic cardiomyopathy. Heart Fail Clin 2019; 15(3): 341-7.
[http://dx.doi.org/10.1016/j.hfc.2019.02.003] [PMID: 31079692]
[6]
Lorenzo-Almorós A, Tuñón J, Orejas M, Cortés M, Egido J, Lorenzo Ó. Diagnostic approaches for diabetic cardiomyopathy. Cardiovasc Diabetol 2017; 16(1): 28.
[http://dx.doi.org/10.1186/s12933-017-0506-x] [PMID: 28231848]
[7]
Borghetti G, von Lewinski D, Eaton DM, Sourij H, Houser SR, Wallner M. Diabetic cardiomyopathy: Current and future therapies. Beyond glycemic control. Front Physiol 2018; 9: 1514.
[http://dx.doi.org/10.3389/fphys.2018.01514] [PMID: 30425649]
[8]
Kenny HC, Abel ED. Heart failure in type 2 diabetes mellitus. Circ Res 2019; 124(1): 121-41.
[http://dx.doi.org/10.1161/CIRCRESAHA.118.311371] [PMID: 30605420]
[9]
Cleland SJ, Fisher BM, Colhoun HM, Sattar N, Petrie JR. Insulin resistance in type 1 diabetes: what is ‘double diabetes’ and what are the risks? Diabetologia 2013; 56(7): 1462-70.
[http://dx.doi.org/10.1007/s00125-013-2904-2] [PMID: 23613085]
[10]
El Mouhayyar C, Riachy R, Khalil AB, Eid A, Azar S. SGLT2 Inhibitors, GLP-1 Agonists, and DPP-4 Inhibitors in Diabetes and Microvascular Complications: A Review. Int J Endocrinol 2020; 2020: 1-11.
[http://dx.doi.org/10.1155/2020/1762164] [PMID: 32190049]
[11]
Sun L, Zheng ZM, Shao CS, et al. Rational design by structural biology of industrializable, long-acting antihyperglycemic glp-1 receptor agonists. Pharmaceutical 2022; 15(6): 740.
[http://dx.doi.org/10.3390/ph15060740] [PMID: 35745659]
[12]
Rode AKO, Buus TB, Mraz V, et al. Induced human regulatory t cells express the glucagon-like peptide-1 receptor. Cells 2022; 11(16): 2587.
[http://dx.doi.org/10.3390/cells11162587] [PMID: 36010663]
[13]
Fang P, Ye Z, Li R, et al. Glucagon-like peptide-1 receptor agonist protects against diabetic cardiomyopathy by modulating microRNA-29b-3p/SLMAP. Drug Des Devel Ther 2023; 17: 791-806.
[http://dx.doi.org/10.2147/DDDT.S400249] [PMID: 36936522]
[14]
Ban K, Noyan-Ashraf MH, Hoefer J, Bolz SS, Drucker DJ, Husain M. Cardioprotective and vasodilatory actions of glucagon-like peptide 1 receptor are mediated through both glucagon-like peptide 1 receptor-dependent and -independent pathways. Circulation 2008; 117(18): 2340-50.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.107.739938] [PMID: 18427132]
[15]
Poornima I, Brown SB, Bhashyam S, Parikh P, Bolukoglu H, Shannon RP. Chronic glucagon-like peptide-1 infusion sustains left ventricular systolic function and prolongs survival in the spontaneously hypertensive, heart failure-prone rat. Circ Heart Fail 2008; 1(3): 153-60.
[http://dx.doi.org/10.1161/CIRCHEARTFAILURE.108.766402] [PMID: 19727407]
[16]
Shimoda M, Kanda Y, Hamamoto S, et al. The human glucagon-like peptide-1 analogue liraglutide preserves pancreatic beta cells via regulation of cell kinetics and suppression of oxidative and endoplasmic reticulum stress in a mouse model of diabetes. Diabetologia 2011; 54(5): 1098-108.
[http://dx.doi.org/10.1007/s00125-011-2069-9] [PMID: 21340625]
[17]
Falcão-Pires I, Leite-Moreira AF. Diabetic cardiomyopathy: Understanding the molecular and cellular basis to progress in diagnosis and treatment. Heart Fail Rev 2012; 17(3): 325-44.
[http://dx.doi.org/10.1007/s10741-011-9257-z] [PMID: 21626163]
[18]
Fiorentino T, Prioletta A, Zuo P, Folli F. Hyperglycemia-induced oxidative stress and its role in diabetes mellitus related cardiovascular diseases. Curr Pharm Des 2013; 19(32): 5695-703.
[http://dx.doi.org/10.2174/1381612811319320005] [PMID: 23448484]
[19]
Othman AI, Elkomy MM, El-Missiry MA, Dardor M. Epigallocatechin-3-gallate prevents cardiac apoptosis by modulating the intrinsic apoptotic pathway in isoproterenol-induced myocardial infarction. Eur J Pharmacol 2017; 794: 27-36.
[http://dx.doi.org/10.1016/j.ejphar.2016.11.014] [PMID: 27864105]
[20]
Atta MS, El-Far AH, Farrag FA, et al. Thymoquinone attenuates cardiomyopathy in streptozotocin-treated diabetic rats. Oxid Med Cell Longev 2018; 2018
[http://dx.doi.org/10.1155/2018/7845681]
[21]
Gliozzi M, Scarano F, Musolino V, et al. Role of tspo/vdac1 upregulation and matrix metalloproteinase-2 localization in the dysfunctional myocardium of hyperglycaemic rats. Int J Mol Sci 2020; 21(20): 7432.
[http://dx.doi.org/10.3390/ijms21207432] [PMID: 33050121]
[22]
Geraldes P, King GL. Activation of protein kinase C isoforms and its impact on diabetic complications. Circ Res 2010; 106(8): 1319-31.
[http://dx.doi.org/10.1161/CIRCRESAHA.110.217117] [PMID: 20431074]
[23]
Singh RM, Cummings E, Pantos C, Singh J. Protein kinase C and cardiac dysfunction: A review. Heart Fail Rev 2017; 22(6): 843-59.
[http://dx.doi.org/10.1007/s10741-017-9634-3] [PMID: 28702857]
[24]
Gallo S, Vitacolonna A, Bonzano A, Comoglio P, Crepaldi T. ERK: A key player in the pathophysiology of cardiac hypertrophy. Int J Mol Sci 2019; 20(9): 2164.
[http://dx.doi.org/10.3390/ijms20092164] [PMID: 31052420]
[25]
Wang S, Ding L, Ji H, Xu Z, Liu Q, Zheng Y. The role of p38 MAPK in the development of diabetic cardiomyopathy. Int J Mol Sci 2016; 17(7): 1037.
[http://dx.doi.org/10.3390/ijms17071037] [PMID: 27376265]
[26]
Ni R, Cao T, Xiong S, et al. Therapeutic inhibition of mitochondrial reactive oxygen species with mito-TEMPO reduces diabetic cardiomyopathy. Free Radic Biol Med 2016; 90: 12-23.
[http://dx.doi.org/10.1016/j.freeradbiomed.2015.11.013] [PMID: 26577173]
[27]
Prabhu SD, Frangogiannis NG. The biological basis for cardiac repair after myocardial infarction. Circ Res 2016; 119(1): 91-112.
[http://dx.doi.org/10.1161/CIRCRESAHA.116.303577] [PMID: 27340270]
[28]
Frieler RA, Mortensen RM. Immune cell and other noncardiomyocyte regulation of cardiac hypertrophy and remodeling. Circulation 2015; 131(11): 1019-30.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.114.008788] [PMID: 25779542]
[29]
Tourki B, Halade G. Leukocyte diversity in resolving and nonresolving mechanisms of cardiac remodeling. FASEB J 2017; 31(10): 4226-39.
[http://dx.doi.org/10.1096/fj.201700109R] [PMID: 28642328]
[30]
Sulaiman M, Matta MJ, Sunderesan NR, et al. Resveratrol, an activator of SIRT1, upregulates sarcoplasmic calcium ATPase and improves cardiac function in diabetic cardiomyopathy. Am J Physiol Heart Circ Physiol 2010; 298(3): H833-43.
[31]
Abdul Y, Abdelsaid M, Li W, et al. Inhibition of Toll-Like Receptor-4 (TLR-4) Improves Neurobehavioral Outcomes After Acute Ischemic Stroke in Diabetic Rats: Possible Role of Vascular Endothelial TLR-4. Mol Neurobiol 2019; 56(3): 1607-17.
[http://dx.doi.org/10.1007/s12035-018-1184-8] [PMID: 29909454]
[32]
Diaz-Meco MT, Moscat J. The atypical PKCs in inflammation: NF‐κB and beyond. Immunol Rev 2012; 246(1): 154-67.
[http://dx.doi.org/10.1111/j.1600-065X.2012.01093.x] [PMID: 22435553]
[33]
Guzik TJ, Mussa S, Gastaldi D, et al. Mechanisms of increased vascular superoxide production in human diabetes mellitus: role of NAD(P)H oxidase and endothelial nitric oxide synthase. Circulation 2002; 105(14): 1656-62.
[http://dx.doi.org/10.1161/01.CIR.0000012748.58444.08] [PMID: 11940543]
[34]
Baker RG, Hayden MS, Ghosh S. NF-κB, inflammation, and metabolic disease. Cell Metab 2011; 13(1): 11-22.
[http://dx.doi.org/10.1016/j.cmet.2010.12.008] [PMID: 21195345]
[35]
Volpe CMO, Villar-Delfino PH, dos Anjos PMF, Nogueira-Machado JA. Cellular death, reactive oxygen species (ROS) and diabetic complications. Cell Death Dis 2018; 9(2): 119.
[http://dx.doi.org/10.1038/s41419-017-0135-z] [PMID: 29371661]
[36]
Jia G, DeMarco VG, Sowers JR. Insulin resistance and hyperinsulinaemia in diabetic cardiomyopathy. Nat Rev Endocrinol 2016; 12(3): 144-53.
[http://dx.doi.org/10.1038/nrendo.2015.216] [PMID: 26678809]
[37]
Ge ZD, Lian Q, Mao X, Xia Z. Current status and challenges of NRF2 as a potential therapeutic target for diabetic cardiomyopathy. Int Heart J 2019; 60(3): 512-20.
[http://dx.doi.org/10.1536/ihj.18-476] [PMID: 30971629]
[38]
Kim HJ, Nel AE. The role of phase II antioxidant enzymes in protecting memory T cells from spontaneous apoptosis in young and old mice. J Immunol 2005; 175(5): 2948-59.
[http://dx.doi.org/10.4049/jimmunol.175.5.2948] [PMID: 16116181]
[39]
Chen Y, Hua Y, Li X, Arslan IM, Zhang W, Meng G. Distinct types of cell death and the implication in diabetic cardiomyopathy. Front Pharmacol 2020; 11: 42.
[http://dx.doi.org/10.3389/fphar.2020.00042] [PMID: 32116717]
[40]
D’Arcy MS. Cell death: A review of the major forms of apoptosis, necrosis and autophagy. Cell Biol Int 2019; 43(6): 582-92.
[http://dx.doi.org/10.1002/cbin.11137] [PMID: 30958602]
[41]
Su D, Gao Q, Guan L, et al. Downregulation of SOX11 in fetal heart tissue, under hyperglycemic environment, mediates cardiomyocytes apoptosis. J Biochem Mol Toxicol 2021; 35(1): e22629.
[http://dx.doi.org/10.1002/jbt.22629] [PMID: 32935389]
[42]
Huang MLH, Chiang S, Kalinowski DS, et al. The role of the antioxidant response in mitochondrial dysfunction in degenerative diseases: Cross-talk between antioxidant defense, autophagy, and apoptosis. Oxid Med Cell Longev 2019; 2019
[43]
Liu Y, Zheng W, Pan Y, Hu J. Low expression of miR‐186‐5p regulates cell apoptosis by targeting toll‐like receptor 3 in high glucose–induced cardiomyocytes. J Cell Biochem 2019; 120(6): 9532-8.
[http://dx.doi.org/10.1002/jcb.28229] [PMID: 30506923]
[44]
Rajesh M, Mukhopadhyay P, Bátkai S, et al. Cannabidiol attenuates cardiac dysfunction, oxidative stress, fibrosis, and inflammatory and cell death signaling pathways in diabetic cardiomyopathy. J Am Coll Cardiol 2010; 56(25): 2115-25.
[http://dx.doi.org/10.1016/j.jacc.2010.07.033] [PMID: 21144973]
[45]
Anderson EJ, Rodriguez E, Anderson CA, et al. Increased propensity for cell death in diabetic human heart is mediated by mitochondrial-dependent pathways. Am J Physiol Heart Circ Physiol 2011; 300(1): H118-24.
[46]
Zhao PF, Sun MJ. Aquaporin in the proliferation and apoptosis of diabetic myocardial cells. Genet Mol Res 2015; 14(4): 17366-72.
[http://dx.doi.org/10.4238/2015.December.21.5] [PMID: 26782377]
[47]
Wang Y, Sun H, Zhang J, Xia Z, Chen W. Streptozotocin-induced diabetic cardiomyopathy in rats: Ameliorative effect of PIPERINE via Bcl2, Bax/Bcl2, and caspase-3 pathways. Biosci Biotechnol Biochem 2020; 84(12): 2533-44.
[http://dx.doi.org/10.1080/09168451.2020.1815170] [PMID: 32892714]
[48]
Brodersen K, Mose M, Ramer Mikkelsen U, et al. Prolonged lipopolysaccharide‐induced illness elevates glucagon‐like peptide‐1 and suppresses peptide YY: A human‐randomized cross‐over trial. Physiol Rep 2022; 10(18): e15462.
[http://dx.doi.org/10.14814/phy2.15462] [PMID: 36117310]
[49]
Smits MM, Tonneijck L, Muskiet MHA, Kramer MHH, Cahen DL, van Raalte DH. Gastrointestinal actions of glucagon‐like peptide‐1‐based therapies: glycaemic control beyond the pancreas. Diabetes Obes Metab 2016; 18(3): 224-35.
[http://dx.doi.org/10.1111/dom.12593] [PMID: 26500045]
[50]
Drucker DJ. Glucagon-like peptides: Regulators of cell proliferation, differentiation, and apoptosis. Mol Endocrinol 2003; 17(2): 161-71.
[http://dx.doi.org/10.1210/me.2002-0306] [PMID: 12554744]
[51]
Turton MD, O’Shea D, Gunn I, et al. A role for glucagon-like peptide-1 in the central regulation of feeding. Nature 1996; 379(6560): 69-72.
[http://dx.doi.org/10.1038/379069a0] [PMID: 8538742]
[52]
Knauf C, Cani PD, Perrin C, et al. Brain glucagon-like peptide-1 increases insulin secretion and muscle insulin resistance to favor hepatic glycogen storage. J Clin Invest 2005; 115(12): 3554-63.
[http://dx.doi.org/10.1172/JCI25764] [PMID: 16322793]
[53]
Holz GG IV, Kühtreiber WM, Habener JF. Pancreatic beta-cells are rendered glucose-competent by the insulinotropic hormone glucagon-like peptide-1(7-37). Nature 1993; 361(6410): 362-5.
[http://dx.doi.org/10.1038/361362a0] [PMID: 8381211]
[54]
Holst JJ. Therapy of type 2 diabetes mellitus based on the actions of glucagon-like peptide-1. World J Pediatr 1993; 362-5.
[55]
Dhanvantari S, Seidah NG, Brubaker PL. Role of prohormone convertases in the tissue-specific processing of proglucagon. Mol Endocrinol 1996; 10(4): 342-55.
[PMID: 8721980]
[56]
Deacon CF, Nauck MA, Toft-Nielsen M, Pridal L, Willms B, Holst JJ. Both subcutaneously and intravenously administered glucagon-like peptide I are rapidly degraded from the NH2-terminus in type II diabetic patients and in healthy subjects. Diabetes 1995; 44(9): 1126-31.
[http://dx.doi.org/10.2337/diab.44.9.1126] [PMID: 7657039]
[57]
Pauly RP, Rosche F, Wermann M, McIntosh CH, Pederson RA, Demuth HU. Investigation of glucose-dependent insulinotropic polypeptide-(1-42) and glucagon-like peptide-1-(7-36) degradation in vitro by dipeptidyl peptidase IV using matrix-assisted laser desorption/ionization-time of flight mass spectrometry. A novel kinetic approach. J Biol Chem 1996; 271(38): 23222-9.
[http://dx.doi.org/10.1074/jbc.271.38.23222] [PMID: 8798518]
[58]
Brubaker PL, Drucker DJ. Minireview: Glucagon-like peptides regulate cell proliferation and apoptosis in the pancreas, gut, and central nervous system. Endocrinology 2004; 145(6): 2653-9.
[http://dx.doi.org/10.1210/en.2004-0015] [PMID: 15044356]
[59]
De León DD, Deng S, Madani R, Ahima RS, Drucker DJ, Stoffers DA. Role of endogenous glucagon-like peptide-1 in islet regeneration after partial pancreatectomy. Diabetes 2003; 52(2): 365-71.
[http://dx.doi.org/10.2337/diabetes.52.2.365] [PMID: 12540609]
[60]
Buteau J, Foisy S, Joly E, Prentki M. Glucagon-like peptide 1 induces pancreatic β-cell proliferation via transactivation of the epidermal growth factor receptor. Diabetes 2003; 52(1): 124-32.
[http://dx.doi.org/10.2337/diabetes.52.1.124] [PMID: 12502502]
[61]
Bulotta A, Hui H, Anastasi E, et al. Cultured pancreatic ductal cells undergo cell cycle re-distribution and β-cell-like differentiation in response to glucagon-like peptide-1. J Mol Endocrinol 2002; 29(3): 347-60.
[http://dx.doi.org/10.1677/jme.0.0290347] [PMID: 12459036]
[62]
Farilla L, Hui H, Bertolotto C, et al. Glucagon-like peptide-1 promotes islet cell growth and inhibits apoptosis in Zucker diabetic rats. Endocrinology 2002; 143(11): 4397-408.
[http://dx.doi.org/10.1210/en.2002-220405] [PMID: 12399437]
[63]
Li YK, Ma DX, Wang ZM, et al. The glucagon-like peptide-1 (GLP-1) analog liraglutide attenuates renal fibrosis. Pharmacol Res 2018; 131: 102-11.
[http://dx.doi.org/10.1016/j.phrs.2018.03.004] [PMID: 29530599]
[64]
Dharmalingam M, Sriram U, Baruah M. Liraglutide: A review of its therapeutic use as a once daily GLP-1 analog for the management of type 2 diabetes mellitus. Indian J Endocrinol Metab 2011; 15(1): 9-17.
[http://dx.doi.org/10.4103/2230-8210.77571] [PMID: 21584160]
[65]
Sethi BK, Viswanathan V, Kumar A, et al. Liraglutide in clinical practice: Insights from LEAD programme. J Assoc Physicians India 2010; 58: 18-22.
[66]
Sharma D, Verma S, Vaidya S, Kalia K, Tiwari V. Recent updates on GLP-1 agonists: Current advancements & challenges. Biomed Pharmacother 2018; 108: 952-62.
[http://dx.doi.org/10.1016/j.biopha.2018.08.088] [PMID: 30372907]
[67]
Gough SCL, Jain R, Woo VC. Insulin degludec/liraglutide (IDegLira) for the treatment of type 2 diabetes. Expert Rev Endocrinol Metab 2016; 11(1): 7-19.
[http://dx.doi.org/10.1586/17446651.2016.1113129] [PMID: 27335581]
[68]
Zhang Z, Wang X, Yang L, Yang L, Ma H. Liraglutide ameliorates myocardial damage in experimental diabetic rats by inhibiting pyroptosis via Sirt1/AMPK signaling. Iran J Basic Med Sci 2021; 24(10): 1358-65.
[PMID: 35096293]
[69]
Batchuluun B, Inoguchi T, Sonoda N, et al. Metformin and liraglutide ameliorate high glucose-induced oxidative stress via inhibition of PKC-NAD(P)H oxidase pathway in human aortic endothelial cells. Atherosclerosis 2014; 232(1): 156-64.
[http://dx.doi.org/10.1016/j.atherosclerosis.2013.10.025] [PMID: 24401231]
[70]
Yang Y, Fang H, Xu G, et al. Liraglutide improves cognitive impairment via the AMPK and PI3K/Akt signaling pathways in type 2 diabetic rats. Mol Med Rep 2018; 18(2): 2449-57.
[http://dx.doi.org/10.3892/mmr.2018.9180] [PMID: 29916537]
[71]
Deng C, Cao J, Han J, et al. Liraglutide activates the Nrf2/HO-1 antioxidant pathway and protects brain nerve cells against cerebral ischemia in diabetic rats. Comput Intell Neurosci 2018; 2018
[72]
Song JX, An JR, Chen Q, et al. Liraglutide attenuates hepatic iron levels and ferroptosis in db/db mice. Bioengineered 2022; 13(4): 8334-48.
[http://dx.doi.org/10.1080/21655979.2022.2051858] [PMID: 35311455]
[73]
Diz-Chaves Y, Toba L, Fandiño J, González-Matías LC, Garcia-Segura LM, Mallo F. The GLP-1 analog, liraglutide prevents the increase of proinflammatory mediators in the hippocampus of male rat pups submitted to maternal perinatal food restriction. J Neuroinflammation 2018; 15(1): 337.
[http://dx.doi.org/10.1186/s12974-018-1370-7] [PMID: 30518432]
[74]
Wang XC, Gusdon AM, Liu H, Qu S. Effects of glucagon-like peptide-1 receptor agonists on non-alcoholic fatty liver disease and inflammation. World J Gastroenterol 2014; 20(40): 14821-30.
[http://dx.doi.org/10.3748/wjg.v20.i40.14821] [PMID: 25356042]
[75]
Li R, Shan Y, Gao L, Wang X, Wang X, Wang F. The GLP-1 analog liraglutide protects against angiotensin II and pressure overload-induced cardiac hypertrophy via PI3K/AKT1 and AMPKa signaling. Front Pharmacol 2019; 10: 537.
[http://dx.doi.org/10.3389/fphar.2019.00537] [PMID: 31231210]
[76]
Fandiño J, Toba L, González-Matías LC, Diz-Chaves Y, Mallo F. GLP-1 receptor agonist ameliorates experimental lung fibrosis. Sci Rep 2020; 10(1): 18091.
[http://dx.doi.org/10.1038/s41598-020-74912-1] [PMID: 33093510]
[77]
Liu Y, Jiang X, Chen X. Liraglutide and Metformin alone or combined therapy for type 2 diabetes patients complicated with coronary artery disease. Lipids Health Dis 2017; 16(1): 227.
[http://dx.doi.org/10.1186/s12944-017-0609-0] [PMID: 29197387]
[78]
Jia W, Bai T, Zeng J, et al. Combined administration of metformin and atorvastatin attenuates diabetic cardiomyopathy by inhibiting inflammation, apoptosis, and oxidative stress in type 2 diabetic mice. Front Cell Dev Biol 2021; 9: 634900.
[http://dx.doi.org/10.3389/fcell.2021.634900] [PMID: 33718370]
[79]
Bizino MB, Jazet IM, Westenberg JJM, et al. Effect of liraglutide on cardiac function in patients with type 2 diabetes mellitus: randomized placebo-controlled trial. Cardiovasc Diabetol 2019; 18(1): 55.
[http://dx.doi.org/10.1186/s12933-019-0857-6] [PMID: 31039778]
[80]
Kurniati NF, Fathadina A. Combination of Empagliflozin and Liraglutide protects heart against isoproterenol-induced myocardial infarction in rats. Pharmacia 2023; 70(1): 171-80.
[http://dx.doi.org/10.3897/pharmacia.70.e96975]
[81]
Sivalingam S, Larsen EL, van Raalte DH, et al. The effect of liraglutide and sitagliptin on oxidative stress in persons with type 2 diabetes. Sci Rep 2021; 11(1): 10624.
[http://dx.doi.org/10.1038/s41598-021-90191-w] [PMID: 34012064]
[82]
Rakipovski G, Rolin B, Nøhr J, et al. The GLP-1 analogs liraglutide and semaglutide reduce atherosclerosis in ApoE−/− and LDLr−/− mice by a mechanism that includes inflammatory pathways. JACC Basic Transl Sci 2018; 3(6): 844-57.
[http://dx.doi.org/10.1016/j.jacbts.2018.09.004] [PMID: 30623143]
[83]
Fiordelisi A, Iaccarino G, Morisco C, Coscioni E, Sorriento D. NFkappaB is a key player in the crosstalk between inflammation and cardiovascular diseases. Int J Mol Sci 2019; 20(7): 1599.
[http://dx.doi.org/10.3390/ijms20071599] [PMID: 30935055]
[84]
Trang NN, Chung CC, Lee TW, et al. Empagliflozin and liraglutide differentially modulate cardiac metabolism in diabetic cardiomyopathy in rats. Int J Mol Sci 2021; 22(3): 1177.
[http://dx.doi.org/10.3390/ijms22031177] [PMID: 33503985]
[85]
Baylan U, Korn A, Emmens RW, et al. Liraglutide treatment attenuates inflammation markers in the cardiac, cerebral and renal microvasculature in streptozotocin‐induced diabetic rats. Eur J Clin Invest 2022; 52(9): e13807.
[http://dx.doi.org/10.1111/eci.13807] [PMID: 35488737]
[86]
Navabi R, Negahdari B, Hajizadeh-Saffar E, et al. Combined therapy of mesenchymal stem cells with a GLP-1 receptor agonist, liraglutide, on an inflammatory-mediated diabetic non-human primate model. Life Sci 2021; 276: 119374.
[http://dx.doi.org/10.1016/j.lfs.2021.119374] [PMID: 33745896]
[87]
Wei H, Bu R, Yang Q, et al. Exendin-4 protects against hyperglycemia-induced cardiomyocyte pyroptosis via the ampk-txnip pathway. J Diabetes Res 2019; 2019: 1-13.
[http://dx.doi.org/10.1155/2019/8905917] [PMID: 31886288]
[88]
Koshibu M, Mori Y, Saito T, et al. Antiatherogenic effects of liraglutide in hyperglycemic apolipoprotein E-null mice via AMP-activated protein kinase-independent mechanisms. Am J Physiol Endocrinol Metab 2019; 316(5): E895-907.
[http://dx.doi.org/10.1152/ajpendo.00511.2018] [PMID: 30860874]
[89]
Gaspari T, Brdar M, Lee HW, et al. Molecular and cellular mechanisms of glucagon-like peptide-1 receptor agonist-mediated attenuation of cardiac fibrosis. Diab Vasc Dis Res 2016; 13(1): 56-68.
[http://dx.doi.org/10.1177/1479164115605000] [PMID: 26408644]
[90]
Eid RA, Bin-Meferij MM, El-kott AF, et al. Exendin-4 Protects against myocardial ischemia-reperfusion injury by upregulation of SIRT1 and SIRT3 and activation of AMPK. J Cardiovasc Transl Res 2021; 14(4): 619-35.
[http://dx.doi.org/10.1007/s12265-020-09984-5] [PMID: 32239434]
[91]
Ma ZG, Dai J, Zhang WB, et al. Protection against cardiac hypertrophy by geniposide involves the GLP‐1 receptor/AMPKα signalling pathway. Br J Pharmacol 2016; 173(9): 1502-16.
[http://dx.doi.org/10.1111/bph.13449] [PMID: 26845648]
[92]
Zhou Y, He X, Chen Y, Huang Y, Wu L, He J. Exendin-4 attenuates cardiac hypertrophy via AMPK/mTOR signaling pathway activation. Biochem Biophys Res Commun 2015; 468(1-2): 394-9.
[http://dx.doi.org/10.1016/j.bbrc.2015.09.179] [PMID: 26519882]
[93]
Burnol AF, Morzyglod L, Popineau L. [Cross-talk between insulin signaling and cell proliferation pathways]. Ann Endocrinol 2013; 74(2): 74-8.
[http://dx.doi.org/10.1016/j.ando.2013.02.003] [PMID: 23582850]
[94]
Dresner A, Laurent D, Marcucci M, et al. Effects of free fatty acids on glucose transport and IRS-1–associated phosphatidylinositol 3-kinase activity. J Clin Invest 1999; 103(2): 253-9.
[http://dx.doi.org/10.1172/JCI5001] [PMID: 9916137]
[95]
Withers DJ, Burks DJ, Towery HH, Altamuro SL, Flint CL, White MF. Irs-2 coordinates Igf-1 receptor-mediated β-cell development and peripheral insulin signalling. Nat Genet 1999; 23(1): 32-40.
[http://dx.doi.org/10.1038/12631] [PMID: 10471495]
[96]
Hançer NJ, Qiu W, Cherella C, Li Y, Copps KD, White MF. Insulin and metabolic stress stimulate multisite serine/threonine phosphorylation of insulin receptor substrate 1 and inhibit tyrosine phosphorylation. J Biol Chem 2014; 289(18): 12467-84.
[http://dx.doi.org/10.1074/jbc.M114.554162] [PMID: 24652289]
[97]
Shirakawa J, Okuyama T, Kyohara M, et al. DPP-4 inhibition improves early mortality, β cell function, and adipose tissue inflammation in db/db mice fed a diet containing sucrose and linoleic acid. Diabetol Metab Syndr 2016; 8(1): 16.
[http://dx.doi.org/10.1186/s13098-016-0138-4] [PMID: 26937254]
[98]
Mi L, Chen Y, Zheng X, et al. MicroRNA‐139‐5p suppresses 3T3‐L1 preadipocyte differentiation through notch and IRS1/PI3K/Akt insulin signaling pathways. J Cell Biochem 2015; 116(7): 1195-204.
[http://dx.doi.org/10.1002/jcb.25065] [PMID: 25536154]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy