Generic placeholder image

Combinatorial Chemistry & High Throughput Screening

Editor-in-Chief

ISSN (Print): 1386-2073
ISSN (Online): 1875-5402

Research Article

Exploring Novel Genome Instability-associated lncRNAs and their Potential Function in Pan-Renal Cell Carcinoma

Author(s): Hui-Xin Zhu, Wen-Cai Zheng, Hang Chen, Jia-Yin Chen, Fei Lin, Shao-Hao Chen, Xue-Yi Xue, Qing-Shui Zheng, Min Liang, Ning Xu, Dong-Ning Chen* and Xiong-Lin Sun*

Volume 27, Issue 12, 2024

Published on: 07 November, 2023

Page: [1788 - 1807] Pages: 20

DOI: 10.2174/0113862073258779231020052115

Price: $65

Abstract

Objective: Genomic instability can drive clonal evolution, continuous modification of tumor genomes, and tumor genomic heterogeneity. The molecular mechanism of genomic instability still needs further investigation. This study aims to identify novel genome instabilityassociated lncRNAs (GI-lncRNAs) and investigate the role of genome instability in pan-Renal cell carcinoma (RCC).

Materials and Methods: A mutator hypothesis was employed, combining the TCGA database of somatic mutation (SM) information, to identify GI-lncRNAs. Subsequently, a training cohort (n = 442) and a testing cohort (n = 439) were formed by randomly dividing all RCC patients. Based on the training cohort dataset, a multivariate Cox regression analysis lncRNAs risk model was created. Further validations were performed in the testing cohort, TCGA cohort, and different RCC subtypes. To confirm the relative expression levels of lncRNAs in HK-2, 786-O, and 769-P cells, qPCR was carried out. Functional pathway enrichment analyses were performed for further investigation.

Results: A total of 170 novel GI-lncRNAs were identified. The lncRNA prognostic risk model was constructed based on LINC00460, AC073218.1, AC010789.1, and COLCA1. This risk model successfully differentiated patients into distinct risk groups with significantly different clinical outcomes. The model was further validated in multiple independent patient cohorts. Additionally, functional and pathway enrichment analyses revealed that GI-lncRNAs play a crucial role in GI. Furthermore, the assessments of immune response, drug sensitivity, and cancer stemness revealed a significant relationship between GI-lncRNAs and tumor microenvironment infiltration, mutational burden, microsatellite instability, and drug resistance.

Conclusions: In this study, we discovered four novel GI-lncRNAs and developed a novel signature that effectively predicted clinical outcomes in pan-RCC. The findings provide valuable insights for pan-RCC immunotherapy and shed light on potential underlying mechanisms.

Keywords: Pan-renal cell carcinoma, genomic instability, LncRNAs, immunology, renal cell carcinoma, somatic mutation.

Graphical Abstract
[1]
Linehan, W.M.; Ricketts, C.J. The cancer genome atlas of renal cell carcinoma: Findings and clinical implications. Nat. Rev. Urol., 2019, 16(9), 539-552.
[http://dx.doi.org/10.1038/s41585-019-0211-5] [PMID: 31278395]
[2]
Siegel, R.L.; Miller, K.D.; Jemal, A. Cancer statistics, 2020. CA Cancer J. Clin., 2020, 70(1), 7-30.
[http://dx.doi.org/10.3322/caac.21590] [PMID: 31912902]
[3]
Ran, X.; Xiao, J.; Zhang, Y.; Teng, H.; Cheng, F.; Chen, H.; Zhang, K.; Sun, Z. Low intratumor heterogeneity correlates with increased response to PD-1 blockade in renal cell carcinoma. Ther. Adv. Med. Oncol., 2020, 12.
[http://dx.doi.org/10.1177/1758835920977117] [PMID: 33425025]
[4]
Wang, X.; Lopez, R.; Luchtel, R.A.; Hafizi, S.; Gartrell, B.; Shenoy, N. Immune evasion in renal cell carcinoma: Biology, clinical translation, future directions. Kidney Int., 2021, 99(1), 75-85.
[http://dx.doi.org/10.1016/j.kint.2020.08.028] [PMID: 32949550]
[5]
Moch, H.; Cubilla, A.L.; Humphrey, P.A.; Reuter, V.E.; Ulbright, T.M. The 2016 WHO classification of tumours of the urinary system and male genital organs—part A: Renal, penile, and testicular tumours. Eur. Urol., 2016, 70(1), 93-105.
[http://dx.doi.org/10.1016/j.eururo.2016.02.029] [PMID: 26935559]
[6]
Kato, T.; Kiyotani, K.; Tomiyama, E.; Koh, Y.; Matsushita, M.; Hayashi, Y.; Nakano, K.; Ishizuya, Y.; Wang, C.; Hatano, K.; Kawashima, A.; Ujike, T.; Fujita, K.; Nonomura, N.; Uemura, M. Peripheral T cell receptor repertoire features predict durable responses to anti-PD-1 inhibitor monotherapy in advanced renal cell carcinoma. OncoImmunology, 2021, 10(1), 1862948.
[http://dx.doi.org/10.1080/2162402X.2020.1862948] [PMID: 33537170]
[7]
Gul, A.; Rini, B.I. Adjuvant therapy in renal cell carcinoma. Cancer, 2019, 125(17), 2935-2944.
[http://dx.doi.org/10.1002/cncr.32144] [PMID: 31225907]
[8]
Gulati, S.; Vaishampayan, U. Current state of systemic therapies for advanced renal cell carcinoma. Curr. Oncol. Rep., 2020, 22(3), 26.
[http://dx.doi.org/10.1007/s11912-020-0892-1] [PMID: 32048058]
[9]
Garcia, J.A.; Rini, B.I. Recent progress in the management of advanced renal cell carcinoma. CA Cancer J. Clin., 2007, 57(2), 112-125.
[http://dx.doi.org/10.3322/canjclin.57.2.112] [PMID: 17392388]
[10]
Woo, S.; Suh, C.H.; Kim, S.Y.; Cho, J.Y.; Kim, S.H. Diagnostic performance of dwi for differentiating high- from low-grade clear cell renal cell carcinoma: A systematic review and meta-analysis. AJR Am. J. Roentgenol., 2017, 209(6), W374-W381.
[http://dx.doi.org/10.2214/AJR.17.18283] [PMID: 29023154]
[11]
Vera-Badillo, F.E.; Templeton, A.J.; Duran, I.; Ocana, A.; de Gouveia, P.; Aneja, P.; Knox, J.J.; Tannock, I.F.; Escudier, B.; Amir, E. Systemic therapy for non-clear cell renal cell carcinomas: A systematic review and meta-analysis. Eur. Urol., 2015, 67(4), 740-749.
[http://dx.doi.org/10.1016/j.eururo.2014.05.010] [PMID: 24882670]
[12]
Tayoun, T.; Oulhen, M.; Aberlenc, A.; Farace, F.; Pawlikowska, P. Tumor evolution and therapeutic choice seen through a prism of circulating tumor cell genomic instability. Cells, 2021, 10(2), 337.
[http://dx.doi.org/10.3390/cells10020337] [PMID: 33562741]
[13]
Habermann, J.K.; Doering, J.; Hautaniemi, S.; Roblick, U.J.; Bündgen, N.K.; Nicorici, D.; Kronenwett, U.; Rathnagiriswaran, S.; Mettu, R.K.R.; Ma, Y.; Krüger, S.; Bruch, H.P.; Auer, G.; Guo, N.L.; Ried, T. The gene expression signature of genomic instability in breast cancer is an independent predictor of clinical outcome. Int. J. Cancer, 2009, 124(7), 1552-1564.
[http://dx.doi.org/10.1002/ijc.24017] [PMID: 19101988]
[14]
Negrini, S.; Gorgoulis, V.G.; Halazonetis, T.D. Genomic instability — an evolving hallmark of cancer. Nat. Rev. Mol. Cell Biol., 2010, 11(3), 220-228.
[http://dx.doi.org/10.1038/nrm2858] [PMID: 20177397]
[15]
Freitas, M.O.; Gartner, J.; Rangel-Pozzo, A.; Mai, S. Genomic instability in circulating tumor cells. Cancers, 2020, 12(10), 3001.
[http://dx.doi.org/10.3390/cancers12103001] [PMID: 33081135]
[16]
Rao, C.V.; Asch, A.S.; Yamada, H.Y. Frequently mutated genes/pathways and genomic instability as prevention targets in liver cancer. Carcinogenesis, 2017, 38(1), 2-11.
[http://dx.doi.org/10.1093/carcin/bgw118] [PMID: 27838634]
[17]
Wei, X.; Wang, Y.; Ji, C.; Luan, J.; Yao, L.; Zhang, X.; Wang, S.; Yao, B.; Qin, C.; Song, N. Genomic instability promotes the progression of clear cell renal cell carcinoma through influencing the immune microenvironment. Front. Genet., 2021, 12, 706661.
[http://dx.doi.org/10.3389/fgene.2021.706661] [PMID: 34712264]
[18]
Abbas, T.; Keaton, M.A.; Dutta, A. Genomic instability in cancer. Cold Spring Harb. Perspect. Biol., 2013, 5(3), a012914.
[http://dx.doi.org/10.1101/cshperspect.a012914] [PMID: 23335075]
[19]
Ottini, L.; Falchetti, M.; Lupi, R.; Rizzolo, P.; Agnese, V.; Colucci, G.; Bazan, V.; Russo, A. Patterns of genomic instability in gastric cancer: Clinical implications and perspectives. Ann. Oncol., 2006, 17(S7), vii97-vii102.
[http://dx.doi.org/10.1093/annonc/mdl960] [PMID: 16760303]
[20]
Suzuki, K.; Ohnami, S.; Tanabe, C.; Sasaki, H.; Yasuda, J.; Katai, H.; Yoshimura, K.; Terada, M.; Perucho, M.; Yoshida, T. The genomic damage estimated by arbitrarily primed PCR DNA fingerprinting is useful for the prognosis of gastric cancer. Gastroenterology, 2003, 125(5), 1330-1340.
[http://dx.doi.org/10.1016/j.gastro.2003.07.006] [PMID: 14598249]
[21]
Ye, C.J.; Sharpe, Z.; Heng, H.H. Origins and consequences of chromosomal instability: From cellular adaptation to genome chaos-mediated system survival. Genes, 2020, 11(10), 1162.
[http://dx.doi.org/10.3390/genes11101162] [PMID: 33008067]
[22]
Li, J.; Wei, S.; Zhang, Y.; Lu, S.; Zhang, X.; Wang, Q.; Yan, J.; Yang, S.; Chen, L.; Liu, Y.; Huang, Z. Comprehensive analyses of mutation-derived long-chain noncoding rna signatures of genome instability in kidney renal papillary cell carcinoma. Front. Genet., 2022, 13, 874673.
[http://dx.doi.org/10.3389/fgene.2022.874673] [PMID: 35547247]
[23]
Wang, Y.; Yan, K.; Wang, L.; Bi, J. Genome instability-related long non-coding RNA in clear renal cell carcinoma determined using computational biology. BMC Cancer, 2021, 21(1), 727.
[http://dx.doi.org/10.1186/s12885-021-08356-9] [PMID: 34167490]
[24]
Wu, S.; Li, X. A genomic instability-derived risk index predicts clinical outcome and immunotherapy response for clear cell renal cell carcinoma. Bioengineered, 2021, 12(1), 1642-1662.
[http://dx.doi.org/10.1080/21655979.2021.1922330] [PMID: 33955826]
[25]
Linehan, W.M.; Schmidt, L.S.; Crooks, D.R.; Wei, D.; Srinivasan, R.; Lang, M.; Ricketts, C.J. The metabolic basis of kidney cancer. Cancer Discov., 2019, 9(8), 1006-1021.
[http://dx.doi.org/10.1158/2159-8290.CD-18-1354] [PMID: 31088840]
[26]
Deguchi, M.; Shiina, H.; Igawa, M.; Kaneuchi, M.; Nakajima, K.; Dahiya, R. DNA mismatch repair genes in renal cell carcinoma. J. Urol., 2003, 169(6), 2365-2371.
[http://dx.doi.org/10.1097/01.ju.0000065668.19267.b4] [PMID: 12771799]
[27]
Hell, M.P.; Duda, M.; Weber, T.C.; Moch, H.; Krek, W. Tumor suppressor VHL functions in the control of mitotic fidelity. Cancer Res., 2014, 74(9), 2422-2431.
[http://dx.doi.org/10.1158/0008-5472.CAN-13-2040] [PMID: 24362914]
[28]
Clark, D.J.; Dhanasekaran, S.M.; Petralia, F.; Pan, J.; Song, X.; Hu, Y.; da Veiga Leprevost, F.; Reva, B.; Lih, T.S.M.; Chang, H.Y.; Ma, W.; Huang, C.; Ricketts, C.J.; Chen, L.; Krek, A.; Li, Y.; Rykunov, D.; Li, Q.K.; Chen, L.S.; Ozbek, U.; Vasaikar, S.; Wu, Y.; Yoo, S.; Chowdhury, S.; Wyczalkowski, M.A.; Ji, J.; Schnaubelt, M.; Kong, A.; Sethuraman, S.; Avtonomov, D.M.; Ao, M.; Colaprico, A.; Cao, S.; Cho, K.C.; Kalayci, S.; Ma, S.; Liu, W.; Ruggles, K.; Calinawan, A.; Gümüş, Z.H.; Geiszler, D.; Kawaler, E.; Teo, G.C.; Wen, B.; Zhang, Y.; Keegan, S.; Li, K.; Chen, F.; Edwards, N.; Pierorazio, P.M.; Chen, X.S.; Pavlovich, C.P.; Hakimi, A.A.; Brominski, G.; Hsieh, J.J.; Antczak, A.; Omelchenko, T.; Lubinski, J.; Wiznerowicz, M.; Linehan, W.M.; Kinsinger, C.R.; Thiagarajan, M.; Boja, E.S.; Mesri, M.; Hiltke, T.; Robles, A.I.; Rodriguez, H.; Qian, J.; Fenyö, D.; Zhang, B.; Ding, L.; Schadt, E.; Chinnaiyan, A.M.; Zhang, Z.; Omenn, G.S.; Cieslik, M.; Chan, D.W.; Nesvizhskii, A.I.; Wang, P.; Zhang, H.; Hashimi, A.S.; Pico, A.R.; Karpova, A.; Charamut, A.; Paulovich, A.G.; Perou, A.M.; Malovannaya, A.; Marrero-Oliveras, A.; Agarwal, A.; Hindenach, B.; Pruetz, B.; Kim, B-J.; Druker, B.J.; Newton, C.J.; Birger, C.; Jones, C.D.; Tognon, C.; Mani, D.R.; Valley, D.R.; Rohrer, D.C.; Zhou, D.C.; Tansil, D.; Chesla, D.; Heiman, D.; Wheeler, D.; Tan, D.; Chan, D.; Demir, E.; Malc, E.; Modugno, F.; Getz, G.; Hostetter, G.; Wilson, G.D.; Hart, G.W.; Zhu, H.; Liu, H.; Culpepper, H.; Sun, H.; Zhou, H.; Day, J.; Suh, J.; Huang, J.; McDermott, J.; Whiteaker, J.R.; Tyner, J.W.; Eschbacher, J.; Chen, J.; McGee, J.; Zhu, J.; Ketchum, K.A.; Rodland, K.D.; Clauser, K.; Robinson, K.; Krug, K.; Hoadley, K.A.; Um, K.S.; Elburn, K.; Holloway, K.; Wang, L-B.; Blumenberg, L.; Hannick, L.; Qi, L.; Sokoll, L.J.; Cornwell, M.I.; Loriaux, M.; Domagalski, M.J.; Gritsenko, M.A.; Anderson, M.; Monroe, M.E.; Ellis, M.J.; Dyer, M.; Anurag, M.; Burke, M.C.; Borucki, M.; Gillette, M.A.; Birrer, M.J.; Lewis, M.; Ittmann, M.M.; Smith, M.; Vernon, M.; Chaikin, M.; Chheda, M.G.; Khan, M.; Roche, N.; Edwards, N.J.; Vatanian, N.; Tignor, N.; Beckmann, N.; Grady, P.; Castro, P.; Piehowski, P.; McGarvey, P.B.; Mieczkowski, P.; Hariharan, P.; Gao, Q.; Dhir, R.; Kothadia, R.B.; Thangudu, R.R.; Montgomery, R.; Jayasinghe, R.G.; Smith, R.D.; Edwards, R.; Zelt, R.; Bremner, R.; Liu, R.; Hong, R.; Mareedu, S.; Payne, S.H.; Cottingham, S.; Markey, S.P.; Jewell, S.D.; Patel, S.; Satpathy, S.; Richey, S.; Davies, S.R.; Cai, S.; Boca, S.M.; Patil, S.; Sengupta, S.; Carter, S.; Gabriel, S.; Thomas, S.N.; De Young, S.; Stein, S.E.; Carr, S.A.; Foltz, S.M.; Hilsenbeck, S.; Krubit, T.; Liu, T.; Skelly, T.; Westbrook, T.; Borate, U.; Velvulou, U.; Petyuk, V.A.; Bocik, W.E.; Chen, X.; Shi, Y.; Geffen, Y.; Lu, Y.; Wang, Y.; Maruvka, Y.; Li, Z.; Shi, Z.; Tu, Z. Integrated proteogenomic characterization of clear cell renal cell carcinoma. Cell, 2019, 179(4), 964-983.e31.
[http://dx.doi.org/10.1016/j.cell.2019.10.007] [PMID: 31675502]
[29]
Wei, L.; Wang, X.; Lv, L.; Liu, J.; Xing, H.; Song, Y.; Xie, M.; Lei, T.; Zhang, N.; Yang, M. The emerging role of microRNAs and long noncoding RNAs in drug resistance of hepatocellular carcinoma. Mol. Cancer, 2019, 18(1), 147.
[http://dx.doi.org/10.1186/s12943-019-1086-z] [PMID: 31651347]
[30]
Yarani, R.; Mirza, A.H.; Kaur, S.; Pociot, F. The emerging role of lncRNAs in inflammatory bowel disease. Exp. Mol. Med., 2018, 50(12), 1-14.
[http://dx.doi.org/10.1038/s12276-018-0188-9] [PMID: 30523244]
[31]
Renganathan, A.; Felley-Bosco, E. Long noncoding RNAs in cancer and therapeutic potential. Adv. Exp. Med. Biol., 2017, 1008, 199-222.
[http://dx.doi.org/10.1007/978-981-10-5203-3_7] [PMID: 28815541]
[32]
Bao, S.; Zhao, H.; Yuan, J.; Fan, D.; Zhang, Z.; Su, J.; Zhou, M. Computational identification of mutator-derived lncRNA signatures of genome instability for improving the clinical outcome of cancers: A case study in breast cancer. Brief. Bioinform., 2020, 21(5), 1742-1755.
[http://dx.doi.org/10.1093/bib/bbz118] [PMID: 31665214]
[33]
Guan, Z.; Wang, Y.; Wang, Y.; Liu, X.; Wang, Y.; Zhang, W.; Chi, X.; Dong, Y.; Liu, X.; Shao, S.; Zhan, Q. Long non‐coding RNA LOC100133669 promotes cell proliferation in oesophageal squamous cell carcinoma. Cell Prolif., 2020, 53(4), e12750.
[http://dx.doi.org/10.1111/cpr.12750] [PMID: 32130753]
[34]
Wang, Z.; Ren, Z.; Li, R.; Ge, J.; Zhang, G.; Xin, Y.; Qu, Y. Multi-omics integrative bioinformatics analyses reveal long non-coding RNA modulates genomic integrity via competing endogenous rna mechanism and serves as novel biomarkers for overall survival in lung adenocarcinoma. Front. Cell Dev. Biol., 2021, 9, 691540.
[http://dx.doi.org/10.3389/fcell.2021.691540] [PMID: 34368141]
[35]
Zhang, H.; Yang, F.; Chen, S.J.; Che, J.; Zheng, J. Upregulation of long non-coding RNA MALAT1 correlates with tumor progression and poor prognosis in clear cell renal cell carcinoma. Tumour Biol., 2015, 36(4), 2947-2955.
[http://dx.doi.org/10.1007/s13277-014-2925-6] [PMID: 25480417]
[36]
Jiang, D.; Wu, T.; Shi, N.; Shan, Y.; Wang, J.; Jiang, H.; Wu, Y.; Wang, M.; Li, J.; Liu, H.; Chen, M. Development of genomic instability-associated long non-coding RNA signature: A prognostic risk model of clear cell renal cell carcinoma. Front. Oncol., 2022, 12, 1019011.
[http://dx.doi.org/10.3389/fonc.2022.1019011] [PMID: 36387102]
[37]
Huarte, M. The emerging role of lncRNAs in cancer. Nat. Med., 2015, 21(11), 1253-1261.
[http://dx.doi.org/10.1038/nm.3981] [PMID: 26540387]
[38]
Bhan, A.; Soleimani, M.; Mandal, S.S. Long noncoding RNA and cancer: A new paradigm. Cancer Res., 2017, 77(15), 3965-3981.
[http://dx.doi.org/10.1158/0008-5472.CAN-16-2634] [PMID: 28701486]
[39]
Ma, Y.; Zhang, J.; Wen, L.; Lin, A. Membrane-lipid associated lncRNA: A new regulator in cancer signaling. Cancer Lett., 2018, 419, 27-29.
[http://dx.doi.org/10.1016/j.canlet.2018.01.008] [PMID: 29330108]
[40]
Zhai, W.; Sun, Y.; Guo, C.; Hu, G.; Wang, M.; Zheng, J.; Lin, W.; Huang, Q.; Li, G.; Zheng, J.; Chang, C. LncRNA-SARCC suppresses renal cell carcinoma (RCC) progression via altering the androgen receptor(AR)/miRNA-143-3p signals. Cell Death Differ., 2017, 24(9), 1502-1517.
[http://dx.doi.org/10.1038/cdd.2017.74] [PMID: 28644440]
[41]
Jiao, Y.; Li, S.; Wang, X.; Yi, M.; Wei, H.; Rong, S.; Zheng, K.; Zhang, L. A genomic instability-related lncRNA model for predicting prognosis and immune checkpoint inhibitor efficacy in breast cancer. Front. Immunol., 2022, 13, 929846.
[http://dx.doi.org/10.3389/fimmu.2022.929846] [PMID: 35990656]
[42]
Yu, G.; Wang, L.G.; Han, Y.; He, Q.Y. clusterProfiler: An R package for comparing biological themes among gene clusters. OMICS, 2012, 16(5), 284-287.
[http://dx.doi.org/10.1089/omi.2011.0118] [PMID: 22455463]
[43]
Zhang, X.; Shao, S.; Li, L. Characterization of class-3 semaphorin receptors, neuropilins and plexins, as therapeutic targets in a pan-cancer study. Cancers, 2020, 12(7), 1816.
[http://dx.doi.org/10.3390/cancers12071816] [PMID: 32640719]
[44]
Yoshihara, K.; Shahmoradgoli, M.; Martínez, E.; Vegesna, R.; Kim, H.; Torres-Garcia, W.; Treviño, V.; Shen, H.; Laird, P.W.; Levine, D.A.; Carter, S.L.; Getz, G.; Stemke-Hale, K.; Mills, G.B.; Verhaak, R.G.W. Inferring tumour purity and stromal and immune cell admixture from expression data. Nat. Commun., 2013, 4(1), 2612.
[http://dx.doi.org/10.1038/ncomms3612] [PMID: 24113773]
[45]
Thorsson, V.; Gibbs, D.L.; Brown, S.D.; Wolf, D.; Bortone, D.S.; Ou Yang, T.H. Porta-Pardo, E.; Gao, G.F.; Plaisier, C.L.; Eddy, J.A.; Ziv, E.; Culhane, A.C.; Paull, E.O.; Sivakumar, I.K.A.; Gentles, A.J.; Malhotra, R.; Farshidfar, F.; Colaprico, A.; Parker, J.S.; Mose, L.E.; Vo, N.S.; Liu, J.; Liu, Y.; Rader, J.; Dhankani, V.; Reynolds, S.M.; Bowlby, R.; Califano, A.; Cherniack, A.D.; Anastassiou, D.; Bedognetti, D.; Mokrab, Y.; Newman, A.M.; Rao, A.; Chen, K.; Krasnitz, A.; Hu, H.; Malta, T.M.; Noushmehr, H.; Pedamallu, C.S.; Bullman, S.; Ojesina, A.I.; Lamb, A.; Zhou, W.; Shen, H.; Choueiri, T.K.; Weinstein, J.N.; Guinney, J.; Saltz, J.; Holt, R.A.; Rabkin, C.S.; Lazar, A.J.; Serody, J.S.; Demicco, E.G.; Disis, M.L.; Vincent, B.G.; Shmulevich, I.; Caesar-Johnson, S.J.; Demchok, J.A.; Felau, I.; Kasapi, M.; Ferguson, M.L.; Hutter, C.M.; Sofia, H.J.; Tarnuzzer, R.; Wang, Z.; Yang, L.; Zenklusen, J.C.; Zhang, J.J.; Chudamani, S.; Liu, J.; Lolla, L.; Naresh, R.; Pihl, T.; Sun, Q.; Wan, Y.; Wu, Y.; Cho, J.; DeFreitas, T.; Frazer, S.; Gehlenborg, N.; Getz, G.; Heiman, D.I.; Kim, J.; Lawrence, M.S.; Lin, P.; Meier, S.; Noble, M.S.; Saksena, G.; Voet, D.; Zhang, H.; Bernard, B.; Chambwe, N.; Dhankani, V.; Knijnenburg, T.; Kramer, R.; Leinonen, K.; Liu, Y.; Miller, M.; Reynolds, S.; Shmulevich, I.; Thorsson, V.; Zhang, W.; Akbani, R.; Broom, B.M.; Hegde, A.M.; Ju, Z.; Kanchi, R.S.; Korkut, A.; Li, J.; Liang, H.; Ling, S.; Liu, W.; Lu, Y.; Mills, G.B.; Ng, K-S.; Rao, A.; Ryan, M.; Wang, J.; Weinstein, J.N.; Zhang, J.; Abeshouse, A.; Armenia, J.; Chakravarty, D.; Chatila, W.K.; de Bruijn, I.; Gao, J.; Gross, B.E.; Heins, Z.J.; Kundra, R.; La, K.; Ladanyi, M.; Luna, A.; Nissan, M.G.; Ochoa, A.; Phillips, S.M.; Reznik, E.; Sanchez-Vega, F.; Sander, C.; Schultz, N.; Sheridan, R.; Sumer, S.O.; Sun, Y.; Taylor, B.S.; Wang, J.; Zhang, H.; Anur, P.; Peto, M.; Spellman, P.; Benz, C.; Stuart, J.M.; Wong, C.K.; Yau, C.; Hayes, D.N.; Parker, J.S.; Wilkerson, M.D.; Ally, A.; Balasundaram, M.; Bowlby, R.; Brooks, D.; Carlsen, R.; Chuah, E.; Dhalla, N.; Holt, R.; Jones, S.J.M.; Kasaian, K.; Lee, D.; Ma, Y.; Marra, M.A.; Mayo, M.; Moore, R.A.; Mungall, A.J.; Mungall, K.; Robertson, A.G.; Sadeghi, S.; Schein, J.E.; Sipahimalani, P.; Tam, A.; Thiessen, N.; Tse, K.; Wong, T.; Berger, A.C.; Beroukhim, R.; Cherniack, A.D.; Cibulskis, C.; Gabriel, S.B.; Gao, G.F.; Ha, G.; Meyerson, M.; Schumacher, S.E.; Shih, J.; Kucherlapati, M.H.; Kucherlapati, R.S.; Baylin, S.; Cope, L.; Danilova, L.; Bootwalla, M.S.; Lai, P.H.; Maglinte, D.T.; Van Den Berg, D.J.; Weisenberger, D.J.; Auman, J.T.; Balu, S.; Bodenheimer, T.; Fan, C.; Hoadley, K.A.; Hoyle, A.P.; Jefferys, S.R.; Jones, C.D.; Meng, S.; Mieczkowski, P.A.; Mose, L.E.; Perou, A.H.; Perou, C.M.; Roach, J.; Shi, Y.; Simons, J.V.; Skelly, T.; Soloway, M.G.; Tan, D.; Veluvolu, U.; Fan, H.; Hinoue, T.; Laird, P.W.; Shen, H.; Zhou, W.; Bellair, M.; Chang, K.; Covington, K.; Creighton, C.J.; Dinh, H.; Doddapaneni, H.V.; Donehower, L.A.; Drummond, J.; Gibbs, R.A.; Glenn, R.; Hale, W.; Han, Y.; Hu, J.; Korchina, V.; Lee, S.; Lewis, L.; Li, W.; Liu, X.; Morgan, M.; Morton, D.; Muzny, D.; Santibanez, J.; Sheth, M.; Shinbrot, E.; Wang, L.; Wang, M.; Wheeler, D.A.; Xi, L.; Zhao, F.; Hess, J.; Appelbaum, E.L.; Bailey, M.; Cordes, M.G.; Ding, L.; Fronick, C.C.; Fulton, L.A.; Fulton, R.S.; Kandoth, C.; Mardis, E.R.; McLellan, M.D.; Miller, C.A.; Schmidt, H.K.; Wilson, R.K.; Crain, D.; Curley, E.; Gardner, J.; Lau, K.; Mallery, D.; Morris, S.; Paulauskis, J.; Penny, R.; Shelton, C.; Shelton, T.; Sherman, M.; Thompson, E.; Yena, P.; Bowen, J.; Gastier-Foster, J.M.; Gerken, M.; Leraas, K.M.; Lichtenberg, T.M.; Ramirez, N.C.; Wise, L.; Zmuda, E.; Corcoran, N.; Costello, T.; Hovens, C.; Carvalho, A.L.; de Carvalho, A.C.; Fregnani, J.H.; Longatto-Filho, A.; Reis, R.M.; Scapulatempo-Neto, C.; Silveira, H.C.S.; Vidal, D.O.; Burnette, A.; Eschbacher, J.; Hermes, B.; Noss, A.; Singh, R.; Anderson, M.L.; Castro, P.D.; Ittmann, M.; Huntsman, D.; Kohl, B.; Le, X.; Thorp, R.; Andry, C.; Duffy, E.R.; Lyadov, V.; Paklina, O.; Setdikova, G.; Shabunin, A.; Tavobilov, M.; McPherson, C.; Warnick, R.; Berkowitz, R.; Cramer, D.; Feltmate, C.; Horowitz, N.; Kibel, A.; Muto, M.; Raut, C.P.; Malykh, A.; Barnholtz-Sloan, J.S.; Barrett, W.; Devine, K.; Fulop, J.; Ostrom, Q.T.; Shimmel, K.; Wolinsky, Y.; Sloan, A.E.; De Rose, A.; Giuliante, F.; Goodman, M.; Karlan, B.Y.; Hagedorn, C.H.; Eckman, J.; Harr, J.; Myers, J.; Tucker, K.; Zach, L.A.; Deyarmin, B.; Hu, H.; Kvecher, L.; Larson, C.; Mural, R.J.; Somiari, S.; Vicha, A.; Zelinka, T.; Bennett, J.; Iacocca, M.; Rabeno, B.; Swanson, P.; Latour, M.; Lacombe, L.; Têtu, B.; Bergeron, A.; McGraw, M.; Staugaitis, S.M.; Chabot, J.; Hibshoosh, H.; Sepulveda, A.; Su, T.; Wang, T.; Potapova, O.; Voronina, O.; Desjardins, L.; Mariani, O.; Roman-Roman, S.; Sastre, X.; Stern, M-H.; Cheng, F.; Signoretti, S.; Berchuck, A.; Bigner, D.; Lipp, E.; Marks, J.; McCall, S.; McLendon, R.; Secord, A.; Sharp, A.; Behera, M.; Brat, D.J.; Chen, A.; Delman, K.; Force, S.; Khuri, F.; Magliocca, K.; Maithel, S.; Olson, J.J.; Owonikoko, T.; Pickens, A.; Ramalingam, S.; Shin, D.M.; Sica, G.; Van Meir, E.G.; Zhang, H.; Eijckenboom, W.; Gillis, A.; Korpershoek, E.; Looijenga, L.; Oosterhuis, W.; Stoop, H.; van Kessel, K.E.; Zwarthoff, E.C.; Calatozzolo, C.; Cuppini, L.; Cuzzubbo, S.; DiMeco, F.; Finocchiaro, G.; Mattei, L.; Perin, A.; Pollo, B.; Chen, C.; Houck, J.; Lohavanichbutr, P.; Hartmann, A.; Stoehr, C.; Stoehr, R.; Taubert, H.; Wach, S.; Wullich, B.; Kycler, W.; Murawa, D.; Wiznerowicz, M.; Chung, K.; Edenfield, W.J.; Martin, J.; Baudin, E.; Bubley, G.; Bueno, R.; De Rienzo, A.; Richards, W.G.; Kalkanis, S.; Mikkelsen, T.; Noushmehr, H.; Scarpace, L.; Girard, N.; Aymerich, M.; Campo, E.; Giné, E.; Guillermo, A.L.; Van Bang, N.; Hanh, P.T.; Phu, B.D.; Tang, Y.; Colman, H.; Evason, K.; Dottino, P.R.; Martignetti, J.A.; Gabra, H.; Juhl, H.; Akeredolu, T.; Stepa, S.; Hoon, D.; Ahn, K.; Kang, K.J.; Beuschlein, F.; Breggia, A.; Birrer, M.; Bell, D.; Borad, M.; Bryce, A.H.; Castle, E.; Chandan, V.; Cheville, J.; Copland, J.A.; Farnell, M.; Flotte, T.; Giama, N.; Ho, T.; Kendrick, M.; Kocher, J-P.; Kopp, K.; Moser, C.; Nagorney, D.; O’Brien, D.; O’Neill, B.P.; Patel, T.; Petersen, G.; Que, F.; Rivera, M.; Roberts, L.; Smallridge, R.; Smyrk, T.; Stanton, M.; Thompson, R.H.; Torbenson, M.; Yang, J.D.; Zhang, L.; Brimo, F.; Ajani, J.A.; Gonzalez, A.M.A.; Behrens, C.; Bondaruk, J.; Broaddus, R.; Czerniak, B.; Esmaeli, B.; Fujimoto, J.; Gershenwald, J.; Guo, C.; Lazar, A.J.; Logothetis, C.; Meric-Bernstam, F.; Moran, C.; Ramondetta, L.; Rice, D.; Sood, A.; Tamboli, P.; Thompson, T.; Troncoso, P.; Tsao, A.; Wistuba, I.; Carter, C.; Haydu, L.; Hersey, P.; Jakrot, V.; Kakavand, H.; Kefford, R.; Lee, K.; Long, G.; Mann, G.; Quinn, M.; Saw, R.; Scolyer, R.; Shannon, K.; Spillane, A.; Stretch; Synott, M.; Thompson, J.; Wilmott, J.; Al-Ahmadie, H.; Chan, T.A.; Ghossein, R.; Gopalan, A.; Levine, D.A.; Reuter, V.; Singer, S.; Singh, B.; Tien, N.V.; Broudy, T.; Mirsaidi, C.; Nair, P.; Drwiega, P.; Miller, J.; Smith, J.; Zaren, H.; Park, J-W.; Hung, N.P.; Kebebew, E.; Linehan, W.M.; Metwalli, A.R.; Pacak, K.; Pinto, P.A.; Schiffman, M.; Schmidt, L.S.; Vocke, C.D.; Wentzensen, N.; Worrell, R.; Yang, H.; Moncrieff, M.; Goparaju, C.; Melamed, J.; Pass, H.; Botnariuc, N.; Caraman, I.; Cernat, M.; Chemencedji, I.; Clipca, A.; Doruc, S.; Gorincioi, G.; Mura, S.; Pirtac, M.; Stancul, I.; Tcaciuc, D.; Albert, M.; Alexopoulou, I.; Arnaout, A.; Bartlett, J.; Engel, J.; Gilbert, S.; Parfitt, J.; Sekhon, H.; Thomas, G.; Rassl, D.M.; Rintoul, R.C.; Bifulco, C.; Tamakawa, R.; Urba, W.; Hayward, N.; Timmers, H.; Antenucci, A.; Facciolo, F.; Grazi, G.; Marino, M.; Merola, R.; de Krijger, R.; Gimenez-Roqueplo, A-P.; Piché, A.; Chevalier, S.; McKercher, G.; Birsoy, K.; Barnett, G.; Brewer, C.; Farver, C.; Naska, T.; Pennell, N.A.; Raymond, D.; Schilero, C.; Smolenski, K.; Williams, F.; Morrison, C.; Borgia, J.A.; Liptay, M.J.; Pool, M.; Seder, C.W.; Junker, K.; Omberg, L.; Dinkin, M.; Manikhas, G.; Alvaro, D.; Bragazzi, M.C.; Cardinale, V.; Carpino, G.; Gaudio, E.; Chesla, D.; Cottingham, S.; Dubina, M.; Moiseenko, F.; Dhanasekaran, R.; Becker, K-F.; Janssen, K-P.; Slotta-Huspenina, J.; Abdel-Rahman, M.H.; Aziz, D.; Bell, S.; Cebulla, C.M.; Davis, A.; Duell, R.; Elder, J.B.; Hilty, J.; Kumar, B.; Lang, J.; Lehman, N.L.; Mandt, R.; Nguyen, P.; Pilarski, R.; Rai, K.; Schoenfield, L.; Senecal, K.; Wakely, P.; Hansen, P.; Lechan, R.; Powers, J.; Tischler, A.; Grizzle, W.E.; Sexton, K.C.; Kastl, A.; Henderson, J.; Porten, S.; Waldmann, J.; Fassnacht, M.; Asa, S.L.; Schadendorf, D.; Couce, M.; Graefen, M.; Huland, H.; Sauter, G.; Schlomm, T.; Simon, R.; Tennstedt, P.; Olabode, O.; Nelson, M.; Bathe, O.; Carroll, P.R.; Chan, J.M.; Disaia, P.; Glenn, P.; Kelley, R.K.; Landen, C.N.; Phillips, J.; Prados, M.; Simko, J.; Smith-McCune, K.; VandenBerg, S.; Roggin, K.; Fehrenbach, A.; Kendler, A.; Sifri, S.; Steele, R.; Jimeno, A.; Carey, F.; Forgie, I.; Mannelli, M.; Carney, M.; Hernandez, B.; Campos, B.; Herold-Mende, C.; Jungk, C.; Unterberg, A.; von Deimling, A.; Bossler, A.; Galbraith, J.; Jacobus, L.; Knudson, M.; Knutson, T.; Ma, D.; Milhem, M.; Sigmund, R.; Godwin, A.K.; Madan, R.; Rosenthal, H.G.; Adebamowo, C.; Adebamowo, S.N.; Boussioutas, A.; Beer, D.; Giordano, T.; Mes-Masson, A-M.; Saad, F.; Bocklage, T.; Landrum, L.; Mannel, R.; Moore, K.; Moxley, K.; Postier, R.; Walker, J.; Zuna, R.; Feldman, M.; Valdivieso, F.; Dhir, R.; Luketich, J.; Pinero, E.M.M.; Quintero-Aguilo, M.; Carlotti, C.G., Jr; Dos Santos, J.S.; Kemp, R.; Sankarankuty, A.; Tirapelli, D.; Catto, J.; Agnew, K.; Swisher, E.; Creaney, J.; Robinson, B.; Shelley, C.S.; Godwin, E.M.; Kendall, S.; Shipman, C.; Bradford, C.; Carey, T.; Haddad, A.; Moyer, J.; Peterson, L.; Prince, M.; Rozek, L.; Wolf, G.; Bowman, R.; Fong, K.M.; Yang, I.; Korst, R.; Rathmell, W.K.; Fantacone-Campbell, J.L.; Hooke, J.A.; Kovatich, A.J.; Shriver, C.D.; DiPersio, J.; Drake, B.; Govindan, R.; Heath, S.; Ley, T.; Van Tine, B.; Westervelt, P.; Rubin, M.A.; Lee, J.I.; Aredes, N.D.; Mariamidze, A. The immune landscape of cancer. Immunity, 2018, 48(4), 812-830.e14.
[http://dx.doi.org/10.1016/j.immuni.2018.03.023] [PMID: 29628290]
[46]
Elguindy, M.M.; Mendell, J.T. NORAD-induced Pumilio phase separation is required for genome stability. Nature, 2021, 595(7866), 303-308.
[http://dx.doi.org/10.1038/s41586-021-03633-w] [PMID: 34108682]
[47]
Munschauer, M.; Nguyen, C.T.; Sirokman, K.; Hartigan, C.R.; Hogstrom, L.; Engreitz, J.M.; Ulirsch, J.C.; Fulco, C.P.; Subramanian, V.; Chen, J.; Schenone, M.; Guttman, M.; Carr, S.A.; Lander, E.S. The NORAD lncRNA assembles a topoisomerase complex critical for genome stability. Nature, 2018, 561(7721), 132-136.
[http://dx.doi.org/10.1038/s41586-018-0453-z] [PMID: 30150775]
[48]
Vietri, M.; Schultz, S.W.; Bellanger, A.; Jones, C.M.; Petersen, L.I.; Raiborg, C.; Skarpen, E.; Pedurupillay, C.R.J.; Kjos, I.; Kip, E.; Timmer, R.; Jain, A.; Collas, P.; Knorr, R.L.; Grellscheid, S.N.; Kusumaatmaja, H.; Brech, A.; Micci, F.; Stenmark, H.; Campsteijn, C. Unrestrained ESCRT-III drives micronuclear catastrophe and chromosome fragmentation. Nat. Cell Biol., 2020, 22(7), 856-867.
[http://dx.doi.org/10.1038/s41556-020-0537-5] [PMID: 32601372]
[49]
Takaki, T.; Montagner, M.; Serres, M.P.; Le Berre, M.; Russell, M.; Collinson, L.; Szuhai, K.; Howell, M.; Boulton, S.J.; Sahai, E.; Petronczki, M. Actomyosin drives cancer cell nuclear dysmorphia and threatens genome stability. Nat. Commun., 2017, 8(1), 16013.
[http://dx.doi.org/10.1038/ncomms16013] [PMID: 28737169]
[50]
Mackenzie, K.J.; Carroll, P.; Martin, C.A.; Murina, O.; Fluteau, A.; Simpson, D.J.; Olova, N.; Sutcliffe, H.; Rainger, J.K.; Leitch, A.; Osborn, R.T.; Wheeler, A.P.; Nowotny, M.; Gilbert, N.; Chandra, T.; Reijns, M.A.M.; Jackson, A.P. cGAS surveillance of micronuclei links genome instability to innate immunity. Nature, 2017, 548(7668), 461-465.
[http://dx.doi.org/10.1038/nature23449] [PMID: 28738408]
[51]
Gerlinger, M.; Swanton, C. How Darwinian models inform therapeutic failure initiated by clonal heterogeneity in cancer medicine. Br. J. Cancer, 2010, 103(8), 1139-1143.
[http://dx.doi.org/10.1038/sj.bjc.6605912] [PMID: 20877357]
[52]
Ben-David, U.; Beroukhim, R.; Golub, T.R. Genomic evolution of cancer models: Perils and opportunities. Nat. Rev. Cancer, 2019, 19(2), 97-109.
[http://dx.doi.org/10.1038/s41568-018-0095-3] [PMID: 30578414]
[53]
Lee, J.K.; Choi, Y.L.; Kwon, M.; Park, P.J. Mechanisms and consequences of cancer genome instability: Lessons from genome sequencing studies. Annu. Rev. Pathol., 2016, 11(1), 283-312.
[http://dx.doi.org/10.1146/annurev-pathol-012615-044446] [PMID: 26907526]
[54]
Benson, A.B.; Venook, A.P.; Al-Hawary, M.M.; Arain, M.A.; Chen, Y.J.; Ciombor, K.K.; Cohen, S.; Cooper, H.S.; Deming, D.; Farkas, L.; Garrido-Laguna, I.; Grem, J.L.; Gunn, A.; Hecht, J.R.; Hoffe, S.; Hubbard, J.; Hunt, S.; Johung, K.L.; Kirilcuk, N.; Krishnamurthi, S.; Messersmith, W.A.; Meyerhardt, J.; Miller, E.D.; Mulcahy, M.F.; Nurkin, S.; Overman, M.J.; Parikh, A.; Patel, H.; Pedersen, K.; Saltz, L.; Schneider, C.; Shibata, D.; Skibber, J.M.; Sofocleous, C.T.; Stoffel, E.M.; Stotsky-Himelfarb, E.; Willett, C.G.; Gregory, K.M.; Gurski, L.A. Colon cancer, version 2.2021, NCCN clinical practice guidelines in oncology. J. Natl. Compr. Canc. Netw., 2021, 19(3), 329-359.
[http://dx.doi.org/10.6004/jnccn.2021.0012] [PMID: 33724754]
[55]
Yi, M.; Li, A.; Zhou, L.; Chu, Q.; Luo, S.; Wu, K. Immune signature-based risk stratification and prediction of immune checkpoint inhibitor’s efficacy for lung adenocarcinoma. Cancer Immunol. Immunother., 2021, 70(6), 1705-1719.
[http://dx.doi.org/10.1007/s00262-020-02817-z] [PMID: 33386920]
[56]
Picco, G.; Cattaneo, C.M.; van Vliet, E.J.; Crisafulli, G.; Rospo, G.; Consonni, S.; Vieira, S.F.; Rodríguez, I.S.; Cancelliere, C.; Banerjee, R.; Schipper, L.J.; Oddo, D.; Dijkstra, K.K.; Cinatl, J.; Michaelis, M.; Yang, F.; Di Nicolantonio, F.; Sartore-Bianchi, A.; Siena, S.; Arena, S.; Voest, E.E.; Bardelli, A.; Garnett, M.J. Werner helicase is a synthetic-lethal vulnerability in mismatch repair–deficient colorectal cancer refractory to targeted therapies, chemotherapy, and immunotherapy. Cancer Discov., 2021, 11(8), 1923-1937.
[http://dx.doi.org/10.1158/2159-8290.CD-20-1508] [PMID: 33837064]
[57]
Zhao, T.; Du, J.; Zeng, H. Interplay between endoplasmic reticulum stress and non-coding RNAs in cancer. J. Hematol. Oncol., 2020, 13(1), 163.
[http://dx.doi.org/10.1186/s13045-020-01002-0] [PMID: 33267910]
[58]
Ulitsky, I.; Bartel, D.P. lincRNAs: Genomics, evolution, and mechanisms. Cell, 2013, 154(1), 26-46.
[http://dx.doi.org/10.1016/j.cell.2013.06.020] [PMID: 23827673]
[59]
Li, S.; Yi, M.; Dong, B.; Tan, X.; Luo, S.; Wu, K. The role of exosomes in liquid biopsy for cancer diagnosis and prognosis prediction. Int. J. Cancer, 2021, 148(11), 2640-2651.
[http://dx.doi.org/10.1002/ijc.33386] [PMID: 33180334]
[60]
Lee, S.; Kopp, F.; Chang, T.C.; Sataluri, A.; Chen, B.; Sivakumar, S.; Yu, H.; Xie, Y.; Mendell, J.T. Noncoding RNA NORAD regulates genomic stability by sequestering PUMILIO proteins. Cell, 2016, 164(1-2), 69-80.
[http://dx.doi.org/10.1016/j.cell.2015.12.017] [PMID: 26724866]
[61]
Hu, W.L.; Jin, L.; Xu, A.; Wang, Y.F.; Thorne, R.F.; Zhang, X.D.; Wu, M. GUARDIN is a p53-responsive long non-coding RNA that is essential for genomic stability. Nat. Cell Biol., 2018, 20(4), 492-502.
[http://dx.doi.org/10.1038/s41556-018-0066-7] [PMID: 29593331]
[62]
Giovannini, S.; Weller, M.C.; Hanzlíková, H.; Shiota, T.; Takeda, S.; Jiricny, J. ATAD5 deficiency alters DNA damage metabolism and sensitizes cells to PARP inhibition. Nucleic Acids Res., 2020, 48(9), 4928-4939.
[http://dx.doi.org/10.1093/nar/gkaa255] [PMID: 32297953]
[63]
Hou, P.; Meng, S.; Li, M.; Lin, T.; Chu, S.; Li, Z.; Zheng, J.; Gu, Y.; Bai, J. LINC00460/DHX9/IGF2BP2 complex promotes colorectal cancer proliferation and metastasis by mediating HMGA1 mRNA stability depending on m6A modification. J. Exp. Clin. Cancer Res., 2021, 40(1), 52.
[http://dx.doi.org/10.1186/s13046-021-01857-2]
[64]
Zhang, D.; Zeng, S.; Hu, X. Identification of a three-long noncoding RNA prognostic model involved competitive endogenous RNA in kidney renal clear cell carcinoma. Cancer Cell Int., 2020, 20(1), 319.
[http://dx.doi.org/10.1186/s12935-020-01423-4] [PMID: 32694941]
[65]
Duan, W.; Kong, X.; Li, J.; Li, P.; Zhao, Y.; Liu, T.; Binang, H.B.; Wang, Y.; Du, L.; Wang, C. LncRNA AC010789.1 promotes colorectal cancer progression by targeting microRNA-432-3p/ZEB1 Axis and the Wnt/β-Catenin Signaling Pathway. Front. Cell Dev. Biol., 2020, 8, 565355.
[http://dx.doi.org/10.3389/fcell.2020.565355] [PMID: 33178684]
[66]
Wang, X.; Zhou, J.; Xu, M.; Yan, Y.; Huang, L.; Kuang, Y.; Liu, Y.; Li, P.; Zheng, W.; Liu, H.; Jia, B.A. 15-lncRNA signature predicts survival and functions as a ceRNA in patients with colorectal cancer. Cancer Manag. Res., 2018, 10, 5799-5806.
[http://dx.doi.org/10.2147/CMAR.S178732] [PMID: 30510449]
[67]
Song, N.; Kim, K.; Shin, A.; Park, J.W.; Chang, H.J.; Shi, J.; Cai, Q.; Kim, D.Y.; Zheng, W.; Oh, J.H. Colorectal cancer susceptibility loci and influence on survival. Genes Chromosomes Cancer, 2018, 57(12), 630-637.
[http://dx.doi.org/10.1002/gcc.22674] [PMID: 30350386]
[68]
Qi-Dong, X.; Yang, X.; Lu, J.L.; Liu, C.Q.; Sun, J.X.; Li, C.; Wang, S.G. Development and validation of a nine-redox-related long noncoding RNA signature in renal clear cell carcinoma. Oxid. Med. Cell. Longev., 2020, 2020, 1-30.
[http://dx.doi.org/10.1155/2020/6634247] [PMID: 33425212]
[69]
Galanos, P.; Vougas, K.; Walter, D.; Polyzos, A.; Maya-Mendoza, A.; Haagensen, E.J.; Kokkalis, A.; Roumelioti, F.M.; Gagos, S.; Tzetis, M.; Canovas, B.; Igea, A.; Ahuja, A.K.; Zellweger, R.; Havaki, S.; Kanavakis, E.; Kletsas, D.; Roninson, I.B.; Garbis, S.D.; Lopes, M.; Nebreda, A.; Thanos, D.; Blow, J.J.; Townsend, P.; Sørensen, C.S.; Bartek, J.; Gorgoulis, V.G. Chronic p53-independent p21 expression causes genomic instability by deregulating replication licensing. Nat. Cell Biol., 2016, 18(7), 777-789.
[http://dx.doi.org/10.1038/ncb3378] [PMID: 27323328]
[70]
Anand, S.K.; Sharma, A.; Singh, N.; Kakkar, P. Entrenching role of cell cycle checkpoints and autophagy for maintenance of genomic integrity. DNA Repair, 2020, 86, 102748.
[http://dx.doi.org/10.1016/j.dnarep.2019.102748] [PMID: 31790874]
[71]
Martini, A.; Fallara, G.; Pellegrino, F.; Cirulli, G.O.; Larcher, A.; Necchi, A.; Montorsi, F.; Capitanio, U. Neoadjuvant and adjuvant immunotherapy in renal cell carcinoma. World J. Urol., 2021, 39(5), 1369-1376.
[http://dx.doi.org/10.1007/s00345-020-03550-z] [PMID: 33386494]
[72]
Deleuze, A.; Saout, J.; Dugay, F.; Peyronnet, B.; Mathieu, R.; Verhoest, G.; Bensalah, K.; Crouzet, L.; Laguerre, B.; Belaud-Rotureau, M.A.; Rioux-Leclercq, N.; Kammerer-Jacquet, S.F. Immunotherapy in Renal Cell Carcinoma: The Future Is Now. Int. J. Mol. Sci., 2020, 21(7), 2532.
[http://dx.doi.org/10.3390/ijms21072532] [PMID: 32260578]
[73]
Rini, B.I.; Battle, D.; Figlin, R.A.; George, D.J.; Hammers, H.; Hutson, T.; Jonasch, E.; Joseph, R.W.; McDermott, D.F.; Motzer, R.J.; Pal, S.K.; Pantuck, A.J.; Quinn, D.I.; Seery, V.; Voss, M.H.; Wood, C.G.; Wood, L.S.; Atkins, M.B. The society for immunotherapy of cancer consensus statement on immunotherapy for the treatment of advanced renal cell carcinoma (RCC). J. Immunother. Cancer, 2019, 7(1), 354.
[http://dx.doi.org/10.1186/s40425-019-0813-8] [PMID: 31856918]
[74]
Riveros, C.; Huang, E.; Ranganathan, S.; Klaassen, Z.; Rini, B.; Wallis, C.J.D.; Satkunasivam, R. Adjuvant immunotherapy in renal cell carcinoma: A systematic review and Meta‐analysis. BJU Int., 2023, 131(5), 553-561.
[http://dx.doi.org/10.1111/bju.15981] [PMID: 36709462]
[75]
Díaz-Montero, C.M.; Rini, B.I.; Finke, J.H. The immunology of renal cell carcinoma. Nat. Rev. Nephrol., 2020, 16(12), 721-735.
[http://dx.doi.org/10.1038/s41581-020-0316-3] [PMID: 32733094]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy