Generic placeholder image

Coronaviruses

Editor-in-Chief

ISSN (Print): 2666-7967
ISSN (Online): 2666-7975

Review Article

A Comprehensive Review of the Status and Challenges in the Genesis of COVID 19 Vaccination Strategies

Author(s): Munmun Banerjee, Sonia Chadha, Somali Sanyal and Sayali Mukherjee*

Volume 5, Issue 2, 2024

Published on: 14 November, 2023

Article ID: e141123223565 Pages: 18

DOI: 10.2174/0126667975269506231108053010

Price: $65

Open Access Journals Promotions 2
Abstract

COVID-19 continues to wreak havoc on the global population. Infection with SARSCoV- 2 can be mild, severe, and even life-threatening. It is associated with cytokine storm, lung and even heart damage. With no specific treatment available for this contagious disease, induction of herd immunity through vaccination is being perceived as the only way out through this pandemic. Throughout the world, research groups and pharmaceutical companies are working independently or in collaboration to accelerate the process of COVID-19 vaccine development. Different countries have already started vaccination drives on a large scale to combat the disease. Today, we have a few approved vaccines, some are conventional, while others are subunit protein or nucleotide vaccines. This review describes the various vaccination strategies adopted the clinical and preclinical trials in developing some of the approved COVID-19 vaccines that are being administered around the world. The review also focuses on the challenges and adverse effects reported post-vaccination. Some of the proposed therapies for COVID-19 have also been elucidated. The effectiveness and safety of vaccines towards SARS-CoV-2 new variants suggest that more research in the field needs to be continued in the future.

Keywords: SARS-CoV-2, pathogenesis, vaccines, clinical trials, plasma therapy, COVID-19.

Graphical Abstract
[1]
Rothan HA, Byrareddy SN. The epidemiology and pathogenesis of coronavirus disease (COVID-19) outbreak. J Autoimmun 2020; 109: 102433.
[http://dx.doi.org/10.1016/j.jaut.2020.102433] [PMID: 32113704]
[2]
World Health Organization; c2021. Naming the coronavirus disease (COVID-19) and the virus that causes it. 2021. Available from: [https://www.who.int/emergencies/diseases/novel-coronavirus-2019/technical-guidance/naming-the-coronavirus-disease-(covid-2019)-and-the-virus-that-causes-it (Accessed on: 2021 Apr 14).
[3]
World Health Organization; c2021 Severe Acute Respiratory Syndrome (SARS). 2021. Available from: [https://www.who.int/ith/diseases/sars/en/]
[4]
Wang LF, Shi Z, Zhang S, Field H, Daszak P, Eaton B. Review of bats and SARS. Emerg Infect Dis 2006; 12(12): 1834-40.
[http://dx.doi.org/10.3201/eid1212.060401] [PMID: 17326933]
[5]
Tang X, Wu C, Li X, et al. On the origin and continuing evolution of SARS-CoV-2. Natl Sci Rev 2020; 7(6): 1012-23.
[http://dx.doi.org/10.1093/nsr/nwaa036] [PMID: 34676127]
[6]
Carbone M, Lednicky J, Xiao SY, Venditti M, Bucci E. Coronavirus 2019 Infectious Disease Epidemic: Where we are, what can be done and hope for. J Thorac Oncol 2021; 16(4): 546-71.
[http://dx.doi.org/10.1016/j.jtho.2020.12.014] [PMID: 33422679]
[8]
Ahmad T, Khan M, Haroon , et al. COVID-19: Zoonotic aspects. Travel Med Infect Dis 2020; 36: 101607.
[http://dx.doi.org/10.1016/j.tmaid.2020.101607] [PMID: 32112857]
[9]
Solomon IH, Normandin E, Bhattacharyya S, et al. Neuropathological features of Covid-19. N Engl J Med 2020; 383(10): 989-92.
[http://dx.doi.org/10.1056/NEJMc2019373] [PMID: 32530583]
[10]
Cao X. COVID-19: Immunopathology and its implications for therapy. Nat Rev Immunol 2020; 20(5): 269-70.
[http://dx.doi.org/10.1038/s41577-020-0308-3] [PMID: 32273594]
[11]
Kounis NG, Koniari I, de Gregorio C, et al. Allergic reactions to current available COVID-19 vaccinations: Pathophysiology, causality, and therapeutic considerations. Vaccines 2021; 9(3): 221.
[http://dx.doi.org/10.3390/vaccines9030221] [PMID: 33807579]
[12]
Decaro N, Lorusso A. Novel human coronavirus (SARS-CoV-2): A lesson from animal coronaviruses. Vet Microbiol 2020; 244: 108693.
[http://dx.doi.org/10.1016/j.vetmic.2020.108693] [PMID: 32402329]
[13]
Mason RJ. Pathogenesis of COVID-19 from a cell biology perspective. Eur Respir J 2020; 55(4): 2000607.
[http://dx.doi.org/10.1183/13993003.00607-2020] [PMID: 32269085]
[14]
Harrison AG, Lin T, Wang P. Mechanisms of SARS-CoV-2 transmission and pathogenesis. Trends Immunol 2020; 41(12): 1100-15.
[http://dx.doi.org/10.1016/j.it.2020.10.004] [PMID: 33132005]
[15]
Cevik M, Kuppalli K, Kindrachuk J, Peiris M. Virology, transmission, and pathogenesis of SARS-CoV-2. BMJ 2020; 371: m3862.
[http://dx.doi.org/10.1136/bmj.m3862] [PMID: 33097561]
[16]
Keddie S, Ziff O, Chou MKL, et al. Laboratory biomarkers associated with COVID-19 severity and management. Clin Immunol 2020; 221: 108614.
[http://dx.doi.org/10.1016/j.clim.2020.108614] [PMID: 33153974]
[17]
Coperchini F, Chiovato L, Croce L, Magri F, Rotondi M. The cytokine storm in COVID-19: An overview of the involvement of the chemokine/chemokine-receptor system. Cytokine Growth Factor Rev 2020; 53: 25-32.
[http://dx.doi.org/10.1016/j.cytogfr.2020.05.003] [PMID: 32446778]
[18]
Jain A, Doyle DJ. Stages or phenotypes? A critical look at COVID-19 pathophysiology. Intensive Care Med 2020; 46(7): 1494-5.
[http://dx.doi.org/10.1007/s00134-020-06083-6] [PMID: 32424481]
[19]
Wang H, Li X, Li T, et al. The genetic sequence, origin, and diagnosis of SARS-CoV-2. Eur J Clin Microbiol Infect Dis 2020; 39(9): 1629-35.
[http://dx.doi.org/10.1007/s10096-020-03899-4] [PMID: 32333222]
[20]
Kevadiya BD, Machhi J, Herskovitz J, et al. Diagnostics for SARS-CoV-2 infections. Nat Mater 2021; 20(5): 593-605.
[http://dx.doi.org/10.1038/s41563-020-00906-z] [PMID: 33589798]
[21]
Samprathi M, Jayashree M. Biomarkers in COVID-19: An up-to-date review. Front Pediatr 2021; 8: 607647.
[http://dx.doi.org/10.3389/fped.2020.607647] [PMID: 33859967]
[22]
Skevaki C, Fragkou PC, Cheng C, Xie M, Renz H. Laboratory characteristics of patients infected with the novel SARS-CoV-2 virus. J Infect 2020; 81(2): 205-12.
[http://dx.doi.org/10.1016/j.jinf.2020.06.039] [PMID: 32579986]
[23]
Sy KTL, White LF, Nichols BE. Population density and basic reproductive number of COVID-19 across United States counties. PLoS One 2021; 16(4): e0249271.
[http://dx.doi.org/10.1371/journal.pone.0249271] [PMID: 33882054]
[24]
Viceconte G, Petrosillo N. COVID-19 R0: Magic number or conundrum? Infect Dis Rep 2020; 12(1): 8516.
[http://dx.doi.org/10.4081/idr.2020.8516] [PMID: 32201554]
[25]
Ke R, Romero-Severson E, Sanche S, Hengartner N. Estimating the reproductive number R0 of SARS-CoV-2 in the United States and eight European countries and implications for vaccination. J Theor Biol 2021; 517: 110621.
[http://dx.doi.org/10.1016/j.jtbi.2021.110621] [PMID: 33587929]
[26]
Liu Y, Gayle AA, Wilder-Smith A, Rocklöv J. The reproductive number of COVID-19 is higher compared to SARS coronavirus. J Travel Med 2020; 27(2): taaa021.
[http://dx.doi.org/10.1093/jtm/taaa021] [PMID: 32052846]
[27]
Rahman B, Aziz IA, Khdhr FW, Mahmood DFD. Preliminary estimation of the basic reproduction number of SARS-CoV-2 in the Middle East. Bull World Health Organ 2020.
[http://dx.doi.org/10.2471/BLT.20.262295]
[28]
Petersen E, Koopmans M, Go U, et al. Comparing SARS-CoV-2 with SARS-CoV and influenza pandemics. Lancet Infect Dis 2020; 20(9): e238-44.
[http://dx.doi.org/10.1016/S1473-3099(20)30484-9] [PMID: 32628905]
[29]
Plante JA, Mitchell BM, Plante KS, Debbink K, Weaver SC, Menachery VD. The variant gambit: COVID-19’s next move. Cell Host Microbe 2021; 29(4): 508-15.
[http://dx.doi.org/10.1016/j.chom.2021.02.020] [PMID: 33789086]
[30]
Belongia EA, Naleway AL. Smallpox vaccine: The good, the bad, and the ugly. Clin Med Res 2003; 1(2): 87-92.
[http://dx.doi.org/10.3121/cmr.1.2.87] [PMID: 15931293]
[31]
World Health Organization. COVID-19 vaccine tracker and landscape. 2023.
[32]
Patient Care. Consultant Live; c2020. COVID-19 Update: US and global cases, deaths, and recoveries as of November 30, 2020. 2020. Available from: [https://www.patientcareonline.com/view/covid-19-update-us-and-global-cases-deaths-and-recoveries-as-of-november-30-2020] (Accessed on: 2021 May 13).
[33]
Nabel GJ. Designing tomorrow’s vaccines. N Engl J Med 2013; 368(6): 551-60.
[http://dx.doi.org/10.1056/NEJMra1204186] [PMID: 23388006]
[34]
Bonanni P, Santos JI. Understanding Modern Vaccines: Perspectives in vaccinology In: Vaccine evolution. Elsevier 2011; 1: p. 1.
[35]
Sanders B, Koldijk M, Schuitemaker H. Vaccine Analysis: Strategies, principles, and control. In: Nunnally B, Turula V, Sitrin R, Eds. Inactivated Viral Vaccines. Berlin, Heidelberg: Springer 2015; pp. 45-80.
[36]
Plotkin S. History of vaccination. Proc Natl Acad Sci USA 2014; 111(34): 12283-7.
[http://dx.doi.org/10.1073/pnas.1400472111] [PMID: 25136134]
[37]
Plotkin SA. Vaccines: Past, present and future. Nat Med 2005; 11(S4): S5-S11.
[http://dx.doi.org/10.1038/nm1209] [PMID: 15812490]
[38]
The College of Physicians of Philadelphia. The History of Vaccines 2021.
[39]
NIH. National Human Genome Research Institute c2013 1972: First Recombinant DNA 1972. Available from: [https://www.genome.gov/25520302/online-education-kit-1972-first-recombinant-dna#:~:text=The%20first%20production%20of%20recombinant,host%20cell%2C%20often%20a%20bacterium] (Accessed on: 2021 May 14).
[40]
First recombinant DNA vaccine for HBV. In: Nature portfolio. Springer Nature 2021. Available from: [https://www.nature.com/articles/d42859-020-00016-5] (Accessed on: 2021 May 14).
[41]
Rangarajan PN. DNA Vaccines Reson 2002; 7: 25-34.
[42]
Delrue I, Verzele D, Madder A, Nauwynck HJ. Inactivated virus vaccines from chemistry to prophylaxis: Merits, risks and challenges. Expert Rev Vaccines 2012; 11(6): 695-719.
[http://dx.doi.org/10.1586/erv.12.38] [PMID: 22873127]
[43]
Dai L, Gao GF. Viral targets for vaccines against COVID-19. Nat Rev Immunol 2021; 21(2): 73-82.
[http://dx.doi.org/10.1038/s41577-020-00480-0] [PMID: 33340022]
[44]
Kadam SB, Sukhramani GS, Bishnoi P, Pable AA, Barvkar VT. SARS-CoV-2, the pandemic coronavirus: Molecular and structural insights. J Basic Microbiol 2021; 61(3): 180-202.
[http://dx.doi.org/10.1002/jobm.202000537] [PMID: 33460172]
[45]
Dhama K, Khan S, Tiwari R, et al. Coronavirus Disease 2019–COVID-19. Clin Microbiol Rev 2020; 33(4): e00028-20.
[http://dx.doi.org/10.1128/CMR.00028-20] [PMID: 32580969]
[46]
Florindo HF, Kleiner R, Vaskovich-Koubi D, et al. Immune-mediated approaches against COVID-19. Nat Nanotechnol 2020; 15(8): 630-45.
[http://dx.doi.org/10.1038/s41565-020-0732-3] [PMID: 32661375]
[47]
World Health Organization. Interim recommendations for use of the inactivated COVID-19 vaccine, CoronaVac, developed by Sinovac. 2021. Available from: [https://apps.who.int/iris/bitstream/handle/10665/341454/WHO-2019-nCoV-vaccines-SAGE-recommendation-Sinovac-CoronaVac-2021.1-eng.pdf] (Accessed on: 2021 May 20).
[48]
TOI. New Delhi: The Times of India; c2021. Trials for 3rd booster dose of Covaxin at AIIMS. 2021. Available from: [https://timesofindia.indiatimes.com/city/delhi/trials-for-3rd-booster-dose-of-covaxin-at-aiims/articleshow/82952203.cms] (Accessed on: 2021 Jun 16).
[49]
Bharat Biotech Announces Phase 3 Results of COVAXIN®: India’s First COVID-19 Vaccine Demonstrates Interim Clinical Efficacy of 81. Hyderabad: Bharat Biotech 2021. Available from: [https://www.bharatbiotech.com/images/press/covaxin-phase3-efficacy-results.pdf]
[50]
Wu Z, Hu Y, Xu M, et al. Safety, tolerability, and immunogenicity of an inactivated SARS-CoV-2 vaccine (CoronaVac) in healthy adults aged 60 years and older: A randomised, double-blind, placebo-controlled, phase 1/2 clinical trial. Lancet Infect Dis 2021; 21(6): 803-12.
[http://dx.doi.org/10.1016/S1473-3099(20)30987-7] [PMID: 33548194]
[51]
Ella R, Vadrevu KM, Jogdand H, et al. Safety and immunogenicity of an inactivated SARS-CoV-2 vaccine, BBV152: A double-blind, randomised, phase 1 trial. Lancet Infect Dis 2021; 21(5): 637-46.
[http://dx.doi.org/10.1016/S1473-3099(20)30942-7] [PMID: 33485468]
[52]
Bueno SM, Abarca K, González PA, et al. Interim Report: Safety and immunogenicity of an inactivated vaccine against Sars-Cov-2 in healthy chilean adults in a phase 3 clinical trial. medRxiv 2021.
[http://dx.doi.org/10.1101/2021.03.31.21254494]
[53]
Thiagarajan K. What do we know about India’s Covaxin vaccine? BMJ 2021; 373(997): n997.
[http://dx.doi.org/10.1136/bmj.n997] [PMID: 33879478]
[54]
Ella R, Reddy S, Jogdand H, et al. Safety and immunogenicity of an inactivated SARS-CoV-2 vaccine, BBV152: Interim results from a double-blind, randomised, multicentre, phase 2 trial, and 3-month follow-up of a double-blind, randomised phase 1 trial. Lancet Infect Dis 2021; 21(7): 950-61.
[http://dx.doi.org/10.1016/S1473-3099(21)00070-0] [PMID: 33705727]
[55]
Sapkal GN, Yadav PD, Ella R, et al. Neutralization of UK-variant VUI-202012/01 with COVAXIN vaccinated human serum. bioRxiv 2021.
[http://dx.doi.org/10.1101/2021.01.26.426986]
[56]
Singh AK, Phatak SR, Singh NK, et al. Antibody response after first-dose of ChAdOx1-nCOV (Covishield™®) and BBV-152 (Covaxin™®) amongst Health Care Workers in India: Preliminary results of cross-sectional coronavirus Vaccine-induced Antibody Titre (COVAT) study. medRxiv 2021.
[http://dx.doi.org/10.1101/2021.04.07.21255078]
[57]
Dash P, Mohapatra S, Ghosh S, Nayak B. A scoping insight on potential prophylactics, vaccines and therapeutic weaponry for the ongoing novel Coronavirus (COVID-19) Pandemic-a comprehensive review. Front Pharmacol 2021; 11: 590154.
[http://dx.doi.org/10.3389/fphar.2020.590154] [PMID: 33815095]
[58]
Wang N, Shang J, Jiang S, Du L. Subunit vaccines against emerging pathogenic human coronaviruses. Front Microbiol 2020; 11: 298.
[http://dx.doi.org/10.3389/fmicb.2020.00298] [PMID: 32265848]
[59]
Yang S, Li Y, Dai L, et al. Safety and immunogenicity of a recombinant tandem-repeat dimeric RBD-based protein subunit vaccine (ZF2001) against COVID-19 in adults: Two randomised, doubleblind, placebo-controlled, phase 1 and 2 trials. Lancet Infect Dis 2021; S1473-3099(21): 00127-4.
[60]
Richmond P, Hatchuel L, Dong M, et al. Safety and immunogenicity of S-Trimer (SCB-2019), a protein subunit vaccine candidate for COVID-19 in healthy adults: A phase 1, randomised, double-blind, placebo-controlled trial. Lancet 2021; 397(10275): 682-94.
[http://dx.doi.org/10.1016/S0140-6736(21)00241-5] [PMID: 33524311]
[61]
Pollet J, Chen WH, Strych U. Recombinant protein vaccines, a proven approach against coronavirus pandemics. Adv Drug Deliv Rev 2021; 170: 71-82.
[http://dx.doi.org/10.1016/j.addr.2021.01.001] [PMID: 33421475]
[62]
Huang B, Dai L, Wang H, et al. Serum sample neutralisation of BBIBP-CorV and ZF2001 vaccines to SARS-CoV-2 501Y.V2. Lancet Microbe 2021; 2(7): e285.
[http://dx.doi.org/10.1016/S2666-5247(21)00082-3] [PMID: 33870240]
[63]
A Phase III Clinical Trial to Determine the Safety and Efficacy of ZF2001 for Prevention of COVID-19. ClincalTrialsgov 2021. Available from: [https://classic.clinicaltrials.gov/ct2/show/NCT04646590]
[64]
Tregoning JS, Brown ES, Cheeseman HM, et al. Vaccines for COVID-19. Clin Exp Immunol 2020; 202(2): 162-92.
[http://dx.doi.org/10.1111/cei.13517] [PMID: 32935331]
[65]
Di Natale C, La Manna S, De Benedictis I, Brandi P, Marasco D. Perspectives in peptide-based vaccination strategies for Syndrome Coronavirus 2 pandemic. Front Pharmacol 2020; 11: 578382.
[http://dx.doi.org/10.3389/fphar.2020.578382] [PMID: 33343349]
[66]
Abdelmageed MI, Abdelmoneim AH, Mustafa MI, et al. Design of a multiepitope-based peptide vaccine against the E protein of human COVID-19: An immunoinformatics approach. BioMed Res Int 2020; 2020: 1-12.
[http://dx.doi.org/10.1155/2020/2683286] [PMID: 32461973]
[67]
Ryzhikov AB, Ryzhikov EA, Bogryantseva MP, et al. A single blind, placebo-controlled randomized study of the safety, reactogenicity and immunogenicity of the “EpiVacCorona” Vaccine for the prevention of COVID-19, in volunteers aged 18–60 years (phase I–II). Russian Journal of Infection and Immunity 2021; 11(2): 283-96.
[68]
Li W, Joshi M, Singhania S, Ramsey K, Murthy A. Peptide vaccine: Progress and challenges. Vaccines 2014; 2(3): 515-36.
[http://dx.doi.org/10.3390/vaccines2030515] [PMID: 26344743]
[69]
Lim HX, Lim J, Jazayeri SD, Poppema S, Poh CL. Development of multi-epitope peptide-based vaccines against SARS-CoV-2. Biomed J 2021; 44(1): 18-30.
[http://dx.doi.org/10.1016/j.bj.2020.09.005] [PMID: 33727051]
[70]
National Laboratory of Medicine; c2021 Study of the tolerability, safety, immunogenicity and preventive efficacy of the EpiVacCorona vaccine for the prevention of COVID-19 2021. Available from: [https://clinicaltrials.gov/ct2/show/NCT04780035] (Accessed on: 2021 May 26).
[71]
Silveira MM, Moreira GMSG, Mendonça M. DNA vaccines against COVID-19: Perspectives and challenges. Life Sci 2021; 267: 118919.
[http://dx.doi.org/10.1016/j.lfs.2020.118919] [PMID: 33352173]
[72]
RAPS. Regulatory Affairs professionals Society; c2021 COVID-19 Vaccine Tracker. 2021. Available from: [https://www.raps.org/news-and-articles/news-articles/2020/3/COVID-19-vaccine-tracker] (Accessed on: 2021 June 25).
[73]
Bettini E, Locci M. SARS-CoV-2 mRNA vaccines: Immunological mechanism and beyond. Vaccines 2021; 9(2): 147.
[http://dx.doi.org/10.3390/vaccines9020147] [PMID: 33673048]
[74]
Buschmann MD, Carrasco MJ, Alishetty S, Paige M, Alameh MG, Weissman D. Nanomaterial delivery systems for mRNA vaccines. Vaccines 2021; 9(1): 65.
[http://dx.doi.org/10.3390/vaccines9010065] [PMID: 33478109]
[75]
Bloom K, van den Berg F, Arbuthnot P. Self-amplifying RNA vaccines for infectious diseases. Gene Ther 2021; 28(3-4): 117-29.
[http://dx.doi.org/10.1038/s41434-020-00204-y] [PMID: 33093657]
[76]
Blakney AK, Ip S, Geall AJ. An update on self-amplifying mRNA vaccine development. Vaccines 2021; 9(2): 97.
[http://dx.doi.org/10.3390/vaccines9020097]
[77]
Pardi N, Hogan MJ, Porter FW, Weissman D. mRNA vaccines-a new era in vaccinology. Nat Rev Drug Discov 2018; 17(4): 261-79.
[http://dx.doi.org/10.1038/nrd.2017.243] [PMID: 29326426]
[78]
Baden LR, El Sahly HM, Essink B, et al. Efficacy and safety of the mRNA-1273 SARS-CoV-2 vaccine. N Engl J Med 2021; 384(5): 403-16.
[http://dx.doi.org/10.1056/NEJMoa2035389] [PMID: 33378609]
[79]
Jackson LA, Anderson EJ, Rouphael NG, et al. An mRNA Vaccine against SARS-CoV-2-Preliminary report. N Engl J Med 2020; 383(20): 1920-31.
[http://dx.doi.org/10.1056/NEJMoa2022483] [PMID: 32663912]
[80]
Anderson EJ, Rouphael NG, Widge AT, et al. Safety and immunogenicity of SARS-CoV-2 mRNA-1273 vaccine in older adults. N Engl J Med 2020; 383(25): 2427-38.
[http://dx.doi.org/10.1056/NEJMoa2028436] [PMID: 32991794]
[81]
Chu L, McPhee R, Huang W, et al. A preliminary report of a randomized controlled phase 2 trial of the safety and immunogenicity of mRNA-1273 SARS-CoV-2 vaccine. Vaccine 2021; 39(20): 2791-9.
[http://dx.doi.org/10.1016/j.vaccine.2021.02.007] [PMID: 33707061]
[82]
Tumban E. Lead SARS-CoV-2 Candidate Vaccines: Expectations from Phase III trials and recommendations post-vaccine approval. Viruses 2020; 13(1): 54.
[http://dx.doi.org/10.3390/v13010054] [PMID: 33396343]
[83]
Lamb YN. BNT162b2 mRNA COVID-19 vaccine: First approval. Drugs 2021; 81(4): 495-501.
[84]
World Health Organization. mRNA vaccines against COVID-19: Pfizer-BioNTech COVID-19 vaccine BNT162b2. 2020. Available from: [https://apps.who.int/iris/bitstream/handle/10665/338096/WHO-2019-nCoV-vaccines-SAGE_evaluation-BNT162b2-2020.1-eng.pdf?sequence=1&isAllowed=y] [Accessed on: 2021 May 29].
[85]
Polack FP, Thomas SJ, Kitchin N, et al. C4591001 Clinical Trial Group. Safety and efficacy of the BNT162b2 mRNA Covid-19 vaccine. N Engl J Med 2020; 383(27): 2603-15.
[86]
Wall EC, Wu M, Harvey R, et al. Neutralising antibody activity against SARS-CoV-2 VOCs B.1.617.2 and B.1.351 by BNT162b2 vaccination. Lancet 2021; 397(10292): 2331-3.
[http://dx.doi.org/10.1016/S0140-6736(21)01290-3] [PMID: 34090624]
[87]
Robert-Guroff M. Replicating and non-replicating viral vectors for vaccine development. Curr Opin Biotechnol 2007; 18(6): 546-56.
[http://dx.doi.org/10.1016/j.copbio.2007.10.010] [PMID: 18063357]
[88]
Precision Vaccinations; c2021 BriLife Vaccine 2021. Available from: [https://www.precisionvaccinations.com/vaccines/brilife-vaccine] (Accessed on: 2021 June 26).
[89]
MacNeil JR, Su JR, Broder KR, et al. Updated Recommendations from the Advisory Committee on Immunization Practices for Use of the Janssen (Johnson & Johnson) COVID-19 Vaccine After Reports of Thrombosis with Thrombocytopenia Syndrome Among Vaccine Recipients — United States, April 2021. MMWR Morb Mortal Wkly Rep 2021; 70(17): 651-6.
[http://dx.doi.org/10.15585/mmwr.mm7017e4] [PMID: 33914723]
[90]
Zhu FC, Li YH, Guan XH, et al. Safety, tolerability, and immunogenicity of a recombinant adenovirus type-5 vectored COVID-19 vaccine: A dose-escalation, open-label, non-randomised, first-in-human trial. Lancet 2020; 395(10240): 1845-54.
[http://dx.doi.org/10.1016/S0140-6736(20)31208-3] [PMID: 32450106]
[91]
Borovjagin AV, Gomez-Gutierrez JG, Shirwan H, Matthews QL. Adenovirus-based vectors for the development of prophylactic and therapeutic vaccines. Novel Technologies for Vaccine Development 2014; 203-71.
[http://dx.doi.org/10.1007/978-3-7091-1818-4_8]
[92]
Krammer F. SARS-CoV-2 vaccines in development. Nature 2020; 586(7830): 516-27.
[http://dx.doi.org/10.1038/s41586-020-2798-3] [PMID: 32967006]
[93]
Kwok HF. Review of COVID-19 vaccine clinical trials-a puzzle with missing pieces. Int J Biol Sci 2021; 17(6): 1461-8.
[http://dx.doi.org/10.7150/ijbs.59170] [PMID: 33907509]
[94]
Ashraf MU, Kim Y, Kumar S, Seo D, Ashraf M, Bae YS. COVID-19 vaccines (Revisited) and oral-mucosal vector system as a potential vaccine platform. Vaccines 2021; 9(2): 171.
[http://dx.doi.org/10.3390/vaccines9020171] [PMID: 33670630]
[95]
Voysey M, Costa Clemens SA, Madhi SA, et al. Single-dose administration and the influence of the timing of the booster dose on immunogenicity and efficacy of ChAdOx1 nCoV-19 (AZD1222) vaccine: A pooled analysis of four randomised trials. Lancet 2021; 397(10277): 881-91.
[http://dx.doi.org/10.1016/S0140-6736(21)00432-3] [PMID: 33617777]
[96]
Madhi SA, Baillie V, Cutland CL, et al. Efficacy of the ChAdOx1 nCoV-19 COVID-19 Vaccine against the B.1.351 Variant. N Engl J Med 2021; 384(20): 1885-98.
[http://dx.doi.org/10.1056/NEJMoa2102214] [PMID: 33725432]
[97]
Jeewandara C, Kamaladasa A, Pushpakumara PD, et al. Antibody and T cell responses to a single dose of the AZD1222/Covishield vaccine in previously SARS-CoV-2 infected and naïve health care workers in Sri Lanka. medRxiv 2021.
[http://dx.doi.org/10.1101/2021.04.09.21255194]
[98]
Planas D, Veyer D, Baidaliuk A, et al. Reduced sensitivity of infectious SARS-CoV-2 variant B.1.617.2 to monoclonal antibodies and sera from convalescent and vaccinated individuals. bioRxiv 2021.
[http://dx.doi.org/10.1101/2021.05.26.445838]
[99]
Logunov DY, Dolzhikova IV, Zubkova OV, et al. Safety and immunogenicity of an rAd26 and rAd5 vector-based heterologous prime-boost COVID-19 vaccine in two formulations: Two open, non-randomised phase 1/2 studies from Russia. Lancet 2020; 396(10255): 887-97.
[http://dx.doi.org/10.1016/S0140-6736(20)31866-3] [PMID: 32896291]
[100]
Ikegame S, Siddiquey MNA, Hung CT, et al. Qualitatively distinct modes of Sputnik V vaccine-neutralization escape by SARS-CoV-2 Spike variants. medRxiv 2021.
[101]
Baraniuk C. COVID-19: What do we know about Sputnik V and other Russian vaccines? BMJ 2021; 372(743): n743.
[http://dx.doi.org/10.1136/bmj.n743] [PMID: 33741559]
[102]
Logunov DY, Dolzhikova IV, Shcheblyakov DV. Data discrepancies and substandard reporting of interim data of Sputnik V phase 3 trial – Authors’ reply. Lancet 2021; 397(10288): 1883-4.
[http://dx.doi.org/10.1016/S0140-6736(21)00894-1] [PMID: 33991474]
[103]
Wu S, Zhong G, Zhang J, et al. A single dose of an adenovirus-vectored vaccine provides protection against SARS-CoV-2 challenge. Nat Commun 2020; 11(1): 4081.
[http://dx.doi.org/10.1038/s41467-020-17972-1] [PMID: 32796842]
[104]
Xi CE, Singh J. A review of the animal and human trials of the Ad5-nCoV vaccine candidate. Journal of Student Research 2021; 10(1)
[http://dx.doi.org/10.47611/jsr.v10i1.1159]
[105]
Zhu FC, Guan XH, Li YH, et al. Immunogenicity and safety of a recombinant adenovirus type-5-vectored COVID-19 vaccine in healthy adults aged 18 years or older: A randomised, double-blind, placebo-controlled, phase 2 trial. Lancet 2020; 396(10249): 479-88.
[http://dx.doi.org/10.1016/S0140-6736(20)31605-6] [PMID: 32702299]
[106]
National Laboratory of Medicine; c2021 Phase III Trial of A COVID-19 Vaccine of Adenovirus Vector in Adults 18 Years Old and Above. 2021. Available from: [https://www.clinicaltrials.gov/ct2/show/NCT04526990]
[107]
Mahase E. COVID-19: Russia approves vaccine without large scale testing or published results. BMJ 2020; 370: m3205.
[http://dx.doi.org/10.1136/bmj.m3205] [PMID: 32816758]
[108]
Sadoff J, Le Gars M, Shukarev G, et al. Interim results of a phase 1–2a trial of Ad26.COV2.S COVID-19 vaccine. N Engl J Med 2021; 384(19): 1824-35.
[http://dx.doi.org/10.1056/NEJMoa2034201] [PMID: 33440088]
[109]
Sadoff J, Gray G, Vandebosch A, et al. Safety and efficacy of single-dose Ad26.COV2.S vaccine against Covid-19. N Engl J Med 2021; 384(23): 2187-201.
[http://dx.doi.org/10.1056/NEJMoa2101544] [PMID: 33882225]
[110]
South AM, Diz DI, Chappell MC. COVID-19, ACE2, and the cardiovascular consequences. Am J Physiol Heart Circ Physiol 2020; 318(5): H1084-90.
[http://dx.doi.org/10.1152/ajpheart.00217.2020] [PMID: 32228252]
[111]
loganathan S, Kuppusamy M, Wankhar W, et al. Angiotensinconverting enzyme 2 (ACE2): COVID 19 gate way to multiple organ failure syndromes. Respir Physiol Neurobiol 2021; 283: 103548.
[http://dx.doi.org/10.1016/j.resp.2020.103548] [PMID: 32956843]
[112]
Verbeke R, Lentacker I, De Smedt SC, Dewitte H. The dawn of mRNA vaccines: The COVID-19 case. J Control Release 2021; 333: 511-20.
[http://dx.doi.org/10.1016/j.jconrel.2021.03.043] [PMID: 33798667]
[113]
Alfagih IM, Aldosari B, AlQuadeib B, Almurshedi A, Alfagih MM. Nanoparticles as adjuvants and nanodelivery systems for mRNA-Based vaccines. Pharmaceutics 2020; 13(1): 45.
[http://dx.doi.org/10.3390/pharmaceutics13010045] [PMID: 33396817]
[114]
García LF. Immune response, inflammation, and the clinical spectrum of COVID-19. Front Immunol 2020; 11: 1441.
[http://dx.doi.org/10.3389/fimmu.2020.01441] [PMID: 32612615]
[115]
Xia S, Zhang Y, Wang Y, et al. Safety and immunogenicity of an inactivated SARS-CoV-2 vaccine, BBIBP-CorV: A randomised, double-blind, placebo-controlled, phase 1/2 trial. Lancet Infect Dis 2021; 21(1): 39-51.
[http://dx.doi.org/10.1016/S1473-3099(20)30831-8] [PMID: 33069281]
[116]
New Drug Approvals. BBIBP-CorV, Sinopharm COVID-19 vaccine. 2021. Available from: [https://newdrugapprovals.org/2021/03/23/bbibp-corv-sinopharm-covid-19-vaccine/]
[117]
Voysey M, Clemens SAC, Madhi SA, et al. Safety and efficacy of the ChAdOx1 nCoV-19 vaccine (AZD1222) against SARS-CoV-2: An interim analysis of four randomised controlled trials in Brazil, South Africa, and the UK. Lancet 2021; 397(10269): 99-111.
[http://dx.doi.org/10.1016/S0140-6736(20)32661-1] [PMID: 33306989]
[118]
Mahase E. AstraZeneca vaccine: Blood clots are “extremely rare” and benefits outweigh risks, regulators conclude. BMJ 2021; 373(931): n931.
[http://dx.doi.org/10.1136/bmj.n931] [PMID: 33832929]
[119]
Sah R, Shrestha S, Mehta R, et al. AZD1222 (Covishield) vaccination for COVID-19: Experiences, challenges, and solutions in Nepal. Travel Med Infect Dis 2021; 40: 101989.
[http://dx.doi.org/10.1016/j.tmaid.2021.101989] [PMID: 33578045]
[120]
Cebeci F, Kartal İ. Petechial skin rash associated with CoronaVac vaccination: First cutaneous side effect report before phase 3 results. Eur J Hosp Pharm 2021; ejhpharm-2021-002794.
[121]
Mulligan MJ, Lyke KE, Kitchin N, et al. Phase I/II study of COVID-19 RNA vaccine BNT162b1 in adults. Nature 2020; 586(7830): 589-93.
[http://dx.doi.org/10.1038/s41586-020-2639-4] [PMID: 32785213]
[122]
Hause AM, Gee J, Johnson T, et al. Anxiety-related adverse event clusters after Janssen COVID-19 vaccination-Five U.S. mass vaccination sites, April 2021. MMWR Morb Mortal Wkly Rep 2021; 70(18): 685-8.
[http://dx.doi.org/10.15585/mmwr.mm7018e3] [PMID: 33956781]
[123]
Caballero ML, Quirce S. Excipients as potential agents of anaphylaxis in vaccines: Analyzing the formulations of currently authorized COVID-19 vaccines. J Investig Allergol Clin Immunol 2021; 31(1): 92-3.
[http://dx.doi.org/10.18176/jiaci.0667] [PMID: 33433387]
[124]
Dreskin SC, Halsey NA, Kelso JM, et al. International Consensus (ICON): Allergic reactions to vaccines. World Allergy Organ J 2016; 9(1): 32.
[http://dx.doi.org/10.1186/s40413-016-0120-5] [PMID: 27679682]
[125]
Chakraborty S, Edwards K, Buzzanco AS, et al. Symptomatic SARS-CoV-2 infections display specific IgG Fc structures. medRxiv 2020.
[126]
Kaur SP, Gupta V. COVID-19 Vaccine: A comprehensive status report. Virus Res 2020; 288: 198114.
[http://dx.doi.org/10.1016/j.virusres.2020.198114] [PMID: 32800805]
[127]
Owji H, Negahdaripour M, Hajighahramani N. Immunotherapeutic approaches to curtail COVID-19. Int Immunopharmacol 2020; 88: 106924.
[http://dx.doi.org/10.1016/j.intimp.2020.106924] [PMID: 32877828]
[128]
Ahn JY, Sohn Y, Lee SH, et al. Use of convalescent plasma therapy in two COVID-19 patients with acute respiratory distress syndrome in Korea. J Korean Med Sci 2020; 35(14): e149.
[http://dx.doi.org/10.3346/jkms.2020.35.e149] [PMID: 32281317]
[129]
Duan K, Liu B, Li C, et al. Effectiveness of convalescent plasma therapy in severe COVID-19 patients. Proc Natl Acad Sci USA 2020; 117(17): 9490-6.
[http://dx.doi.org/10.1073/pnas.2004168117] [PMID: 32253318]
[130]
Li L, Zhang W, Hu Y, et al. Effect of convalescent plasma therapy on time to clinical improvement in patients with severe and life-threatening COVID-19. JAMA 2020; 324(5): 460-70.
[http://dx.doi.org/10.1001/jama.2020.10044] [PMID: 32492084]
[131]
Agarwal A, Mukherjee A, Kumar G, Chatterjee P, Bhatnagar T, Malhotra P. Convalescent plasma in the management of moderate covid-19 in adults in India: Open label phase II multicentre randomised controlled trial (PLACID Trial). BMJ 2020; 371: m3939.
[http://dx.doi.org/10.1136/bmj.m3939] [PMID: 33093056]
[132]
Abolghasemi H, Eshghi P, Cheraghali AM, et al. Clinical efficacy of convalescent plasma for treatment of COVID-19 infections: Results of a multicenter clinical study. Transfus Apheresis Sci 2020; 59(5): 102875.
[http://dx.doi.org/10.1016/j.transci.2020.102875] [PMID: 32694043]
[133]
Simonovich VA, Burgos Pratx LD, Scibona P, et al. A Randomized Trial of Convalescent Plasma in Covid-19 Severe Pneumonia. N Engl J Med 2021; 384(7): 619-29.
[http://dx.doi.org/10.1056/NEJMoa2031304] [PMID: 33232588]
[134]
Sostin OV, Rajapakse P, Cruser B, Wakefield D, Cruser D, Petrini J. A matched cohort study of convalescent plasma therapy for COVID-19. J Clin Apher 2021; 36(4): 523-32.
[135]
AlQahtani M, Abdulrahman A, Almadani A, et al. Randomized controlled trial of convalescent plasma therapy against standard therapy in patients with severe COVID-19 disease. Sci Rep 2021; 11(1): 9927.
[http://dx.doi.org/10.1038/s41598-021-89444-5] [PMID: 33976287]
[136]
RECOVERY Collaborative Group. Convalescent plasma in patients admitted to hospital with COVID-19 (RECOVERY): A randomised controlled, open-label, platform trial. Lancet 2021; 397(10289): 2049-59.
[http://dx.doi.org/10.1016/S0140-6736(21)00897-7] [PMID: 34000257]
[137]
SciWi. Bengaluru: The Wire; c2021. ICMR Removes ‘Plasma Therapy’ From COVID-19 management protocols 2021. Available from: [https://science.thewire.in/health/icmr-removes-plasma-therapy-from-covid-19-management-protocols/]
[138]
Chen J, Huang R, Nie Y, Wen X, Wu Y. Human monoclonal antibodies: On the menu of targeted therapeutics against COVID-19. Virol Sin 2020; 35(6): 713-24.
[http://dx.doi.org/10.1007/s12250-020-00327-x] [PMID: 33394351]
[139]
Taylor PC, Adams AC, Hufford MM, de la Torre I, Winthrop K, Gottlieb RL. Neutralizing monoclonal antibodies for treatment of COVID-19. Nat Rev Immunol 2021; 21(6): 382-93.
[http://dx.doi.org/10.1038/s41577-021-00542-x] [PMID: 33875867]
[140]
Andreano E, Nicastri E, Paciello I, et al. Identification of neutralizing human monoclonal antibodies from Italian Covid-19 convalescent patients. bioRxiv 2020.
[http://dx.doi.org/10.1101/2020.05.05.078154]
[141]
Cruz-Teran C, Tiruthani K, McSweeney M, Ma A, Pickles R, Lai SK. Challenges and opportunities for antiviral monoclonal antibodies as COVID-19 therapy. Adv Drug Deliv Rev 2021; 169: 100-17.
[http://dx.doi.org/10.1016/j.addr.2020.12.004] [PMID: 33309815]
[142]
Bian H, Zheng ZH, Wei D, Zhang Z, Kang W-Z, Hao CQ. Meplazumab treats COVID-19 pneumonia: An open-labelled, concurrent controlled add-on clinical trial. medRxiv 2020.
[http://dx.doi.org/10.1101/2020.03.21.20040691]
[143]
Ning L, Abagna HB, Jiang Q, Liu S, Huang J. Development and application of therapeutic antibodies against COVID-19. Int J Biol Sci 2021; 17(6): 1486-96.
[http://dx.doi.org/10.7150/ijbs.59149] [PMID: 33907512]
[144]
Huang E, Jordan SC. Tocilizumab for COVID-19-the ongoing search for effective therapies. N Engl J Med 2020; 383(24): 2387-8.
[http://dx.doi.org/10.1056/NEJMe2032071] [PMID: 33296566]
[145]
Michot JM, Albiges L, Chaput N, et al. Tocilizumab, an anti-IL-6 receptor antibody, to treat COVID-19-related respiratory failure: A case report. Ann Oncol 2020; 31(7): 961-4.
[http://dx.doi.org/10.1016/j.annonc.2020.03.300] [PMID: 32247642]
[146]
Wrapp D, De Vlieger D, Corbett KS, et al. Structural basis for potent neutralization of betacoronaviruses by single-domain camelid antibodies. Cell 2020; 181(5): 1004-1015.e15.
[http://dx.doi.org/10.1016/j.cell.2020.04.031] [PMID: 32375025]
[147]
Huo J, Le Bas A, Ruza RR, et al. Neutralizing nanobodies bind SARS-CoV-2 spike RBD and block interaction with ACE2. Nat Struct Mol Biol 2020; 27(9): 846-54.
[http://dx.doi.org/10.1038/s41594-020-0469-6] [PMID: 32661423]
[148]
Hanke L, Vidakovics Perez L, Sheward DJ, et al. An alpaca nanobody neutralizes SARS-CoV-2 by blocking receptor interaction. Nat Commun 2020; 11(1): 4420.
[http://dx.doi.org/10.1038/s41467-020-18174-5] [PMID: 32887876]
[149]
Fang W, Jiang J, Su L, et al. The role of NO in COVID-19 and potential therapeutic strategies. Free Radic Biol Med 2021; 163: 153-62.
[http://dx.doi.org/10.1016/j.freeradbiomed.2020.12.008] [PMID: 33347987]
[150]
de Mel A. Potential roles of nitric oxide in COVID-19: A perspective. Integr Mol Med 2020; 7.
[151]
Martel J, Ko YF, Young JD, Ojcius DM. Could nasal nitric oxide help to mitigate the severity of COVID-19? Microbes Infect 2020; 22(4-5): 168-71.
[http://dx.doi.org/10.1016/j.micinf.2020.05.002] [PMID: 32387333]
[152]
Kobayashi J, Murata I. Nitric oxide inhalation as an interventional rescue therapy for COVID-19-induced acute respiratory distress syndrome. Ann Intensive Care 2020; 10(1): 61.
[http://dx.doi.org/10.1186/s13613-020-00681-9] [PMID: 32436029]
[153]
Alvarez RA, Berra L, Gladwin MT. Home nitric oxide therapy for COVID-19. Am J Respir Crit Care Med 2020; 202(1): 16-20.
[http://dx.doi.org/10.1164/rccm.202005-1906ED] [PMID: 32437250]
[154]
Kumar VM, Pandi-Perumal SR, Trakht I, Thyagarajan SP. Strategy for COVID-19 vaccination in India: The country with the second highest population and number of cases. NPJ Vaccines 2021; 6(1): 60.
[http://dx.doi.org/10.1038/s41541-021-00327-2] [PMID: 33883557]
[155]
Liu J, Budylowski P, Samson R, et al. Preclinical evaluation of a SARS-CoV-2 mRNA vaccine PTX-COVID19-B. bioRxiv 2021.
[http://dx.doi.org/10.1101/2021.05.11.443286]
[156]
Gorry C. SOBERANA, Cuba’s COVID-19 Vaccine Candidates: Dagmar García-Rivera PhD Director of Research, Finlay Vaccine Institute. MEDICC Rev 2020; 22(4): 10-5.
[http://dx.doi.org/10.37757/MR2020.V22.N4.11] [PMID: 33295312]
[157]
Keech C, Albert G, Cho I, et al. Phase 1–2 trial of a SARS-CoV-2 recombinant spike protein nanoparticle vaccine. N Engl J Med 2020; 383(24): 2320-32.
[http://dx.doi.org/10.1056/NEJMoa2026920] [PMID: 32877576]
[158]
Heath PT, Galiza EP, Baxter DN, et al. Efficacy of the NVX-CoV2373 Covid-19 Vaccine Against the B.1.1.7 Variant. medRxiv 2021.
[http://dx.doi.org/10.1101/2021.05.13.21256639]
[159]
Smith TRF, Patel A, Ramos S, et al. Immunogenicity of a DNA vaccine candidate for COVID-19. Nat Commun 2020; 11(1): 2601.
[http://dx.doi.org/10.1038/s41467-020-16505-0] [PMID: 32433465]
[160]
Tebas P, Agnes J, Giffear M, Kraynyak KA, Blackwood E. Safety and immunogenicity of INO-4800 DNA vaccine against SARS-CoV-2: A preliminary report of a randomized, blinded, placebo-controlled, Phase 2 clinical trial in adults at high risk of viral exposure. medRxiv 2021.
[161]
WHO. 2022. Available from: [https://www.who.int/emergencies/diseases/novel-coronavirus-2019/covid-19-vaccines (Accessed on: 29th March 2022).
[162]
Jafari A, Danesh Pouya F, Niknam Z, Abdollahpour-Alitappeh M, Rezaei-Tavirani M, Rasmi Y. Current advances and challenges in COVID-19 vaccine development: From conventional vaccines to next-generation vaccine platforms. Mol Biol Rep 2022; 49(6): 4943-57.
[http://dx.doi.org/10.1007/s11033-022-07132-7] [PMID: 35235159]
[163]
Rahman MM, Masum MHU, Wajed S, Talukder A. A comprehensive review on COVID-19 vaccines: Development, effectiveness, adverse effects, distribution and challenges. Virusdisease 2022; 33(1): 1-22.
[http://dx.doi.org/10.1007/s13337-022-00755-1] [PMID: 35127995]
[164]
Munro APS, Janani L, Cornelius V, et al. Safety and immunogenicity of seven COVID-19 vaccines as a third dose (booster) following two doses of ChAdOx1 nCov-19 or BNT162b2 in the UK (COV-BOOST): a blinded, multicentre, randomised, controlled, phase 2 trial. Lancet 2021; 398(10318): 2258-76.
[http://dx.doi.org/10.1016/S0140-6736(21)02717-3] [PMID: 34863358]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy